NeuroMolecular Medicine

, Volume 15, Issue 1, pp 49–60 | Cite as

Reduction of AP180 and CALM Produces Defects in Synaptic Vesicle Size and Density

  • Ronald S. Petralia
  • Ya-Xian Wang
  • Fred E. Indig
  • Ittai Bushlin
  • Fangbai Wu
  • Mark P. Mattson
  • Pamela J. Yao
Original Paper


Clathrin assembly proteins AP180 and CALM regulate the assembly of clathrin-coated vesicles (CCVs), which mediate diverse intracellular trafficking processes, including synaptic vesicle (SV) recycling at the synapse. Although studies using several invertebrate model systems have indicated a role for AP180 in SV recycling, less is known about AP180’s or CALM’s function in the synapse of mammalian neurons. In this study, we examined synapses of rat hippocampal neurons in which the level of AP180 or CALM had been reduced by RNA interference (RNAi). Using light microscopy, we visualized synaptic puncta in these AP180- or CALM-reduced neurons by co-expressing Synaptophysin::EGFP (Syp::EGFP). We found that neurons with reduced AP180 or reduced CALM had smaller Syp::EGFP-illuminated puncta. Using electron microscopy, we further examined the ultrastructure of the AP180- or CALM-reduced presynaptic terminals. We found that SVs became variably enlarged in both the AP180-reduced and CALM-reduced presynaptic terminals. Lower AP180 and CALM also reduced the density of SVs and the size of SV clusters. Our findings demonstrate that in the presynaptic terminals of hippocampal neurons, AP180 and CALM have a similar role in regulating synaptic vesicles. This overlapping activity may be necessary for high-precision and high-efficacy SV formation during endocytosis.


AP180 CALM Hippocampal synapse Synaptic vesicle 



We thank the anonymous reviewers for helpful suggestions. We also thank Dr. Jane Sullivan for Synaptophysin::EGFP and Dr. Hollis T. Cline for the EGFP::mHRP construct. This work was supported by the Intramural Research Programs of the NIA/NIH and NIDCD/NIH.

Supplementary material

12017_2012_8194_MOESM1_ESM.tif (768 kb)
Supplementary material 1 (TIFF 767 kb)
12017_2012_8194_MOESM2_ESM.tif (3.3 mb)
Supplementary material 2 (TIFF 3344 kb)
12017_2012_8194_MOESM3_ESM.tif (671 kb)
Supplementary material 3 (TIFF 670 kb)
12017_2012_8194_MOESM4_ESM.tif (3 mb)
Supplementary material 4 (TIFF 3084 kb)
12017_2012_8194_MOESM5_ESM.tif (211 kb)
Supplementary material 5 (TIFF 210 kb)
12017_2012_8194_MOESM6_ESM.tif (10.4 mb)
Supplementary material 6 (TIFF 10637 kb)
12017_2012_8194_MOESM7_ESM.docx (19 kb)
Supplementary material 7 (DOCX 19 kb)


