NeuroMolecular Medicine

, Volume 15, Issue 4, pp 771–781 | Cite as

SUMO and Ischemic Tolerance

  • Yang-ja Lee
  • John M. Hallenbeck
Review Paper


Hibernating squirrels slow blood flow to a crawl, but sustain no damage to brain or other tissues. This phenomenon provides an excellent model of natural tolerance to ischemia. Small ubiquitin-like modifier (SUMO) is a 100-residue peptide that modifies other proteins by being attached to the epsilon amino group of specific lysine residues. The discovery of massive SUMOylation (by both SUMO-1 and SUMO-2/3) occurring in the brains of 13-lined ground squirrels (Ictidomys tridecemlineatus) during hibernation torpor had opened the door to the studies on SUMO and ischemic tolerance reviewed here. Ischemic stress was shown to increase the levels of SUMO conjugation, especially SUMO-2/3, mostly during reperfusion in animal models and during restoration of oxygen and glucose in cell culture systems. Over-expression or depletion of SUMOs and/or Ubc9 (the SUMO E2 conjugating enzyme) increases or decreases (respectively) the levels of SUMO conjugates. Elevated global SUMO conjugations were shown to cytoprotect from ischemic insults; conversely, depressed SUMOylation sensitized cells. Global protein conjugation not only by SUMOs, but also by other ubiquitin-like modifiers (ULMs) including NEDD8, ISG15, UFM1 and FUB1 was shown to be significantly increased in the brains of hibernating ground squirrels during torpor. These increases in multiple ULM conjugations may orchestrate the cellular events in hibernating ground squirrels that induce a state of natural tolerance through their multipronged effects. Certain miRNAs such as the miR-200 family and the miR-182 family were shown, at least partly, to control the levels of these ULM conjugations. Lowering the levels of these miRNAs leads to an increase in global SUMOylation/ULM conjugation, thereby providing the tolerance to ischemia. This suggests that these miRNAs may be good targets for therapeutic intervention in stroke.


SUMO Ischemia Hibernation ULMs miR-200 miR-182 Hypothermia 



Small ubiquitin-like modifier


Ubiquitin-like modifier


Middle cerebral artery occlusion


Oxygen–glucose deprivation


Restoration of oxygen and glucose





This research was supported by the Intramural Research Program of the NINDS/NIH. The authors thank to all colleagues and collaborators involved in this work including Shinichi Miyake, Hideaki Wakita, David McMullen, Yongshan Mou, Paola Castri, Dace Klimanis, Joliet Bembry, Dragan Maric, Kory Johnson, Sungyoung Auh, Yoshiaki Azuma, and Mary Dasso.


