NeuroMolecular Medicine

, Volume 15, Issue 3, pp 515–522 | Cite as

ATP7B Variants as Modulators of Copper Dyshomeostasis in Alzheimer’s Disease

  • Rosanna Squitti
  • Renato Polimanti
  • Mariacristina Siotto
  • Serena Bucossi
  • Mariacarla Ventriglia
  • Stefania Mariani
  • Fabrizio Vernieri
  • Federica Scrascia
  • Laura Trotta
  • Paolo Maria Rossini
Original Paper

Abstract

To understand the role of the key copper-regulating gene, ATP7B, in copper dyshomeostasis associated with Alzheimer’s disease (AD), we analyzed the serum levels of copper, ceruloplasmin and ‘free’ (i.e., non-ceruloplasmin bound) copper in 399 patients with AD and 303 elderly healthy controls. We also performed analyses of informative variants of ATP7B. AD patients had higher levels of copper and free copper than controls. Individuals with free copper levels higher than 1.6 μmol/L (the upper value of the normal reference range) were more frequent among cases (p < 0.001). Among these individuals, those who were carriers of the ATP7B variants accounted for a large proportion of the free copper levels, specifically in the AD group (p < 0.01). Our results suggest the existence of a ‘copper dysfunction’ phenotype of sporadic AD which has a genetic basis. They also suggest that free copper is a risk factor for this disorder, modulating additional pathways leading to the disease cascade.

Keywords

Alzheimer’s disease Copper Ceruloplasmin ATP7B Wilson’s disease 

Notes

Acknowledgments

This study was partially supported by the following grants: 1) European Community’s Seventh Framework Programme Project MEGMRI (no. 200859); 2) FISM—Fondazione Italiana Sclerosi Multipla—Cod.2010/R/38” Fatigue Relief in Multiple Sclerosis by Neuromodulation: a transcranial Direct Current Stimulation (tDCS) Intervention. [FaMuSNe]; 3) Italian Ministry of Health Cod. GR-2008-1138642 ‘Promoting recovery from Stroke: Individually enriched therapeutic intervention in Acute phase’ [ProSIA].

Conflict of interest

All authors and their family members report no financial relationship related to the manuscript or the topic and no conflicts of interest.

