NeuroMolecular Medicine

, Volume 15, Issue 1, pp 169–179

Aβ1-15/16 as a Potential Diagnostic Marker in Neurodegenerative Diseases

  • Magdalena Nutu
  • Philippe Bourgeois
  • Henrik Zetterberg
  • Erik Portelius
  • Ulf Andreasson
  • Stéphane Parent
  • Francesco Lipari
  • Sara Hall
  • Radu Constantinescu
  • Oskar Hansson
  • Kaj Blennow
Original Paper


Cerebrospinal fluid (CSF) biomarkers for Alzheimer’s disease (AD) reflect brain biochemistry. Using combined immunoprecipitation and mass spectrometry, we have shown that amyloid beta 1-15 (Aβ1-15) is produced by concerted β- and α-secretase cleavage of amyloid precursor protein (APP) and that the relative levels of Aβ1-16 in AD compared to controls are increased. Furthermore, drug-induced γ-secretase inhibition enhances the relative levels of Aβ1-15 and Aβ1-16. Here, we investigate a novel immunoassay for Aβ1-15/16 in a broad range of neurodegenerative conditions. The CSF level of Aβ1-15/16 was measured by the bead-based amplified luminescent proximity homogeneous assay (Alpha technology). Concentrations of Aβ1-15/16 were analyzed in subjects with Parkinson disease (PD; n = 90), PD with dementia (PDD) (n = 32), dementia with Lewy bodies (DLB) (n = 68), AD (n = 48), progressive supranuclear palsy (PSP) (n = 45), multiple system atrophy (MSA) (n = 46), and corticobasal degeneration (CBD) (n = 12). The detecting antibody is specific to the C-terminal epitope of Aβ15. We found that a carboxypeptidase (CPB) present in fetal bovine serum (FBS), a component of the buffers used, degrades Aβ1-16 to Aβ1-15, which is then detected by the Aβ1-15/16 assay. Significantly, lower levels of Aβ1-15/16 were detected in PD, PDD, PSP, and MSA compared to other neurodegenerative diseases and controls. Using the specific Aβ1-15/16 assay, a reliable quantification of Aβ1-15 or Aβ1-15/16 in CSF samples is obtained. We found reduced levels of Aβ1-15 in parkinsonian disease groups. The molecular mechanism behind this reduction is at present unknown.


Aβ AlphaLISA Amyloid PD AD 


  1. Abdo, W. F., De Jong, D., Hendriks, J. C., Horstink, M. W., Kremer, B. P., Bloem, B. R., et al. (2004). Cerebrospinal fluid analysis differentiates multiple system atrophy from Parkinson’s disease. Movement Disorders, 19(5), 571–579.PubMedCrossRefGoogle Scholar
  2. Aerts, M. B., Esselink, R. A., Bloem, B. R., & Verbeek, M. M. (2011). Cerebrospinal fluid tau and phosphorylated tau protein are elevated in corticobasal syndrome. Movement Disorders, 26(1), 169–173.PubMedCrossRefGoogle Scholar
  3. Almkvist, O., Basun, H., Wagner, S. L., Rowe, B. A., Wahlund, L. O., & Lannfelt, L. (1997). Cerebrospinal fluid levels of alpha-secretase-cleaved soluble amyloid precursor protein mirror cognition in a Swedish family with Alzheimer disease and a gene mutation. Archives of Neurology, 54(5), 641–644.PubMedCrossRefGoogle Scholar
  4. American Psychiatric Association., A. P. A. (1987). Diagnostic and statistical manual of mental disorders, Third Edition, Revised. Washington D.C.Google Scholar
  5. Andreasen, N., Gottfries, J., Vanmechelen, E., Vanderstichele, H., Davidson, P., Blennow, K., et al. (2001). Evaluation of CSF biomarkers for axonal and neuronal degeneration, gliosis, and beta-amyloid metabolism in Alzheimer’s disease. Journal of Neurology, Neurosurgery and Psychiatry, 71(4), 557–558.CrossRefGoogle Scholar
  6. Andreasson, U., Portelius, E., Andersson, M. E., Blennow, K., & Zetterberg, H. (2007). Aspects of beta-amyloid as a biomarker for Alzheimer’s disease. Biomarkers in Medicine, 1(1), 59–78.PubMedCrossRefGoogle Scholar
