Advertisement

NeuroMolecular Medicine

, Volume 16, Issue 1, pp 94–105 | Cite as

Low Glucose Utilization and Neurodegenerative Changes Caused by Sodium Fluoride Exposure in Rat’s Developmental Brain

  • Chunyang Jiang
  • Shun Zhang
  • Hongliang Liu
  • Zhizhong Guan
  • Qiang Zeng
  • Cheng Zhang
  • Rongrong Lei
  • Tao Xia
  • Zhenglun Wang
  • Lu Yang
  • Yihu Chen
  • Xue Wu
  • Xiaofei Zhang
  • Yushan Cui
  • Linyu Yu
  • Aiguo WangEmail author
Original Paper

Abstract

Fluorine, a toxic and reactive element, is widely prevalent throughout the environment and can induce toxicity when absorbed into the body. This study was to explore the possible mechanisms of developmental neurotoxicity in rats treated with different levels of sodium fluoride (NaF). The rats’ intelligence, as well as changes in neuronal morphology, glucose absorption, and functional gene expression within the brain were determined using the Morris water maze test, transmission electron microscopy, small-animal magnetic resonance imaging and Positron emission tomography and computed tomography, and Western blotting techniques. We found that NaF treatment-impaired learning and memory in these rats. Furthermore, NaF caused neuronal degeneration, decreased brain glucose utilization, decreased the protein expression of glucose transporter 1 and glial fibrillary acidic protein, and increased levels of brain-derived neurotrophic factor in the rat brains. The developmental neurotoxicity of fluoride may be closely associated with low glucose utilization and neurodegenerative changes.

Keywords

Sodium fluoride 18F-fluorodeoxyglucose (FDG) PET/CT MRI Glucose utilization Neuron degeneration 

Notes

Acknowledgments

This work was supported by Grants from the National Nature Science Foundation of China (Nos. 81273021, 81072266, and 30972555) and the Foundation in the Ministry of Science and Technology of China (2010DFB30530).

Conflict of interest

None.