References

  1. Brewer, G. J. (2009). Zinc and tetrathiomolybdate for the treatment of Wilson’s disease and the potential efficacy of anticopper therapy in a wide variety of diseases. Metallomics, 1(3), 199–206.PubMedCrossRefGoogle Scholar
  2. Bucossi, S., Mariani, S., Ventriglia, M., Polimanti, R., Gennarelli, M., Bonvicini, C., et al. (2011a). Association between the c. 2495 A>G ATP7B polymorphism and sporadic Alzheimer’s disease. International Journal of Alzheimer’s Disease, 2011, 973692.PubMedGoogle Scholar
  3. Bucossi, S., Polimanti, R., Mariani, S., Ventriglia, M., Bonvicini, C., Migliore, S., et al. (2012). Association of K832R and R952 K SNPs of Wilson’s disease gene with Alzheimer’s disease. Journal of Alzheimer’s Disease, 29(4), 913–919.PubMedGoogle Scholar
  4. Bucossi, S., Ventriglia, M., Panetta, V., Salustri, C., Pasqualetti, P., Mariani, S., et al. (2011b). Copper in Alzheimer’s disease: A meta-analysis of serum, plasma, and cerebrospinal fluid studies. Journal of Alzheimer’s Disease, 24(1), 175–185.PubMedGoogle Scholar
  5. Bush, A. I., & Tanzi, R. E. (2008). Therapeutics for Alzheimer’s disease based on the metal hypothesis. Neurotherapeutics, 5(3), 421–432.PubMedCrossRefGoogle Scholar
  6. Capo, C. R., Arciello, M., Squitti, R., Cassetta, E., Rossini, P. M., Calabrese, L., et al. (2008). Features of ceruloplasmin in the cerebrospinal fluid of Alzheimer’s disease patients. BioMetals, 21(3), 367–372.PubMedCrossRefGoogle Scholar
  7. Cherny, R. A., Legg, J. T., McLean, C. A., Fairlie, D. P., Huang, X., Atwood, C. S., et al. (1999). Aqueous dissolution of Alzheimer’s disease Abeta amyloid deposits by biometal depletion. Journal of Biological Chemistry, 274(33), 23223–23228.PubMedCrossRefGoogle Scholar
  8. Dubois, B., Feldman, H. H., Jacova, C., Dekosky, S. T., Barberger-Gateau, P., Cummings, J., et al. (2007). Research criteria for the diagnosis of Alzheimer’s disease: Revising the NINCDS-ADRDA criteria. Lancet Neurology, 6(8), 734–746.PubMedCrossRefGoogle Scholar
  9. Excoffier, L., Laval, G., & Balding, D. (2003). Gametic phase estimation over large genomic regions using an adaptive window approach. Human Genomics, 1(1), 7–19.PubMedCrossRefGoogle Scholar
  10. Faller, P. (2011). Copper in Alzheimer disease: Too much, too little, or misplaced? Free Radical Biology & Medicine. doi: 10.1016/j.freeradbiomed.2011.11.005.Google Scholar
  11. Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12(3), 189–198.PubMedCrossRefGoogle Scholar
  12. Frautschy, S. A., & Cole, G. M. (2010). Why pleiotropic interventions are needed for Alzheimer’s disease. Molecular Neurobiology, 41(2–3), 392–409.PubMedCrossRefGoogle Scholar
  13. Gaggelli, E., Kozlowski, H., Valensin, D., & Valensin, G. (2006). Copper homeostasis and neurodegenerative disorders (Alzheimer’s, prion, and Parkinson’s diseases and amyotrophic lateral sclerosis). Chemical Reviews, 106(6), 1995–2044.PubMedCrossRefGoogle Scholar
  14. Giambattistelli, F., Bucossi, S., Salustri, C., Panetta, V., Mariani, S., Siotto, M., et al. (2011). Effects of hemochromatosis and transferrin gene mutations on iron dyshomeostasis, liver dysfunction and on the risk of Alzheimer’s disease. Neurobiology of Aging. doi: 10.1016/j.neurobiolaging.2011.03.005.PubMedGoogle Scholar
  15. Gupta, A., Maulik, M., Nasipuri, P., Chattopadhyay, I., Das, S. K., Gangopadhyay, P. K., et al. (2007). Molecular diagnosis of Wilson disease using prevalent mutations and informative single-nucleotide polymorphism markers. Clinical Chemistry, 53(9), 1601–1608.PubMedCrossRefGoogle Scholar
  16. Halliday, G. M., & McCann, H. (2010). The progression of pathology in Parkinson’s disease [Review]. Annals of the New York Academy of Sciences, 1184, 188–195.PubMedCrossRefGoogle Scholar
  17. Hardy, J. A., & Higgins, G. A. (1992). Alzheimer’s disease: The amyloid cascade hypothesis. Science, 256(5054), 184–185.PubMedCrossRefGoogle Scholar
  18. Hixson, J. E., & Vernier, D. T. (1990). Restriction isotyping of human apolipoprotein E by gene amplification and cleavage with HhaI. Journal of Lipid Research, 31(3), 545–548.PubMedGoogle Scholar