  7. Ballard, C., Gauthier, S., Corbett, A., Brayne, C., Aarsland, D., & Jones, E. (2011). Alzheimer’s disease. Lancet, 377(9770), 1019–1031.PubMedCrossRefGoogle Scholar
  8. Bateman, R. J., Siemers, E. R., Mawuenyega, K. G., Wen, G., Browning, K. R., Sigurdson, W. C., et al. (2009). A gamma-secretase inhibitor decreases amyloid-beta production in the central nervous system. Annals of Neurology, 66(1), 48–54.PubMedCrossRefGoogle Scholar
  9. Bjerke, M., Zetterberg, H., Edman, A., Blennow, K., Wallin, A., & Andreasson, U. (2011). Cerebrospinal fluid matrix metalloproteinases and tissue inhibitor of metalloproteinases in combination with subcortical and cortical biomarkers in vascular dementia and Alzheimer’s disease. Journal of Alzheimers Disease, 27(3), 665–676.Google Scholar
  10. Blennow, K. (2004). Cerebrospinal fluid protein biomarkers for Alzheimer’s disease. NeuroRx, 1(2), 213–225.PubMedCrossRefGoogle Scholar
  11. Blennow, K., & Hampel, H. (2003). CSF markers for incipient Alzheimer’s disease. Lancet Neurology, 2(10), 605–613.PubMedCrossRefGoogle Scholar
  12. Blennow, K., Hampel, H., Weiner, M., & Zetterberg, H. (2010). Cerebrospinal fluid and plasma biomarkers in Alzheimer disease. Nature Reviews. Neurology, 6(3), 131–144.PubMedCrossRefGoogle Scholar
  13. Braak, H., Braak, E., Yilmazer, D., de Vos, R. A., Jansen, E. N., & Bohl, J. (1996). New aspects of pathology in Parkinson’s disease with concomitant incipient Alzheimer’s disease. Journal of Neural Transmission. Supplementum, 48, 1–6.PubMedGoogle Scholar
  14. Brinkmalm, G., Portelius, E., Ohrfelt, A., Mattsson, N., Persson, R., Gustavsson, M. K., et al. (2012). An online nano-LC-ESI-FTICR-MS method for comprehensive characterization of endogenous fragments from amyloid beta and amyloid precursor protein in human and cat cerebrospinal fluid. Journal of Mass Spectrometry, 47(5), 591–603.PubMedCrossRefGoogle Scholar
  15. Cook, J. J., Wildsmith, K. R., Gilberto, D. B., Holahan, M. A., Kinney, G. G., Mathers, P. D., et al. (2010). Acute gamma-secretase inhibition of nonhuman primate CNS shifts amyloid precursor protein (APP) metabolism from amyloid-beta production to alternative APP fragments without amyloid-beta rebound. Journal of Neuroscience, 30(19), 6743–6750.PubMedCrossRefGoogle Scholar
  16. De Strooper, B. (2010). Proteases and proteolysis in Alzheimer disease: A multifactorial view on the disease process. Physiological Reviews, 90(2), 465–494.PubMedCrossRefGoogle Scholar
  17. Eckman, E. A., & Eckman, C. B. (2005). Abeta-degrading enzymes: Modulators of Alzheimer’s disease pathogenesis and targets for therapeutic intervention. Biochemical Society Transactions, 33(Pt 5), 1101–1105.PubMedCrossRefGoogle Scholar
  18. Eller, M., & Williams, D. R. (2011). Alpha-synuclein in Parkinson disease and other neurodegenerative disorders. Clinical Chemistry and Laboratory Medicine, 49(3), 403–408.PubMedCrossRefGoogle Scholar
  19. Emre, M., Aarsland, D., Brown, R., Burn, D. J., Duyckaerts, C., Mizuno, Y., et al. (2007). Clinical diagnostic criteria for dementia associated with Parkinson’s disease. Movement Disorders, 22(12), 1689–1707; quiz 1837.Google Scholar
  20. Galasko, D., Chang, L., Motter, R., Clark, C. M., Kaye, J., Knopman, D., et al. (1998). High cerebrospinal fluid tau and low amyloid beta42 levels in the clinical diagnosis of Alzheimer disease and relation to apolipoprotein E genotype. Archives of Neurology, 55(7), 937–945.PubMedCrossRefGoogle Scholar
  21. Gelb, D. J., Oliver, E., & Gilman, S. (1999). Diagnostic criteria for Parkinson disease. Archives of Neurology, 56(1), 33–39.PubMedCrossRefGoogle Scholar