  1. Carey, H. V., Andrews, M. T., & Martin, S. L. (2003). Mammalian hibernation: Cellular and molecular responses to depressed metabolism and low temperature. Physiological Reviews, 83(4), 1153–1181.PubMedGoogle Scholar
  2. Chen, Y., Matsushita, M., Nairn, A. C., Damuni, Z., Cai, D., Frerichs, K. U., et al. (2001). Mechanisms for increased levels of phosphorylation of elongation factor-2 during hibernation in ground squirrels. Biochemistry, 40(38), 11565–11570.PubMedCrossRefGoogle Scholar
  3. Chen, R. X., Xia, Y. H., Xue, T. C., & Ye, S. L. (2012). Suppression of microRNA-96 expression inhibits the invasion of hepatocellular carcinoma cells. [Research Support, Non-U.S. Gov’t]. Molecular Medicine Reports, 5(3), 800–804. doi: 10.3892/mmr.2011.695.PubMedGoogle Scholar
  4. Cimarosti, H., Ashikaga, E., Jaafari, N., Dearden, L., Rubin, P., Wilkinson, K. A., et al. (2012). Enhanced SUMOylation and SENP-1 protein levels following oxygen and glucose deprivation in neurons. Journal of Cerebral Blood Flow and Metabolism, 32(1), 17–22.PubMedCrossRefGoogle Scholar
  5. Cimarosti, H., Lindberg, C., Bomholt, S. F., Ronn, L. C., & Henley, J. M. (2008). Increased protein SUMOylation following focal cerebral ischemia. Neuropharmacology, 54(2), 280–289.PubMedCrossRefGoogle Scholar
  6. Datwyler, A. L., Lattig-Tunnemann, G., Yang, W., Paschen, W., Lee, S. L., Dirnagl, U., et al. (2011). SUMO2/3 conjugation is an endogenous neuroprotective mechanism. Journal of Cerebral Blood Flow and Metabolism, 31, 2152–2159.PubMedCrossRefGoogle Scholar
  7. Dharap, A., & Vemuganti, R. (2010). Ischemic pre-conditioning alters cerebral microRNAs that are upstream to neuroprotective signaling pathways. Journal of Neurochemistry, 113(6), 1685–1691.PubMedGoogle Scholar
  8. Dirnagl, U., Iadecola, C., & Moskowitz, M. A. (1999). Pathobiology of ischaemic stroke: An integrated view. Trends in Neurosciences, 22(9), 391–397.PubMedCrossRefGoogle Scholar
  9. Drew, K. L., Rice, M. E., Kuhn, T. B., & Smith, M. A. (2001). Neuroprotective adaptations in hibernation: Therapeutic implications for ischemia-reperfusion, traumatic brain injury and neurodegenerative diseases. Free Radical Biology and Medicine, 31(5), 563–573.PubMedCrossRefGoogle Scholar
  10. Drew, K. L., Toien, O., Rivera, P. M., Smith, M. A., Perry, G., & Rice, M. E. (2002). Role of the antioxidant ascorbate in hibernation and warming from hibernation. Comparative Biochemistry and Physiology Part C: Toxicology and Pharmacology, 133(4), 483–492.PubMedCrossRefGoogle Scholar
  11. Evdokimov, E., Sharma, P., Lockett, S. J., Lualdi, M., & Kuehn, M. R. (2008). Loss of SUMO1 in mice affects RanGAP1 localization and formation of PML nuclear bodies, but is not lethal as it can be compensated by SUMO2 or SUMO3. Journal of Cell Science, 121(Pt 24), 4106–4113.PubMedCrossRefGoogle Scholar
  12. Frank, S., Gaume, B., Bergmann-Leitner, E. S., Leitner, W. W., Robert, E. G., Catez, F., et al. (2001). The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Developmental Cell, 1(4), 515–525.PubMedCrossRefGoogle Scholar
  13. Frerichs, K. U., & Hallenbeck, J. M. (1998). Hibernation in ground squirrels induces state and species-specific tolerance to hypoxia and aglycemia: An in vitro study in hippocampal slices. Journal of Cerebral Blood Flow and Metabolism, 18(2), 168–175.PubMedGoogle Scholar
  14. Frerichs, K. U., Kennedy, C., Sokoloff, L., & Hallenbeck, J. M. (1994). Local cerebral blood flow during hibernation, a model of natural tolerance to “cerebral ischemia”. Journal of Cerebral Blood Flow and Metabolism, 14(2), 193–205.PubMedCrossRefGoogle Scholar