  19. Hochstrasser, H., Tomiuk, J., Walter, U., Behnke, S., Spiegel, J., Kruger, R., et al. (2005). Functional relevance of ceruloplasmin mutations in Parkinson’s disease. FASEB Journal, 19(13), 1851–1853.PubMedGoogle Scholar
  20. Hoogenraad, T. (2001). Wilson’s disease. Amsterdam: Intermed Medical Publishers.Google Scholar
  21. James, S. A., Volitakis, I., Adlard, P. A., Duce, J. A., Masters, C. L., Cherny, R. A., et al. (2012). Elevated labile Cu is associated with oxidative pathology in Alzheimer disease. Free Radical Biology & Medicine, 52(2), 298–302.CrossRefGoogle Scholar
  22. Jin, L., Wu, W. H., Li, Q. Y., Zhao, Y. F., & Li, Y. M. (2011). Copper inducing Abeta42 rather than Abeta40 nanoscale oligomer formation is the key process for Abeta neurotoxicity. Nanoscale, 3(11), 4746–4751.PubMedCrossRefGoogle Scholar
  23. Kennerson, M. L., Nicholson, G. A., Kaler, S. G., Kowalski, B., Mercer, J. F., Tang, J., et al. (2010). Missense mutations in the copper transporter gene ATP7A cause X-linked distal hereditary motor neuropathy. American Journal of Human Genetics, 86(3), 343–352.PubMedCrossRefGoogle Scholar
  24. Koedam, E. L., Lauffer, V., van der Vlies, A. E., van der Flier, W. M., Scheltens, P., & Pijnenburg, Y. A. (2010). Early-versus late-onset Alzheimer’s disease: More than age alone [Research Support, Non-U.S. Gov’t]. Journal of Alzheimer’s Disease, 19(4), 1401–1408.PubMedGoogle Scholar
  25. Lam, P. K., Kritz-Silverstein, D., Barrett Connor, E., Milne, D., Nielsen, F., Gamst, A., et al. (2008). Plasma trace elements and cognitive function in older men and women: The Rancho Bernardo study. The Journal of Nutrition Health Aging, 12(1), 22–27.CrossRefGoogle Scholar
  26. Loef, M., & Walach, H. (2012). Copper and iron in Alzheimer’s disease: A systematic review and its dietary implications. British Journal of Nutrition, 107(1), 7–19.PubMedCrossRefGoogle Scholar
  27. McKhann, G., Drachman, D., Folstein, M., Katzman, R., Price, D., & Stadlan, E. M. (1984). Clinical diagnosis of Alzheimer’s disease: Report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s disease. Neurology, 34(7), 939–944.PubMedCrossRefGoogle Scholar
  28. Mold, M., Ouro-Gnao, L., Wieckowski, B. M., & Exley, C. (2013). Copper prevents amyloid-beta(1-42) from forming amyloid fibrils under near-physiological conditions in vitro [Research Support, Non-U.S. Gov’t]. Science Report, 3, 1256.Google Scholar
  29. Moller, L. B., Tumer, Z., Lund, C., Petersen, C., Cole, T., Hanusch, R., et al. (2000). Similar splice-site mutations of the ATP7A gene lead to different phenotypes: Classical Menkes disease or occipital horn syndrome. American Journal of Human Genetics, 66(4), 1211–1220.PubMedCrossRefGoogle Scholar
  30. Morris, M. C., Evans, D. A., Tangney, C. C., Bienias, J. L., Schneider, J. A., Wilson, R. S., et al. (2006). Dietary copper and high saturated and trans fat intakes associated with cognitive decline. Archives of Neurology, 63(8), 1085–1088.PubMedCrossRefGoogle Scholar
  31. Multhaup, G., Schlicksupp, A., Hesse, L., Beher, D., Ruppert, T., Masters, C. L., et al. (1996). The amyloid precursor protein of Alzheimer’s disease in the reduction of copper(II) to copper(I). Science, 271(5254), 1406–1409.PubMedCrossRefGoogle Scholar
  32. Nandar, W., & Connor, J. R. (2011). HFE gene variants affect iron in the brain. Journal of Nutrition, 141(4), 729S–739S.PubMedCrossRefGoogle Scholar
  33. Rothman, K. J. (1986). Modern epidemiology (1st ed.). Boston: Little, Brown.Google Scholar
  34. Scalfari, A., Neuhaus, A., Daumer, M., Ebers, G. C., & Muraro, P. A. (2011). Age and disability accumulation in multiple sclerosis. Neurology, 77(13), 1246–1252.PubMedCrossRefGoogle Scholar
  35. Scheinberg, I. H., & Sternlieb, I. (1965). Wilson’s disease. Annual Review of Medicine, 16, 119–134.PubMedCrossRefGoogle Scholar
  36. Schrag, M., Mueller, C., Oyoyo, U., Smith, M. A., & Kirsch, W. M. (2011). Iron, zinc and copper in the Alzheimer’s disease brain: A quantitative meta-analysis. Some insight on the influence of citation bias on scientific opinion. Progress in Neurobiology, 94(3), 296–306.PubMedCrossRefGoogle Scholar