  22. Gilman, S., Low, P. A., Quinn, N., Albanese, A., Ben-Shlomo, Y., Fowler, C. J., et al. (1999). Consensus statement on the diagnosis of multiple system atrophy. Journal of the Neurological Sciences, 163(1), 94–98.PubMedCrossRefGoogle Scholar
  23. Hall, S., Öhrfelt, A., Constantinescu, R., Andreasson, U., Surova, Y., Boström, F., et al. (2012). A panel of five CSF biomarker can be used with high accuracy in the differential diagnosis of patients with dementia and/or Parkinsonism. Archives of Neurology. Google Scholar
  24. Hampel, H., Frank, R., Broich, K., Teipel, S. J., Katz, R. G., Hardy, J., et al. (2010). Biomarkers for Alzheimer’s disease: Academic, industry and regulatory perspectives. Nature Reviews Drug Discovery, 9(7), 560–574.PubMedCrossRefGoogle Scholar
  25. Hansson, O., Zetterberg, H., Buchhave, P., Andreasson, U., Londos, E., Minthon, L., et al. (2007). Prediction of Alzheimer’s disease using the CSF Abeta42/Abeta40 ratio in patients with mild cognitive impairment. Dementia and Geriatric Cognitive Disorders, 23(5), 316–320.PubMedCrossRefGoogle Scholar
  26. Hendriks, D., Scharpe, S., van Sande, M., & Lommaert, M. P. (1989). Characterisation of a carboxypeptidase in human serum distinct from carboxypeptidase N. Journal of Clinical Chemistry and Clinical Biochemistry, 27(5), 277–285.Google Scholar
  27. Jellinger, K. A. (1997). Morphological substrates of dementia in Parkinsonism. A critical update. Journal of Neural Transmission, Suppl 51, 57–82.CrossRefGoogle Scholar
  28. Kouri, N., Whitwell, J. L., Josephs, K. A., Rademakers, R., & Dickson, D. W. (2011). Corticobasal degeneration: A pathologically distinct 4R tauopathy. Nature Review Neurology, 7(5), 263–272.CrossRefGoogle Scholar
  29. Kuhn, P. H., Wang, H., Dislich, B., Colombo, A., Zeitschel, U., Ellwart, J. W., et al. (2010). ADAM10 is the physiologically relevant, constitutive alpha-secretase of the amyloid precursor protein in primary neurons. EMBO Journal, 29(17), 3020–3032.PubMedCrossRefGoogle Scholar
  30. Litvan, I., Agid, Y., Calne, D., Campbell, G., Dubois, B., Duvoisin, R. C., et al. (1996a). Clinical research criteria for the diagnosis of progressive supranuclear palsy (Steele-Richardson-Olszewski syndrome): Report of the NINDS-SPSP international workshop. Neurology, 47(1), 1–9.PubMedCrossRefGoogle Scholar
  31. Litvan, I., Hauw, J. J., Bartko, J. J., Lantos, P. L., Daniel, S. E., Horoupian, D. S., et al. (1996b). Validity and reliability of the preliminary NINDS neuropathologic criteria for progressive supranuclear palsy and related disorders. Journal of Neuropathology and Experimental Neurology, 55(1), 97–105.PubMedCrossRefGoogle Scholar
  32. Marquez-Curtis, L., Jalili, A., Deiteren, K., Shirvaikar, N., Lambeir, A. M., & Janowska-Wieczorek, A. (2008). Carboxypeptidase M expressed by human bone marrow cells cleaves the C-terminal lysine of stromal cell-derived factor-1alpha: Another player in hematopoietic stem/progenitor cell mobilization? Stem Cells, 26(5), 1211–1220.PubMedCrossRefGoogle Scholar
  33. Masters, C. L., Simms, G., Weinman, N. A., Multhaup, G., McDonald, B. L., & Beyreuther, K. (1985). Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proceedings of the National Academy of Sciences of the United States of America, 82(12), 4245–4249.PubMedCrossRefGoogle Scholar
  34. Matsumoto, A., Itoh, K., & Matsumoto, R. (2000). A novel carboxypeptidase B that processes native beta-amyloid precursor protein is present in human hippocampus. European Journal of Neuroscience, 12(1), 227–238.PubMedCrossRefGoogle Scholar
