NeuroMolecular Medicine

, Volume 14, Issue 4, pp 244–261 | Cite as

MicroRNAs: A Light into the “Black Box” of Neuropediatric Diseases?

  • Ahmed Omran
  • Dalia Elimam
  • Sherien Shalaby
  • Jing Peng
  • Fei Yin
Review Paper

Abstract

Although there have been tremendous advances in the diagnosis and treatment of pediatric brain diseases in the last few decades, the causes and pathogenesis of these diseases remain to be elucidated. Pediatric central nervous system (CNS) diseases create both short- and long-term impairments and disabilities and are therefore one of the leading causes for emotional, financial, and social burden to patients, their families, and their social network. The significant pediatric morbidity and mortality rates caused by CNS diseases call for equally significant efforts toward a better understanding of the etiology and nature of these disorders. Recent studies show the involvement of microRNAs (miRNAs) in various aspects of central nervous system development and neuropsychiatric diseases. This review focuses on the role of miRNAs in different pediatric neurological conditions. We emphasize the importance of microRNA-based research in combating pediatric neurological disorders. We believe this approach will result in novel therapies to secure normal development and prevent disabilities in the pediatric population.

Keywords

MicroRNA Neurodevelopment Neuropediatric diseases Gene expression 

Abbreviations

MiRNAs

MicroRNAs

DMD

Duchenne muscular dystrophy

OLs

Oligodendrocytes

VLCFAs

Very-long-chain fatty acids

HIBD

Hypoxic ischemic brain injuries

MCAO

Middle cerebral artery occlusion

NTDs

Neural tube defects

RA

Retinoic acid

ID

Intellectual disability

ASDs

Autism spectrum disorders

SNPs

Single nucleotide polymorphisms

FXS

Fragile X mental retardation

FMRP

Fragile X mental retardation protein

RTT

Rett syndrome

MeCP2

Methyl-CpG binding protein 2

ADHD

Attention deficit hyperactivity disorder

DGS

DiGeorge syndrome

DS

Down syndrome

SCI

Spinal cord injury

TLE

Temporal lobe epilepsy

BMD

Becker muscular dystrophy

FSHD

Facioscapulohumeral muscular dystrophy

References

  1. Abu-Elneel, K., Liu, T., Gazzaniga, F. S., Nishimura, Y., Wall, D. P., Geschwind, D. H., et al. (2008). Heterogeneous dysregulation of microRNAs across the autism spectrum. Neurogenetics, 9(3), 153–161.PubMedCrossRefGoogle Scholar
  2. Alexander, M. S., Casar, J. C., Motohashi, N., Myers, J. A., Eisenberg, I., Gonzalez, R. T., et al. (2011). Regulation of DMD pathology by an ankyrin-encoded miRNA. Skeletal Muscle, 8, 1–27.Google Scholar
  3. Allgaier, A. K., Pietsch, K., Frühe, B., Prast, E., Sigl-Glöckner, J., & Schulte-Körne, G. (2012). Depression in pediatric care: Is the WHO-Five Well-Being Index a valid screening instrument for children and adolescents? General Hospital Psychiatry, 34(3), 234–241.PubMedCrossRefGoogle Scholar
  4. Al-Macki, N., Miller, S. P., Hall, N., & Shevell, M. (2009). The spectrum of abnormal neurologic outcomes subsequent to term intrapartum asphyxia. Pediatric Neurology, 41(6), 399–405.PubMedCrossRefGoogle Scholar
  5. Anney, R., Klei, L., Pinto, D., Regan, R., Conroy, J., Magalhaes, T. R., et al. (2010). A genome-wide scan for common alleles affecting risk for autism. Hum Mol Gen, 19(20), 4072–4082.PubMedCrossRefGoogle Scholar
  6. Aronica, E., Fluiter, K., Iyer, A., Zurolo, E., Vreijling, J., van Vliet, E. A., et al. (2010). Expression pattern of miR-146a, an inflammation-associated microRNA, in experimental and human temporal lobe epilepsy. European Journal of Neuroscience, 31(6), 1100–1107.PubMedCrossRefGoogle Scholar
  7. Bagni, C., & Greenough, W. T. (2005). From mRNP trafficking to spine dysmorphogenesis: The roots of fragile X syndrome. Nature Reviews Neuroscience, 6(5), 376–387.Google Scholar
  8. Baldassarre, G., Belletti, B., Nicoloso, M. S., Schiappacassi, M., Vecchione, A., Spessotto, P., et al. (2005). p27(Kip1)-stathmin interaction influences sarcoma cell migration and invasion. Cancer Cell, 7(1), 51–63.PubMedCrossRefGoogle Scholar