  37. Sole, X., Guino, E., Valls, J., Iniesta, R., & Moreno, V. (2006). SNPStats: A web tool for the analysis of association studies. Bioinformatics, 22(15), 1928–1929.PubMedCrossRefGoogle Scholar
  38. Squitti, R., Barbati, G., Rossi, L., Ventriglia, M., Dal Forno, G., Cesaretti, S., et al. (2006). Excess of nonceruloplasmin serum copper in AD correlates with MMSE, CSF [beta]-amyloid, and h-tau. Neurology, 67(1), 76–82.PubMedCrossRefGoogle Scholar
  39. Squitti, R., Ghidoni, R., Scrascia, F., Benussi, L., Panetta, V., Pasqualetti, P., et al. (2011). Free copper distinguishes mild cognitive impairment subjects from healthy elderly individuals. Journal of Alzheimer’s Disease, 23(2), 239–248.PubMedGoogle Scholar
  40. Squitti, R., Pasqualetti, P., Dal Forno, G., Moffa, F., Cassetta, E., Lupoi, D., et al. (2005). Excess of serum copper not related to ceruloplasmin in Alzheimer disease. Neurology, 64(6), 1040–1046.PubMedCrossRefGoogle Scholar
  41. Squitti, R., & Polimanti, R. (2012). Copper hypothesis in the missing hereditability of sporadic Alzheimer’s disease: ATP7B gene as potential harbor of rare variants. Journal of Alzheimer’s Disease, 29(3), 493–501.PubMedGoogle Scholar
  42. Squitti, R., Polimanti, R., Bucossi, S., Ventriglia, M., Mariani, S., Manfellotto, D., et al. (2013). Linkage Disequilibrium and haplotype analysis of ATP7B gene in Alzheimer’s disease. Rejuvenation Research, 16(1), 3–10.PubMedCrossRefGoogle Scholar
  43. Squitti, R., & Salustri, C. (2009). Agents complexing copper as a therapeutic strategy for the treatment of Alzheimer’s disease. Current Alzheimer Research, 6(6), 476–487.PubMedCrossRefGoogle Scholar
  44. Squitti, R., Ventriglia, M., Barbati, G., Cassetta, E., Ferreri, F., Dal Forno, G., et al. (2007). ‘Free’ copper in serum of Alzheimer’s disease patients correlates with markers of liver function. Journal of Neural Transmission, 114(12), 1589–1594.PubMedCrossRefGoogle Scholar
  45. Ventriglia, M., Bucossi, S., Panetta, V., & Squitti, R. (2012). Copper in Alzheimer’s disease: A meta-analysis of serum, plasma, and cerebrospinal fluid studies. Journal of Alzheimer’s Disease, 30(4), 981–984.PubMedGoogle Scholar
  46. Walshe, J. M. (2003). Wilson’s disease: The importance of measuring serum ceruloplasmin non-immunologically. Annals of Clinical Biochemistry, 40(Pt 2), 115–121.PubMedCrossRefGoogle Scholar
  47. White, A. R., Multhaup, G., Maher, F., Bellingham, S., Camakaris, J., Zheng, H., et al. (1999). The Alzheimer’s disease amyloid precursor protein modulates copper-induced toxicity and oxidative stress in primary neuronal cultures. Journal of Neuroscience, 19(21), 9170–9179.PubMedGoogle Scholar
  48. Wolf, P. L. (1982). Ceruloplasmin: Methods and clinical use. Critical Reviews in Clinical Laboratory Sciences, 17(3), 229–245.PubMedCrossRefGoogle Scholar
  49. Yang, X. H., Huang, H. C., Chen, L., Xu, W., & Jiang, Z. F. (2009). Coordinating to three histidine residues: Cu(II) promotes oligomeric and fibrillar amyloid-beta peptide to precipitate in a non-beta aggregation manner [Research Support, Non-U.S. Gov’t]. Journal of Alzheimer’s Disease, 18(4), 799–810.PubMedGoogle Scholar
  50. Zappasodi, F., Salustri, C., Babiloni, C., Cassetta, E., Del Percio, C., Ercolani, M., et al. (2008). An observational study on the influence of the APOE-epsilon4 allele on the correlation between ‘free’ copper toxicosis and EEG activity in Alzheimer disease. Brain Research, 1215, 183–189.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Rosanna Squitti
    • 1
    • 2
  • Renato Polimanti
    • 3
  • Mariacristina Siotto
    • 2
    • 4
  • Serena Bucossi
    • 1
    • 2
  • Mariacarla Ventriglia
    • 1
    • 2
  • Stefania Mariani
    • 1
    • 2
  • Fabrizio Vernieri
    • 2
  • Federica Scrascia
    • 2
  • Laura Trotta
    • 2
  • Paolo Maria Rossini
    • 5
    • 6
  1. 1.Department of NeuroscienceAFaR-Ospedale Fatebenefratelli HospitalRomeItaly
  2. 2.Department of Neurology“Campus Bio-Medico” UniversityRomeItaly
  3. 3.Department of Biology“Tor Vergata” UniversityRomeItaly
  4. 4.Don Carlo Gnocchi Foundation ONLUSMilanItaly
  5. 5.Department of ImagingCasa di Cura San RaffaeleCassinoItaly
  6. 6.Institute of NeurologyCatholic UniversityRomeItaly

Personalised recommendations