  15. Frerichs, K. U., Smith, C. B., Brenner, M., DeGracia, D. J., Krause, G. S., Marrone, L., et al. (1998). Suppression of protein synthesis in brain during hibernation involves inhibition of protein initiation and elongation. Proceedings of the National Academy of Sciences of the United States of America, 95(24), 14511–14516.PubMedCrossRefGoogle Scholar
  16. Garcia-Dominguez, M., & Reyes, J. C. (2009). SUMO association with repressor complexes, emerging routes for transcriptional control. Biochimica et Biophysica Acta, 1789(6–8), 451–459.PubMedCrossRefGoogle Scholar
  17. Gentile, N. T., Spatz, M., Brenner, M., McCarron, R. M., & Hallenbeck, J. M. (1996). Decreased calcium accumulation in isolated nerve endings during hibernation in ground squirrels. Neurochemical Research, 21(8), 947–954.PubMedCrossRefGoogle Scholar
  18. Girdwood, D. W., Tatham, M. H., & Hay, R. T. (2004). SUMO and transcriptional regulation. Seminars in Cell and Developmental Biology, 15(2), 201–210.PubMedCrossRefGoogle Scholar
  19. Goldberg, M. P., & Choi, D. W. (1993). Combined oxygen and glucose deprivation in cortical cell culture: calcium-dependent and calcium-independent mechanisms of neuronal injury. Journal of Neuroscience, 13(8), 3510–3524.PubMedGoogle Scholar
  20. Gonzalez-Ibarra, F. P., Varon, J., & Lopez-Meza, E. G. (2011). Therapeutic hypothermia: Critical review of the molecular mechanisms of action. Frontiers in Neurology, 2, 4.PubMedCrossRefGoogle Scholar
  21. Gravgaard, K. H., Lyng, M. B., Laenkholm, A. V., Sokilde, R., Nielsen, B. S., Litman, T., et al. (2012). The miRNA-200 family and miRNA-9 exhibit differential expression in primary versus corresponding metastatic tissue in breast cancer. Breast Cancer Research and Treatment,. doi: 10.1007/s10549-012-1969-9.PubMedGoogle Scholar
  22. Gregory, P. A., Bert, A. G., Paterson, E. L., Barry, S. C., Tsykin, A., Farshid, G., et al. (2008). The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. [Research Support, Non-U.S. Gov’t]. Nature Cell Biology, 10(5), 593–601.PubMedCrossRefGoogle Scholar
  23. Guo, C., Hildick, K. L., Luo, J., Dearden, L., Wilkinson, K. A., & Henley, J. M. (2013). SENP3-mediated deSUMOylation of dynamin-related protein 1 promotes cell death following ischaemia. EMBO Journal,. doi: 10.1038/emboj.2013.65.Google Scholar
  24. Haas, A. L., Ahrens, P., Bright, P. M., & Ankel, H. (1987). Interferon induces a 15-kilodalton protein exhibiting marked homology to ubiquitin [Comparative Study Research Support, U.S. Gov’t, P.H.S.]. Journal of Chemical Biology, 262(23), 11315–11323.Google Scholar
  25. Hallenbeck, J. M., & Dutka, A. J. (1990). Background review and current concepts of reperfusion injury. Archives of Neurology, 47(11), 1245–1254.PubMedCrossRefGoogle Scholar
  26. Hannoun, Z., Greenhough, S., Jaffray, E., Hay, R. T., & Hay, D. C. (2010). Post-translational modification by SUMO. Toxicology, 278(3), 288–293.PubMedCrossRefGoogle Scholar
  27. Hay, R. T. (2005). SUMO: A history of modification. Molecular Cell, 18(1), 1–12.PubMedCrossRefGoogle Scholar
  28. Herrmann, J., Lerman, L. O., & Lerman, A. (2007). Ubiquitin and ubiquitin-like proteins in protein regulation. Circulation Research, 100(9), 1276–1291.PubMedCrossRefGoogle Scholar
  29. Hillion, J. A., Takahashi, K., Maric, D., Ruetzler, C., Barker, J. L., & Hallenbeck, J. M. (2005). Development of an ischemic tolerance model in a PC12 cell line. Journal of Cerebral Blood Flow and Metabolism, 25(2), 154–162.PubMedCrossRefGoogle Scholar