  1. Ahle, S., & Ungewickell, E. (1986). Purification and properties of a new clathrin assembly protein. EMBO Journal, 5, 3143–3149.PubMedGoogle Scholar
  2. Andreae, L. C., Fredj, N. B., & Burrone, J. (2012). Independent vesicle pools underlie different modes of release during neuronal development. Journal of Neuroscience, 32, 1867–1874.PubMedCrossRefGoogle Scholar
  3. Banker, G., & Cowan, W. M. (1977). Rat hippocampal neurons in dispersed cell culture. Brain Research, 126, 397–425.PubMedCrossRefGoogle Scholar
  4. Brett, T. J., & Traub, L. M. (2006). Molecular structures of coat and coat-associated proteins: Function follows form. Current Opinion in Cell Biology, 18, 395–406.PubMedCrossRefGoogle Scholar
  5. Brodsky, F. M., Chen, C. Y., Knuehl, C., Towler, M. C., & Wakeham, D. E. (2001). Biological basket weaving: Formation and function of clathrin-coated vesicles. Annual Reviews of Cell and Developmental Biology, 17, 517–568.CrossRefGoogle Scholar
  6. Bushlin, I., Petralia, R. S., Wu, F., Harel, A., Mughal, M. R., Mattson, M. P., et al. (2008). Clathrin assembly protein AP180 and CALM differentially control axogenesis and dendrite outgrowth in embryonic hippocampal neurons. Journal of Neuroscience, 28, 10257–10271.PubMedCrossRefGoogle Scholar
  7. Dittman, J., & Ryan, T. A. (2009). Molecular circuitry of endocytosis at nerve terminals. Annual Reviews of Cell and Developmental Biology, 25, 133–160.CrossRefGoogle Scholar
  8. Dreyling, M. H., Martinez-Climent, J. A., Zheng, M., Mao, J., Rowley, J. D., & Bohlander, S. K. (1996). The t(10;11)(p13;q14) in the U937 cell line results in the fusion of the AF10 gene and CALM, encoding a new member of the AP-3 clathrin assembly protein family. Proceedings of the National Academy of Sciences, 93, 4804–4809.CrossRefGoogle Scholar
  9. Ford, M. G., Pearse, B. M., Higgins, M. K., Vallis, Y., Owen, D. J., Gibson, A., et al. (2001). Simultaneous binding of PtdIns(4,5)P2 and clathrin by AP180 in the nucleation of clathrin lattices on membranes. Science, 291, 1051–1055.PubMedCrossRefGoogle Scholar
  10. Harel, A., Wu, F., Mattson, M. P., Morris, C. M., & Yao, P. J. (2008). Evidence for CALM in directing VAMP2 trafficking. Traffic, 9, 417–429.PubMedCrossRefGoogle Scholar
  11. Kaech, S., & Banker, G. (2006). Culturing hippocampal neurons. Nature Protocols, 1, 2406–2415.PubMedCrossRefGoogle Scholar
  12. Kay, A. R., Alfonso, A., Alford, S., Cline, H. T., Holgado, A. M., Sakmann, B., et al. (1999). Imaging synaptic activity in intact brain and slices with FM1-43 in C. elegans, lamprey, and rat. Neuron, 24, 809–817.PubMedCrossRefGoogle Scholar
  13. Koo, S. J., Markovic, S., Puchkov, D., Mahrenholz, C. C., Beceren-Braun, F., Maritzen, T., et al. (2011). SNARE motif-mediated sorting of synaptobrevin by the endocytic adaptors clathrin assembly lymphoid myeloid leukemia (CALM) and AP180 at synapses. Proceedings of the National Academy of Sciences, 108, 13540–13545.CrossRefGoogle Scholar
  14. Lafer, E. M. (2002). Clathrin-protein interactions. Traffic, 3, 513–520.PubMedCrossRefGoogle Scholar
  15. Li, J., Wang, Y., Chiu, S. L., & Cline, H. T. (2010). Membrane targeted horseradish peroxidase as a marker for correlative fluorescence and electron microscopy studies. Front Neural Circuits, 26, 4–6.Google Scholar
  16. Mao, Y., Chen, J., Maynard, J. A., Zhang, B., & Quiocho, F. A. (2001). A novel all helix fold of the AP180 amino-terminal domain for phosphoinositide binding and clathrin assembly in synaptic vesicle endocytosis. Cell, 104, 433–440.PubMedCrossRefGoogle Scholar
  17. Mattson, M. P., Dou, P., & Kater, S. B. (1988). Outgrowth-regulating actions of glutamate in isolated hippocampal pyramidal neurons. Journal of Neuroscience, 8, 2087–2100.PubMedGoogle Scholar
  18. McMahon, H. T., & Boucrot, E. (2011). Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nature Reviews Molecular Cell Biololgy, 12, 517–533.CrossRefGoogle Scholar
  19. Meyerholz, A., Hinrichsen, L., Groos, S., Esk, P. C., Brandes, G., & Ungewickell, E. J. (2005). Effect of clathrin assembly lymphoid myeloid leukemia protein depletion on clathrin coat formation. Traffic, 6, 1225–1234.PubMedCrossRefGoogle Scholar
  20. Mitchell, N., Petralia, R. S, Yao, P. J., Currier, D. G., Wang, Y. X., Kim, A., et al. (2012). Sonic hedgehog regulates presynaptic terminal size, ultrastructure and function in hippocampal neurons. Journal of Cell Science (Epub ahead of print).Google Scholar
  21. Morgan, J. R., Zhao, X., Womack, M., Prasad, K., Augustine, G. J., & Lafer, E. M. (1999). A role for the clathrin assembly domain of AP180 in synaptic vesicle endocytosis. Journal of Neuroscience, 19, 10201–10212.PubMedGoogle Scholar
  22. Morgan, J. R., Augustine, G. J., & Lafer, E. M. (2002). Synaptic vesicle endocytosis: the races, places, and molecular faces. NeuroMolecular Medicine, 2, 101–114.PubMedCrossRefGoogle Scholar