References

  1. Akman, C. I., Ichise, M., Olsavsky, A., Tikofsky, R. S., Van Heertum, R. L., & Gilliam, F. (2010). Epilepsy duration impacts on brain glucose metabolism in temporal lobe epilepsy: Results of voxel-based mapping. Epilepsy & Behavior, 17, 373–380.CrossRefGoogle Scholar
  2. Augustin, R. (2010). The protein family of glucose transport facilitators: It’s not only about glucose after all. IUBMB Life, 62, 315–333.PubMedGoogle Scholar
  3. Banks, C. N., & Lein, P. J. (2012). A review of experimental evidence linking neurotoxic organophosphorus compounds and inflammation. Neurotoxicology, 33, 575–584.CrossRefPubMedCentralPubMedGoogle Scholar
  4. Barbier, O., Arreola-Mendoza, L., & Del Razo, L. M. (2010). Molecular mechanisms of fluoride toxicity. Chemico-Biological Interactions, 188, 319–333.CrossRefPubMedGoogle Scholar
  5. Bartlett, R. M., Murali, D., Nickles, R. J., Barnhart, T. E., Holden, J. E., & DeJesus, O. T. (2011). Assessment of fetal brain uptake of paraquat in utero using in vivo PET/CT imaging. Toxicological Sciences, 122, 551–556.CrossRefPubMedGoogle Scholar
  6. Basha, P. M., Rai, P., & Begum, S. (2011). Fluoride toxicity and status of serum thyroid hormones, brain histopathology, and learning memory in rats: A multigenerational assessment. Biological Trace Element Research, 144, 1083–1094.CrossRefPubMedGoogle Scholar
  7. Blaylock, R. L. (2004). Excitotoxicity: A possible central mechanism in fluoride neurotoxicity. Fluoride, 37, 301–314.Google Scholar
  8. Cammarota, M., Bevilaqua, L. R., Rossato, J. I., Lima, R. H., Medina, J. H., & Izquierdo, I. (2008). Parallel memory processing by the CA1 region of the dorsal hippocampus and the basolateral amygdala. Proceedings of the National Academy of Sciences, 105, 10279–10284.CrossRefGoogle Scholar
  9. Carruthers, A., DeZutter, J., Ganguly, A., & Devaskar, S. U. (2009). Will the original glucose transporter isoform please stand up! American Journal of Physiology-Endocrinology and Metabolism, 297, E836–E848.CrossRefPubMedGoogle Scholar
  10. Ceccanti, M., Mancinelli, R., Tirassa, P., Laviola, G., Rossi, S., Romeo, M., et al. (2010). Early exposure to ethanol or red wine and long-lasting effects in aged mice. A study on nerve growth factor, brain-derived neurotrophic factor, hepatocyte growth factor, and vascular endothelial growth factor. Neurobiology of Aging, 33, 359–367.CrossRefPubMedGoogle Scholar
  11. Choi, A. L., Sun, G., Zhang, Y., & Grandjean, P. (2012). Developmental fluoride neurotoxicity: A systematic review and Meta-analysis. Environmental Health Perspectives, 120, 1362–1368.CrossRefPubMedCentralPubMedGoogle Scholar
  12. Cicek, E., Aydin, G., Akdogan, M., & Okutan, H. (2005). Effects of chronic ingestion of sodium fluoride on myocardium in a second generation of rats. Human and Experimental Toxicology, 24, 79–87.CrossRefPubMedGoogle Scholar
  13. Collins, T. F., Sprando, R. L., Black, T. N., Shackelford, M. E., Olejnik, N., Ames, M. J., et al. (2001). Developmental toxicity of sodium fluoride measured during multiple generations. Food and Chemical Toxicology, 39, 867–876.CrossRefPubMedGoogle Scholar
  14. Cotman, C. W., Berchtold, N. C., & Christie, L. A. (2007). Exercise builds brain health: Key roles of growth factor cascades and inflammation. Trends in Neurosciences, 30, 464–472.CrossRefPubMedGoogle Scholar
  15. Cunnane, S., Nugent, S., Roy, M., Courchesne-Loyer, A., Croteau, E., Tremblay, S., et al. (2011). Brain fuel metabolism, aging, and Alzheimer’s disease. Nutrition, 27, 3–20.CrossRefPubMedCentralPubMedGoogle Scholar
  16. Ge, Y., Ning, H., Feng, C., Wang, H., Yan, X., Wang, S., et al. (2006). Apoptosis in brain cells of offspring rats exposed to high fluoride and low iodine. Fluoride, 39, 173–178.Google Scholar
  17. Ge, Y., Niu, R., Zhang, J., & Wang, J. (2011). Proteomic analysis of brain proteins of rats exposed to high fluoride and low iodine. Archives of Toxicology, 85, 27–33.CrossRefPubMedGoogle Scholar
  18. Greenberg, M. E., Xu, B., Lu, B., & Hempstead, B. L. (2009). New insights in the biology of BDNF synthesis and release: Implications in CNS function. The Journal of Neuroscience, 29, 12764–12767.CrossRefPubMedCentralPubMedGoogle Scholar
  19. Gui, C. Z., Ran, L. Y., Li, J. P., & Guan, Z. Z. (2010). Changes of learning and memory ability and brain nicotinic receptors of rat offspring with coal burning fluorosis. Neurotoxicology and Teratology, 32, 536–541.CrossRefPubMedGoogle Scholar