  30. Hur, K., Toiyama, Y., Takahashi, M., Balaguer, F., Nagasaka, T., Koike, J., et al. (2012). MicroRNA-200c modulates epithelial-to-mesenchymal transition (EMT) in human colorectal cancer metastasis. Gut,. doi: 10.1136/gutjnl-2011-301846.PubMedGoogle Scholar
  31. Jeon, Y. J., Yoo, H. M., & Chung, C. H. (2010). ISG15 and immune diseases. Biochimica et Biophysica Acta, 1802(5), 485–496.PubMedCrossRefGoogle Scholar
  32. Komatsu, M., Chiba, T., Tatsumi, K., Iemura, S., Tanida, I., Okazaki, N., et al. (2004). A novel protein-conjugating system for Ufm1, a ubiquitin-fold modifier. EMBO Journal, 23(9), 1977–1986.PubMedCrossRefGoogle Scholar
  33. Krol, J., Busskamp, V., Markiewicz, I., Stadler, M. B., Ribi, S., Richter, J., et al. (2010). Characterizing light-regulated retinal microRNAs reveals rapid turnover as a common property of neuronal microRNAs. Cell, 141(4), 618–631.PubMedCrossRefGoogle Scholar
  34. Kumar, S., Yoshida, Y., & Noda, M. (1993). Cloning of a cDNA which encodes a novel ubiquitin-like protein. Biochemical and Biophysical Research Communications, 195(1), 393–399.PubMedCrossRefGoogle Scholar
  35. Lee, Y. J., Castri, P., Bembry, J., Maric, D., Auh, S., & Hallenbeck, J. M. (2009). SUMOylation participates in induction of ischemic tolerance. Journal of Neurochemistry, 109(1), 257–267.PubMedCrossRefGoogle Scholar
  36. Lee, S. T., Chu, K., Jung, K. H., Yoon, H. J., Jeon, D., Kang, K. M., et al. (2010). MicroRNAs induced during ischemic preconditioning. Stroke, 41(8), 1646–1651.PubMedCrossRefGoogle Scholar
  37. Lee, Y. J., Johnson, K. R., & Hallenbeck, J. M. (2012). Global protein conjugation by ubiquitin-like-modifiers during ischemic stress is regulated by microRNAs and confers robust tolerance to ischemia. PLoS One, 7(10), e47787.PubMedCrossRefGoogle Scholar
  38. Lee, Y. J., Miyake, S., Wakita, H., McMullen, D. C., Azuma, Y., Auh, S., et al. (2007). Protein SUMOylation is massively increased in hibernation torpor and is critical for the cytoprotection provided by ischemic preconditioning and hypothermia in SHSY5Y cells. Journal of Cerebral Blood Flow and Metabolism, 27(5), 950–962.PubMedGoogle Scholar
  39. Lee, Y. J., Mou, Y., Maric, D., Klimanis, D., Auh, S., & Hallenbeck, J. M. (2011). Elevated global SUMOylation in Ubc9 transgenic mice protects their brains against focal cerebral ischemic damage. PLoS One, 6(10), e25852.PubMedCrossRefGoogle Scholar
  40. Lemaire, K., Moura, R. F., Granvik, M., Igoillo-Esteve, M., Hohmeier, H. E., Hendrickx, N., et al. (2011). Ubiquitin fold modifier 1 (UFM1) and its target UFBP1 protect pancreatic beta cells from ER stress-induced apoptosis. PLoS One, 6(4), e18517.PubMedCrossRefGoogle Scholar
  41. Liu, S., Howell, P. M., & Riker, A. I. (2012a). Up-regulation of miR-182 expression after epigenetic modulation of human melanoma cells. Annals of Surgical Oncology,. doi: 10.1245/s10434-012-2467-3.Google Scholar
  42. Liu, Z., Liu, J., Segura, M. F., Shao, C., Lee, P., Gong, Y., et al. (2012b). MiR-182 overexpression in tumourigenesis of high-grade serous ovarian carcinoma. Journal of Pathology,. doi: 10.1002/path.4000.Google Scholar
  43. Loftus, L. T., Gala, R., Yang, T., Jessick, V. J., Ashley, M. D., Ordonez, A. N., et al. (2009). Sumo-2/3-ylation following in vitro modeled ischemia is reduced in delayed ischemic tolerance. Brain Research, 1272, 71–80.PubMedCrossRefGoogle Scholar
  44. Magenta, A., Cencioni, C., Fasanaro, P., Zaccagnini, G., Greco, S., Sarra-Ferraris, G., et al. (2011). miR-200c is upregulated by oxidative stress and induces endothelial cell apoptosis and senescence via ZEB1 inhibition. Cell Death and Differentiation, 18(10), 1628–1639.PubMedCrossRefGoogle Scholar