  23. Morris, S. A., Schroder, S., Plessmann, U., Weber, K., & Ungewickell, E. (1993). Clathrin assembly protein AP180: Primary structure, domain organization and identification of a clathrin binding site. EMBO Journal, 12, 667–675.PubMedGoogle Scholar
  24. Nonet, M. L., Holgado, A. M., Brewer, F., Serpe, C. J., Norbeck, B. A., Holleran, J., et al. (1999). UNC-11, a Caenorhabditis elegans AP180 homologue, regulates the size and protein composition of synaptic vesicles. Molecular Biology of the Cell, 10, 2343–2360.PubMedGoogle Scholar
  25. Petralia, R. S., & Wenthold, R. J. (1999). Immunocytochemistry of NMDA receptors. Methods Molecular Biololgy, 128, 73–92.Google Scholar
  26. Petralia, R. S., & Yao, P. J. (2007). AP180 and CALM in the developing hippocampus: Expression at the nascent synapse and localization to trafficking organelles. Journal of Comparative Neurology, 504, 314–327.PubMedCrossRefGoogle Scholar
  27. Petralia, R. S., Wang, Y. X., Hua, F., Yi, Z., Zhou, A., Ge, L., et al. (2010). Organization of NMDA receptors at extrasynaptic locations. Neuroscience, 167, 68–87.PubMedCrossRefGoogle Scholar
  28. Robinson, M. S. (2004). Adaptable adaptors for coated vesicles. Trends in Cell Biology, 14, 167–174.PubMedCrossRefGoogle Scholar
  29. Royle, S. J., & Lagnado, L. (2010). Clathrin-mediated endocytosis at the synaptic terminal: Bridging the gap between physiology and molecules. Traffic, 11, 1489–1497.PubMedCrossRefGoogle Scholar
  30. Schmid, E. M., & McMahon, H. T. (2007). Integrating molecular and network biology to decode endocytosis. Nature, 448, 883–888.PubMedCrossRefGoogle Scholar
  31. Schwartz, C. M., Cheng, A., Mughal, M. R., Mattson, M. P., & Yao, P. J. (2010). Clathrin assembly proteins AP180 and CALM in the embryonic rat brain. Journal of Comparative Neurology, 518, 3803–3818.PubMedCrossRefGoogle Scholar
  32. Staras, K., Branco, T., Burden, J. J., Pozo, K., Darcy, K., Marra, V., et al. (2010). A vesicle superpool spans multiple presynaptic terminals in hippocampal neurons. Neuron, 66, 37–44.PubMedCrossRefGoogle Scholar
  33. Tebar, F., Bohlander, S. K., & Sorkin, A. (1999). Clathrin assembly lymphoid myeloid leukemia (CALM) protein: Localization in endocytic-coated pits, interactions with clathrin, and the impact of overexpression on clathrin-mediated traffic. Molecular Biology of the Cell, 10, 2687–2702.PubMedGoogle Scholar
  34. Ungewickell, E. J., & Hinrichsen, L. (2007). Endocytosis: Clathrin-mediated membrane budding. Current Opinion in Cell Biology, 19, 417–425.PubMedCrossRefGoogle Scholar
  35. Williams, M. E., Wilke, S. A., Daggett, A., Davis, E., Otto, S., Ravi, D., et al. (2011). Cadherin-9 regulates synapse-specific differentiation in the developing hippocampus. Neuron, 71, 640–655.PubMedCrossRefGoogle Scholar
  36. Wu, F., Matsuoka, Y., Mattson, M. P., & Yao, P. J. (2009). The clathrin assembly protein AP180 regulates the generation of amyloid-beta peptide. Biochemical and Biophysical Research Communications, 385, 247–250.PubMedCrossRefGoogle Scholar
  37. Yao, P. J., Zhang, P., Mattson, M. P., & Furukawa, K. (2003). Heterogeneity of endocytic proteins: Distribution of clathrin adaptor proteins in neurons and glia. Neuroscience, 121, 25–37.PubMedCrossRefGoogle Scholar
  38. Yao, P. J., Petralia, R. S., Bushlin, I., Wang, Y., & Furukawa, K. (2005). Synaptic distribution of the endocytic accessory proteins AP180 and CALM. Journal of Comparative Neurology, 481, 58–69.PubMedCrossRefGoogle Scholar
  39. Ye, W., & Lafer, E. M. (1995). Bacterially expressed F1–20/AP-3 assembles clathrin into cages with a narrow size distribution: Implications for the regulation of quantal size during neurotransmission. Journal of Neuroscience, 41, 15–26.Google Scholar
  40. Zhang, B., Koh, Y. H., Beckstead, R. B., Budnik, V., Ganetzky, B., & Bellen, H. J. (1998). Synaptic vesicle size and number are regulated by a clathrin adaptor protein required for endocytosis. Neuron, 21, 1465–1475.PubMedCrossRefGoogle Scholar
  41. Zhou, S., Tannery, N. H., Yang, J., Puszkin, S., & Lafer, E. M. (1993). The synapse- specific phosphoprotein F1–20 is identical to the clathrin assembly protein AP-3. Journal of Biological Chemistry, 268, 12655–12662.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC (outside the USA) 2012

Authors and Affiliations

  • Ronald S. Petralia
    • 1
  • Ya-Xian Wang
    • 1
  • Fred E. Indig
    • 2
  • Ittai Bushlin
    • 3
  • Fangbai Wu
    • 3
  • Mark P. Mattson
    • 3
  • Pamela J. Yao
    • 3
  1. 1.Advanced Imaging Core, NIDCD/NIHBethesdaUSA
  2. 2.Confocal Imaging Facility, Laboratory of Clinical InvestigationNIA/NIHBaltimoreUSA
  3. 3.Laboratory of NeurosciencesNIA/NIH Biomedical Research CenterBaltimoreUSA

Personalised recommendations