  35. Matsumoto, A., Itoh, K., Seki, T., Motozaki, K., & Matsuyama, S. (2001). Human brain carboxypeptidase B, which cleaves beta-amyloid peptides in vitro, is expressed in the endoplasmic reticulum of neurons. European Journal of Neuroscience, 13(9), 1653–1657.PubMedCrossRefGoogle Scholar
  36. McKeith, I. G., Burn, D. J., Ballard, C. G., Collerton, D., Jaros, E., Morris, C. M., et al. (2003). Dementia with Lewy bodies. Seminars in Clinical Neuropsychiatry, 8(1), 46–57.PubMedCrossRefGoogle Scholar
  37. McKeith, I. G., Dickson, D. W., Lowe, J., Emre, M., O’Brien, J. T., Feldman, H., et al. (2005). Diagnosis and management of dementia with Lewy bodies: Third report of the DLB Consortium. Neurology, 65(12), 1863–1872.PubMedCrossRefGoogle Scholar
  38. McKhann, G., Drachman, D., Folstein, M., Katzman, R., Price, D., & Stadlan, E. M. (1984). Clinical diagnosis of Alzheimer’s disease: Report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology, 34(7), 939–944.PubMedCrossRefGoogle Scholar
  39. Mehta, P. D., Pirttila, T., Mehta, S. P., Sersen, E. A., Aisen, P. S., & Wisniewski, H. M. (2000). Plasma and cerebrospinal fluid levels of amyloid beta proteins 1–40 and 1–42 in Alzheimer disease. Archives of Neurology, 57(1), 100–105.PubMedCrossRefGoogle Scholar
  40. Mollenhauer, B., Cullen, V., Kahn, I., Krastins, B., Outeiro, T. F., Pepivani, I., et al. (2008). Direct quantification of CSF alpha-synuclein by ELISA and first cross-sectional study in patients with neurodegeneration. Experimental Neurology, 213(2), 315–325.PubMedCrossRefGoogle Scholar
  41. Olsson, A., Hoglund, K., Sjogren, M., Andreasen, N., Minthon, L., Lannfelt, L., et al. (2003). Measurement of alpha- and beta-secretase cleaved amyloid precursor protein in cerebrospinal fluid from Alzheimer patients. Experimental Neurology, 183(1), 74–80.PubMedCrossRefGoogle Scholar
  42. Oshima, G., Kato, J., & Erdos, E. G. (1975). Plasma carboxypeptidase N, subunits and characteristics. Archives of Biochemistry and Biophysics, 170(1), 132–138.PubMedCrossRefGoogle Scholar
  43. Portelius, E., Andreasson, U., Ringman, J. M., Buerger, K., Daborg, J., Buchhave, P., et al. (2010a). Distinct cerebrospinal fluid amyloid beta peptide signatures in sporadic and PSEN1 A431E-associated familial Alzheimer’s disease. Molecular Neurodegeneration, 5, 2.PubMedCrossRefGoogle Scholar
  44. Portelius, E., Dean, R. A., Gustavsson, M. K., Andreasson, U., Zetterberg, H., Siemers, E., et al. (2010b). A novel Abeta isoform pattern in CSF reflects gamma-secretase inhibition in Alzheimer disease. Alzheimer’s Research & Therapy, 2(2), 7.CrossRefGoogle Scholar
  45. Portelius, E., Price, E., Brinkmalm, G., Stiteler, M., Olsson, M., Persson, R., et al. (2011). A novel pathway for amyloid precursor protein processing. Neurobiology of Aging, 32(6), 1090–1098.PubMedCrossRefGoogle Scholar
  46. Portelius, E., Tran, A. J., Andreasson, U., Persson, R., Brinkmalm, G., Zetterberg, H., et al. (2007). Characterization of amyloid beta peptides in cerebrospinal fluid by an automated immunoprecipitation procedure followed by mass spectrometry. Journal of Proteome Research, 6(11), 4433–4439.PubMedCrossRefGoogle Scholar
  47. Portelius, E., Van Broeck, B., Andreasson, U., Gustavsson, M. K., Mercken, M., Zetterberg, H., et al. (2010c). Acute effect on the Abeta isoform pattern in CSF in response to gamma-secretase modulator and inhibitor treatment in dogs. Journal of Alzheimer’s disease, 21(3), 1005–1012.PubMedGoogle Scholar