  45. Mergenthaler, P., Dirnagl, U., & Meisel, A. (2004). Pathophysiology of stroke: Lessons from animal models. Metabolic Brain Disease, 19(3–4), 151–167.PubMedCrossRefGoogle Scholar
  46. Mihelich, B. L., Khramtsova, E. A., Arva, N., Vaishnav, A., Johnson, D. N., Giangreco, A. A., et al. (2011). miR-183-96-182 cluster is overexpressed in prostate tissue and regulates zinc homeostasis in prostate cells. Journal of Biological Chemistry, 286(52), 44503–44511.PubMedCrossRefGoogle Scholar
  47. Moskwa, P., Buffa, F. M., Pan, Y., Panchakshari, R., Gottipati, P., Muschel, R. J., et al. (2011). miR-182-mediated downregulation of BRCA1 impacts DNA repair and sensitivity to PARP inhibitors. Molecular Cell, 41(2), 210–220.PubMedCrossRefGoogle Scholar
  48. Nakamura, M., & Yamaguchi, S. (2006). The ubiquitin-like protein MNSFbeta regulates ERK-MAPK cascade. Journal of Biological Chemistry, 281(25), 16861–16869.PubMedCrossRefGoogle Scholar
  49. Nakka, V. P., Lang, B. T., Lenschow, D. J., Zhang, D. E., Dempsey, R. J., & Vemuganti, R. (2011). Increased cerebral protein ISGylation after focal ischemia is neuroprotective. Journal of Cerebral Blood Flow and Metabolism, 31(12), 2375–2384.PubMedCrossRefGoogle Scholar
  50. Ohtsuki, T., Matsumoto, M., Kitagawa, K., Taguchi, A., Maeda, Y., Hata, R., et al. (1993). Induced resistance and susceptibility to cerebral ischemia in gerbil hippocampal neurons by prolonged but mild hypoperfusion. Brain Research, 614(1–2), 279–284.PubMedCrossRefGoogle Scholar
  51. Oved, S., Mosesson, Y., Zwang, Y., Santonico, E., Shtiegman, K., Marmor, M. D., et al. (2006). Conjugation to NEDD8 instigates ubiquitylation and down-regulation of activated receptor tyrosine kinases. Journal of Biological Chemistry, 281(31), 21640–21651.PubMedCrossRefGoogle Scholar
  52. Saitoh, H., & Hinchey, J. (2000). Functional heterogeneity of small ubiquitin-related protein modifiers SUMO-1 versus SUMO-2/3. Journal of Biological Chemistry, 275(9), 6252–6258.PubMedCrossRefGoogle Scholar
  53. Shao, C., Liu, Y., Ruan, H., Li, Y., Wang, H., Kohl, F., et al. (2010). Shotgun proteomics analysis of hibernating arctic ground squirrels. Molecular and Cellular Proteomics, 9(2), 313–326.PubMedCrossRefGoogle Scholar
  54. Shao, R., Zhang, F. P., Tian, F., Anders Friberg, P., Wang, X., Sjoland, H., et al. (2004). Increase of SUMO-1 expression in response to hypoxia: Direct interaction with HIF-1alpha in adult mouse brain and heart in vivo. FEBS Letters, 569(1–3), 293–300.PubMedCrossRefGoogle Scholar
  55. Sossey-Alaoui, K., Bialkowska, K., & Plow, E. F. (2009). The miR200 family of microRNAs regulates WAVE3-dependent cancer cell invasion. Journal of Biological Chemistry, 284(48), 33019–33029.PubMedCrossRefGoogle Scholar
  56. Storey, K. B. (2003). Mammalian hibernation. Transcriptional and translational controls. Advances in Experimental Medicine and Biology, 543, 21–38.PubMedCrossRefGoogle Scholar
  57. Storey, K. B. (2004). Cold ischemic organ preservation: Lessons from natural systems. Journal of Investigative Medicine, 52(5), 315–322.PubMedCrossRefGoogle Scholar
  58. Suzuki, K., Nakamura, M., Nariai, Y., Dekio, S., & Tanigawa, Y. (1996). Monoclonal nonspecific suppressor factor beta (MNSF beta) inhibits the production of TNF-alpha by lipopolysaccharide-activated macrophages. Immunobiology, 195(2), 187–198.PubMedCrossRefGoogle Scholar