  20. Guney, M., Oral, B., Karahan, N., & Mungan, T. (2007). Protective effect of caffeic acid phenethyl ester (CAPE) on fluoride-induced oxidative stress and apoptosis in rat endometrium. Environmental Toxicology and Pharmacology, 24, 86–91.CrossRefPubMedGoogle Scholar
  21. Harry, G. J., Schmitt, T. J., Gong, Z., Brown, H., Zawia, N., & Evans, H. L. (1996). Lead-induced alterations of glial fibrillary acidic protein (GFAP) in the developing rat brain. Toxicology and Applied Pharmacology, 139, 84–93.CrossRefPubMedGoogle Scholar
  22. Hassan, H. A., & Yousef, M. I. (2009). Mitigating effects of antioxidant properties of black berry juice on sodium fluoride induced hepatotoxicity and oxidative stress in rats. Food and Chemical Toxicology, 47, 2332–2337.CrossRefPubMedGoogle Scholar
  23. Heindel, J. J., Bates, H. K., Price, C. J., Marr, M. C., Myers, C. B., & Schwetz, B. A. (1996). Developmental toxicity evaluation of sodium fluoride administered to rats and rabbits in drinking water. Toxicological Sciences, 30, 162–177.CrossRefGoogle Scholar
  24. Kurauchi, Y., Hisatsune, A., Isohama, Y., Mishima, S., & Katsuki, H. (2012). Caffeic acid phenethyl ester protects nigral dopaminergic neurons via dual mechanisms involving haem oxygenase-1 and brain-derived neurotrophic factor. British Journal of Pharmacology, 166, 1151–1168.CrossRefPubMedGoogle Scholar
  25. Marklund, N., Sihver, S., Hovda, D. A., Langstrom, B., Watanabe, Y., Ronquist, G., et al. (2009). Increased cerebral uptake of [18F]fluoro-deoxyglucose but not [1-14C]glucose early following traumatic brain injury in rats. Journal of Neurotrauma, 26, 1281–1293.CrossRefPubMedGoogle Scholar
  26. Middeldorp, J., & Hol, E. M. (2011). GFAP in health and disease. Progress in Neurobiology, 93, 421–443.CrossRefPubMedGoogle Scholar
  27. Morris, R. (1984). Developments of a water-maze procedure for studying spatial learning in the rat. Journal of Neuroscience Methods, 11, 47–60.CrossRefPubMedGoogle Scholar
  28. Mullenix, P. J., Denbesten, P. K., Schunior, A., & Kernan, W. J. (1995). Neurotoxicity of sodium fluoride in rats. Neurotoxicology and Teratology, 17, 169–177.CrossRefPubMedGoogle Scholar
  29. Müller, Y. M. R., Kobus, K., Schatz, J. C., Ammar, D., & Nazari, E. M. (2012). Prenatal lead acetate exposure induces apoptosis and changes GFAP expression during spinal cord development. Ecotoxicology and Environmental Safety, 75, 223–229.PubMedGoogle Scholar
  30. Muneer, P. A., Alikunju, S., Szlachetka, A. M., Mercer, A. J., & Haorah, J. (2011a). Ethanol impairs glucose uptake by human astrocytes and neurons: protective effects of acetyl-l-carnitine. International Journal of Physiology, Pathophysiology and Pharmacology, 3, 48–56.PubMedCentralPubMedGoogle Scholar
  31. Muneer, P. A., Alikunju, S., Szlachetka, A. M., Murrin, C. L., & Haorah, J. (2011b). Impairment of brain endothelial glucose transporter by methamphetamine causes blood–brain barrier dysfunction. Molecular Neurodegeneration, 6, 1–13.CrossRefGoogle Scholar
  32. Niu, R., Sun, Z., Cheng, Z., Li, Z., & Wang, J. (2009). Decreased learning ability and low hippocampus glutamate in offspring rats exposed to fluoride and lead. Environmental Toxicology and Pharmacology, 28, 254–258.CrossRefPubMedGoogle Scholar
  33. Pizarro, J. M., Chang, W. E., Bah, M. J., Wright, L. K., Saviolakis, G. A., Alagappan, A., et al. (2012). Repeated exposure to sublethal doses of the organophosphorus compound VX activates BDNF expression in mouse brain. Toxicological Sciences, 126, 497–505.CrossRefPubMedGoogle Scholar
  34. Rai, A., Maurya, S. K., Khare, P., Srivastava, A., & Bandyopadhyay, S. (2010). Characterization of developmental neurotoxicity of As, Cd, and Pb mixture: Synergistic action of metal mixture in glial and neuronal functions. Toxicological Sciences, 118, 586–601.CrossRefPubMedGoogle Scholar
  35. Ranpariya, V. L., Parmar, S. K., Sheth, N. R., & Chandrashekhar, V. M. (2012). Neuroprotective activity of Matricaria recutita against fluoride-induced stress in rats. Pharmaceutical Biology, 49, 696–701.CrossRefGoogle Scholar
  36. Reddy, P. Y., Reddy, K. P., & Kumar, K. P. (2011). Neurodegenerative changes in different regions of brain, spinal cord and sciatic nerve of rats treated with sodium fluoride. Journal of Medical and Allied Sciences, 1, 30–35.Google Scholar
  37. Rocha-Amador, D., Navarro, M. E., Carrizales, L., Morales, R., & Calderón, J. (2007). Decreased intelligence in children and exposure to fluoride and arsenic in drinking water. Cadernos de Saúde Pública, 23, S579–S587.CrossRefPubMedGoogle Scholar