  48. Portelius, E., Zetterberg, H., Andreasson, U., Brinkmalm, G., Andreasen, N., Wallin, A., et al. (2006). An Alzheimer’s disease-specific beta-amyloid fragment signature in cerebrospinal fluid. Neuroscience Letters, 409(3), 215–219.PubMedCrossRefGoogle Scholar
  49. Portelius, E., Zetterberg, H., Dean, R. A., Marcil, A., Bourgeois, P., Nutu, M., et al. (2012). Amyloid-beta1-15/16 as a marker for gamma-secretase inhibition in Alzheimer’s Disease. Journal of Alzheimers Disease.Google Scholar
  50. Portelius, E., Zhang, B., Gustavsson, M. K., Brinkmalm, G., Westman-Brinkmalm, A., Zetterberg, H., et al. (2009). Effects of gamma-secretase inhibition on the amyloid beta isoform pattern in a mouse model of Alzheimer’s disease. Neurodegeneration Disease, 6(5–6), 258–262.CrossRefGoogle Scholar
  51. Rangan, S. K., Liu, R., Brune, D., Planque, S., Paul, S., & Sierks, M. R. (2003). Degradation of beta-amyloid by proteolytic antibody light chains. Biochemistry, 42(48), 14328–14334.PubMedCrossRefGoogle Scholar
  52. Rebeiz, J. J., Kolodny, E. H., & Richardson, E. P., Jr. (1968). Corticodentatonigral degeneration with neuronal achromasia. Archives of Neurology, 18(1), 20–33.PubMedCrossRefGoogle Scholar
  53. Santacruz, K., Pahwa, R., Lyons, K., Troster, A., Handler, M., Koller, WC., et al (1999). Lewy body, neurofibrillary tangle and senile plaque pathology in Parkinson’s disease patients with and without dementia. Neurology, 52 (Suppl. 2)(A476).Google Scholar
  54. Schoonenboom, N. S., Mulder, C., Van Kamp, G. J., Mehta, S. P., Scheltens, P., Blankenstein, M. A., et al. (2005). Amyloid beta 38, 40, and 42 species in cerebrospinal fluid: More of the same? Annuals of Neurology, 58(1), 139–142.CrossRefGoogle Scholar
  55. Sharples, R. A., Vella, L. J., Nisbet, R. M., Naylor, R., Perez, K., Barnham, K. J., et al. (2008). Inhibition of gamma-secretase causes increased secretion of amyloid precursor protein C-terminal fragments in association with exosomes. FASEB J, 22(5), 1469–1478.PubMedCrossRefGoogle Scholar
  56. Skidgel, R. A. (1996). Structure and function of mammalian zinc carboxypeptidase. In N. M. Hooper (Ed.), Zinc metalloprotease in health and disease. London: Taylor & Francis, pp. 241–283.Google Scholar
  57. Steele, J. C., Richardson, J. C., & Olszewski, J. (1964). Progressive supranuclear palsy. A heterogeneous degeneration involving the brain stem, basal ganglia and cerebellum with vertical gaze and pseudobulbar palsy, Nuchal Dystonia and Dementia. Archives of Neurology, 10, 333–359.PubMedCrossRefGoogle Scholar
  58. Stomrud, E., Bjorkqvist, M., Janciauskiene, S., Minthon, L., & Hansson, O. (2010). Alterations of matrix metalloproteinases in the healthy elderly with increased risk of prodromal Alzheimer’s disease. Alzheimers Research Therapy, 2(3), 20.CrossRefGoogle Scholar
  59. Sussmuth, S. D., Uttner, I., Landwehrmeyer, B., Pinkhardt, E. H., Brettschneider, J., Petzold, A., et al. (2010). Differential pattern of brain-specific CSF proteins tau and amyloid-beta in Parkinsonian syndromes. Movement Disorders, 25(9), 1284–1288.PubMedCrossRefGoogle Scholar
  60. Szekeres, P. G., Leong, K., Day, T. A., Kingston, A. E., & Karran, E. H. (2008). Development of homogeneous 384-well high-throughput screening assays for Abeta1-40 and Abeta1-42 using AlphaScreen technology. Journal of Biomolecular Screening, 13(2), 101–111.PubMedCrossRefGoogle Scholar
  61. Tjernberg, L. O., Callaway, D. J., Tjernberg, A., Hahne, S., Lilliehook, C., Terenius, L., et al. (1999). A molecular model of Alzheimer amyloid beta-peptide fibril formation. Journal of Biological Chemistry, 274(18), 12619–12625.PubMedCrossRefGoogle Scholar