  59. Tateishi, K., Omata, M., Tanaka, K., & Chiba, T. (2001). The NEDD8 system is essential for cell cycle progression and morphogenetic pathway in mice. Journal of Cell Biology, 155(4), 571–579.PubMedCrossRefGoogle Scholar
  60. Tempe, D., Piechaczyk, M., & Bossis, G. (2008). SUMO under stress. Biochemical Society Transactions, 36(Pt 5), 874–878.PubMedCrossRefGoogle Scholar
  61. Wang, L., Ma, Q., Yang, W., Mackensen, G. B., & Paschen, W. (2012). Moderate hypothermia induces marked increase in levels and nuclear accumulation of SUMO2/3-conjugated proteins in neurons. Journal of Neurochemistry,. doi: 10.1111/j.1471-4159.2012.07916.x.Google Scholar
  62. Wang, Z., Wang, R., Sheng, H., Sheng, S. P., Paschen, W., & Yang, W. (2013). Transient ischemia induces massive nuclear accumulation of SUMO2/3-conjugated proteins in spinal cord neurons. Spinal Cord, 51(2), 139–143.PubMedCrossRefGoogle Scholar
  63. Wasiak, S., Zunino, R., & McBride, H. M. (2007). Bax/Bak promote SUMOylation of DRP1 and its stable association with mitochondria during apoptotic cell death. Journal of Cell Biology, 177(3), 439–450.PubMedCrossRefGoogle Scholar
  64. Wei, H., Teng, H., Huan, W., Zhang, S., Fu, H., Chen, F., et al. (2012). An upregulation of SENP3 after spinal cord injury: Implications for neuronal apoptosis. Neurochemical Research, 37(12), 2758–2766.PubMedCrossRefGoogle Scholar
  65. Yan, J., Burman, A., Nichols, C., Alila, L., Showe, L. C., Showe, M. K., et al. (2006). Detection of differential gene expression in brown adipose tissue of hibernating arctic ground squirrels with mouse microarrays. Physiological Genomics, 25(2), 346–353.PubMedCrossRefGoogle Scholar
  66. Yang, W., Ma, Q., Mackensen, G. B., & Paschen, W. (2009). Deep hypothermia markedly activates the small ubiquitin-like modifier conjugation pathway; implications for the fate of cells exposed to transient deep hypothermic cardiopulmonary bypass. Journal of Cerebral Blood Flow and Metabolism, 29(5), 886–890.PubMedCrossRefGoogle Scholar
  67. Yang, W., Sheng, H., Warner, D. S., & Paschen, W. (2008a). Transient focal cerebral ischemia induces a dramatic activation of small ubiquitin-like modifier conjugation. Journal of Cerebral Blood Flow and Metabolism, 28(5), 892–896.PubMedCrossRefGoogle Scholar
  68. Yang, W., Sheng, H., Warner, D. S., & Paschen, W. (2008b). Transient global cerebral ischemia induces a massive increase in protein sumoylation. Journal of Cerebral Blood Flow and Metabolism, 28(2), 269–279.PubMedCrossRefGoogle Scholar
  69. Yenari, M. A., & Han, H. S. (2012). Neuroprotective mechanisms of hypothermia in brain ischaemia. Nature Reviews Neuroscience, 13(4), 267–278.PubMedGoogle Scholar
  70. Zhang, F. P., Mikkonen, L., Toppari, J., Palvimo, J. J., Thesleff, I., & Janne, O. A. (2008). Sumo-1 function is dispensable in normal mouse development. Molecular and Cellular Biology, 28(17), 5381–5390.PubMedCrossRefGoogle Scholar
  71. Zhu, X., Smith, M. A., Perry, G., Wang, Y., Ross, A. P., Zhao, H. W., et al. (2005). MAPKs are differentially modulated in arctic ground squirrels during hibernation. Journal of Neuroscience Research, 80(6), 862–868.PubMedCrossRefGoogle Scholar
  72. Zunino, R., Braschi, E., Xu, L., & McBride, H. M. (2009). Translocation of SenP5 from the nucleoli to the mitochondria modulates DRP1-dependent fission during mitosis. Journal of Biological Chemistry, 284(26), 17783–17795.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York (outside the USA) 2013

Authors and Affiliations

  1. 1.Stroke BranchNational Institute of Neurological Disease and Stroke, National Institutes of Health (NINDS/NIH)BethesdaUSA

Personalised recommendations