  38. Sharma, R., Tsuchiya, M., & Bartlett, J. D. (2008). Fluoride induces endoplasmic reticulum stress and inhibits protein synthesis and secretion. Environmental Health Perspectives, 116, 1142–1146.CrossRefPubMedCentralPubMedGoogle Scholar
  39. Smith, M. A., Riby, L. M., Eekelen, J. A., & Foster, J. K. (2011). Glucose enhancement of human memory: a comprehensive research review of the glucose memory facilitation effect. Neuroscience and Biobehavioral Reviews, 35, 770–783.CrossRefPubMedGoogle Scholar
  40. Strużyñska, L., Bubko, I., Walski, M., & Rafałowska, U. (2001). Astroglial reaction during the early phase of acute lead toxicity in the adult rat brain. Toxicology, 165, 121–131.CrossRefPubMedGoogle Scholar
  41. Turnbull, D. H., & Mori, S. (2007). MRI in mouse developmental biology. NMR in Biomedicine, 20, 265–274.CrossRefPubMedCentralPubMedGoogle Scholar
  42. Valdez-Jimenez, L., Soria Fregozo, C., Miranda Beltran, M. L., Gutierrez Coronado, O., & Perez Vega, M. I. (2010). Effects of the fluoride on the central nervous system. Neurologia, 26, 297–300.CrossRefGoogle Scholar
  43. Van der Jeugd, A., Ahmed, T., Burnouf, S., Belarbi, K., Hamdame, M., Grosjean, M. E., et al. (2011). Hippocampal tauopathy in tau transgenic mice coincides with impaired hippocampus-dependent learning and memory, and attenuated late-phase long-term depression of synaptic transmission. Neurobiology of Learning and Memory, 95, 296–304.CrossRefPubMedGoogle Scholar
  44. Vann, S. D., & Albasser, M. M. (2011). Hippocampus and neocortex: Recognition and spatial memory. Current Opinion in Neurobiology, 21, 440–445.CrossRefPubMedGoogle Scholar
  45. Wang, X., Song, X., Takata, T., Miichi, Y., Yokono, K., & Sakurai, T. (2010). Amyloid-beta neurotoxicity restricts glucose window for neuronal survival in rat hippocampal slice cultures. Experimental Gerontology, 45, 904–908.CrossRefPubMedGoogle Scholar
  46. Wu, X., Chen, P. S., Dallas, S., Wilson, B., Block, M. L., Wang, C. C., et al. (2008). Histone deacetylase inhibitors up-regulate astrocyte GDNF and BDNF gene transcription and protect dopaminergic neurons. The International Journal of Neuropsychopharmacology, 11, 1123–1134.CrossRefPubMedCentralPubMedGoogle Scholar
  47. Xia, Y., Eberl, S., Wen, L., Fulham, M., & Feng, D. D. (2011). Dual-modality brain PET-CT image segmentation based on adaptive use of functional and anatomical information. Computerized Medical Imaging and Graphics, 36, 47–53.CrossRefPubMedGoogle Scholar
  48. Zhang, J., Mitsis, E. M., Chu, K., Newmark, R. E., Hazlett, E. A., & Buchsbaum, M. S. (2010). Statistical parametric mapping and cluster counting analysis of [18F] FDG-PET imaging in traumatic brain injury. Journal of Neurotrauma, 27, 35–49.CrossRefPubMedGoogle Scholar
  49. Zhang, M., Wang, A., He, W., He, P., Xu, B., Xia, T., et al. (2007). Effects of fluoride on the expression of NCAM, oxidative stress, and apoptosis in primary cultured hippocampal neurons. Toxicology, 236, 208–216.CrossRefPubMedGoogle Scholar
  50. Zhang, J., Zhu, W. J., Xu, X. H., & Zhang, Z. G. (2011). Effect of fluoride on calcium ion concentration and expression of nuclear transcription factor kappa-B ρ65 in rat hippocampus. Experimental and Toxicologic Pathology, 63, 407–411.CrossRefPubMedGoogle Scholar
  51. Zlokovic, B. V. (2008). The blood–brain barrier in health and chronic neurodegenerative disorders. Neuron, 57, 178–201.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Chunyang Jiang
    • 1
    • 2
  • Shun Zhang
    • 1
  • Hongliang Liu
    • 3
  • Zhizhong Guan
    • 4
  • Qiang Zeng
    • 3
  • Cheng Zhang
    • 1
  • Rongrong Lei
    • 1
  • Tao Xia
    • 1
  • Zhenglun Wang
    • 1
  • Lu Yang
    • 1
  • Yihu Chen
    • 1
  • Xue Wu
    • 1
  • Xiaofei Zhang
    • 1
  • Yushan Cui
    • 3
  • Linyu Yu
    • 3
  • Aiguo Wang
    • 1
    Email author
  1. 1.Department of Environmental Health and MOE Key Lab of Environment and Health, School of Public, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanPeople’s Republic of China
  2. 2.Department of Thoracic SurgeryTianjin Union Medical CentreTianjinPeople’s Republic of China
  3. 3.Tianjin Center for Disease Control and PreventionTianjinPeople’s Republic of China
  4. 4.Department of PathologyGuiyang Medical CollegeGuiyangPeople’s Republic of China

Personalised recommendations