  62. Tokuda, T., Salem, S. A., Allsop, D., Mizuno, T., Nakagawa, M., Qureshi, M. M., et al. (2006). Decreased alpha-synuclein in cerebrospinal fluid of aged individuals and subjects with Parkinson’s disease. Biochemical and Biophysical Research Communications, 349(1), 162–166.PubMedCrossRefGoogle Scholar
  63. Vanderstichele, H., Van Kerschaver, E., Hesse, C., Davidsson, P., Buyse, M. A., Andreasen, N., et al. (2000). Standardization of measurement of beta-amyloid(1–42) in cerebrospinal fluid and plasma. Amyloid, 7(4), 245–258.PubMedCrossRefGoogle Scholar
  64. Vigo-Pelfrey, C., Lee, D., Keim, P., Lieberburg, I., & Schenk, D. B. (1993). Characterization of beta-amyloid peptide from human cerebrospinal fluid. Journal of Neurochemistry, 61(5), 1965–1968.PubMedCrossRefGoogle Scholar
  65. Wang, W., Hendriks, D. F., & Scharpe, S. S. (1994). Carboxypeptidase U, a plasma carboxypeptidase with high affinity for plasminogen. Journal of Biological Chemistry, 269(22), 15937–15944.PubMedGoogle Scholar
  66. Weidemann, A., Eggert, S., Reinhard, F. B., Vogel, M., Paliga, K., Baier, G., et al. (2002). A novel epsilon-cleavage within the transmembrane domain of the Alzheimer amyloid precursor protein demonstrates homology with notch processing. Biochemistry, 41(8), 2825–2835.PubMedCrossRefGoogle Scholar
  67. Wiltfang, J., Esselmann, H., Bibl, M., Smirnov, A., Otto, M., Paul, S., et al. (2002). Highly conserved and disease-specific patterns of carboxyterminally truncated Abeta peptides 1–37/38/39 in addition to 1–40/42 in Alzheimer’s disease and in patients with chronic neuroinflammation. Journal of Neurochemistry, 81(3), 481–496.PubMedCrossRefGoogle Scholar
  68. Wong, C. W., Quaranta, V., & Glenner, G. G. (1985). Neuritic plaques and cerebrovascular amyloid in Alzheimer disease are antigenically related. Proceedings of the National Academy of Sciences of the United States of America, 82(24), 8729–8732.PubMedCrossRefGoogle Scholar
  69. Yu, C., Kim, S. H., Ikeuchi, T., Xu, H., Gasparini, L., Wang, R., et al. (2001). Characterization of a presenilin-mediated amyloid precursor protein carboxyl-terminal fragment gamma. Evidence for distinct mechanisms involved in gamma-secretase processing of the APP and Notch1 transmembrane domains. Journal of Biological Chemistry, 276(47), 43756–43760.PubMedCrossRefGoogle Scholar
  70. Zhang, J., Sokal, I., Peskind, E. R., Quinn, J. F., Jankovic, J., Kenney, C., et al. (2008). CSF multianalyte profile distinguishes Alzheimer and Parkinson diseases. American Journal of Clinical Pathology, 129(4), 526–529.PubMedCrossRefGoogle Scholar
  71. Zhao, G., Mao, G., Tan, J., Dong, Y., Cui, M. Z., Kim, S. H., et al. (2004). Identification of a new presenilin-dependent zeta-cleavage site within the transmembrane domain of amyloid precursor protein. Journal of Biological Chemistry, 279(49), 50647–50650.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Magdalena Nutu
    • 1
  • Philippe Bourgeois
    • 2
  • Henrik Zetterberg
    • 1
  • Erik Portelius
    • 1
  • Ulf Andreasson
    • 1
  • Stéphane Parent
    • 2
  • Francesco Lipari
    • 2
  • Sara Hall
    • 3
    • 4
  • Radu Constantinescu
    • 5
  • Oskar Hansson
    • 1
    • 3
    • 4
  • Kaj Blennow
    • 1
  1. 1.Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska AcademyUniversity of Gothenburg, Sahlgrenska University Hospital/MölndalMölndalSweden
  2. 2.PerkinElmer Biosignal, Inc.MontrealCanada
  3. 3.Department of Clinical SciencesLund UniversityLundSweden
  4. 4.Department of NeurologySkåne University HospitalLundSweden
  5. 5.Neurology ClinicSahlgrenka University HospitalGöteborgSweden

Personalised recommendations