  9. Bartel, D. P. (2009). MicroRNAs: Target recognition and regulatory functions. Cell, 136(2), 215–233.PubMedCrossRefGoogle Scholar
  10. Barton, M., & Volkmar, F. (1998). How commonly are known medical conditions associated with autism? Journal of Autism and Developmental Disorder, 28(4), 273–278.CrossRefGoogle Scholar
  11. Bassell, G. J., & Warren, S. T. (2008). Fragile X syndrome: Loss of local mRNA regulation alters synaptic development and function. Neuron, 60(2), 201–214.PubMedCrossRefGoogle Scholar
  12. Basu, U., Lozynska, O., Moorwood, C., Patel, G., Wilton, S. D., & Khurana, T. S. (2011). Translational regulation of utrophin by miRNAs. PLoS One, 6(12), e29376.PubMedCrossRefGoogle Scholar
  13. Baudry, A., Mouillet-Richard, S., Schneider, B., Launay, J. M., & Kellermann, O. (2010). miR-16 targets the serotonin transporter: A new facet for adaptive responses to antidepressants. Science, 329(5998), 1537–1541.PubMedCrossRefGoogle Scholar
  14. Beesdo, K., Pine, D. S., Lieb, R., & Wittchen, H. U. (2010). Incidence and risk patterns of anxiety and depressive disorders and categorization of generalized anxiety disorder. Archives of General Psychiatry, 67(1), 47–57.PubMedCrossRefGoogle Scholar
  15. Beveridge, N. J., Gardiner, E., Carroll, A. P., Tooney, P. A., & Cairns, M. J. (2010). Schizophrenia is associated with an increase in cortical microRNA biogenesis. Molecular Psychiatry, 15(12), 1176–1189.PubMedCrossRefGoogle Scholar
  16. Beveridge, N. J., Tooney, P. A., Carroll, A. P., Gardiner, E., Bowden, N., Scott, R. J., et al. (2008). Dysregulation of miRNA 181b in the temporal cortex in schizophrenia. Hum Mol Gen, 17(8), 1156–1168.PubMedCrossRefGoogle Scholar
  17. Birks, D. K., Barton, V. N., Donson, A. M., Handler, M. H., Vibhakar, R., & Foreman, N. K. (2011). Survey of MicroRNA expression in pediatric brain tumors. Pediatric Blood & Cancer, 56(2), 211–216.CrossRefGoogle Scholar
  18. Bottoni, A., Piccin, D., Tagliati, F., Luchin, A., Zatelli, M. C., & degli Uberti, E. C. (2005). miR-15a and miR-16-1 down-regulation in pituitary adenomas. Journal of Cellular Physiology, 204(1), 280–285.PubMedCrossRefGoogle Scholar
  19. Boyle, C. A., Boulet, S., Schieve, L. A., Cohen, R. A., Blumberg, S. J., Yeargin-Allsopp, M., et al. (2011). Trends in the prevalence of developmental disabilities in US children, 1997–2008. Pediatrics, 127(6), 1034–1042.PubMedCrossRefGoogle Scholar
  20. Brooks-Kayal, A. (2011). Molecular mechanisms of cognitive and behavioral comorbidities of epilepsy in children. Epilepsia, 52(1), 13–20.PubMedCrossRefGoogle Scholar
  21. Cacchiarelli, D., Incitti, T., Martone, J., Cesana, M., Cazzella, V., Santini, T., et al. (2011a). miR-31 modulates dystrophin expression: new implications for Duchenne muscular dystrophy therapy. EMBO Reports, 12(2), 136–141.PubMedCrossRefGoogle Scholar
  22. Cacchiarelli, D., Legnini, I., Martone, J., Cazzella, V., D’Amico, A., Bertini, E., et al. (2011b). MiRNAs as serum biomarkers for Duchenne muscular dystrophy. EMBO Molecular Medicine, 3(5), 258–265.PubMedCrossRefGoogle Scholar
  23. Cacchiarelli, D., Martone, J., Girardi, E., Cesana, M., Incitti, T., Morlando, M., et al. (2010). microRNAs involved in molecular circuitries relevant for the Duchenne muscular dystrophy pathogenesis are controlled by the dystrophin/nNOS pathway. Cell Metabolism, 12(4), 341–351.PubMedCrossRefGoogle Scholar
  24. Calin, G. A., Liu, C. G., Ferracin, M., Hyslop, T., Spizzo, R., Sevignani, C., et al. (2007). Ultraconserved regions encoding ncRNAs are altered in human leukemias and carcinomas. Cancer Cell, 12(3), 215–229.PubMedCrossRefGoogle Scholar
  25. Calin, G. A., Sevignani, C., Dumitru, C. D., Hyslop, T., Noch, E., Yendamuri, S., et al. (2004). Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proceedings of the National academy of Sciences of the United States of America, 101, 2999–3004.PubMedCrossRefGoogle Scholar
  26. Callis, T. E., Deng, Z., Chen, J. F., & Wang, D. Z. (2008). Muscling through the microRNA world. Exper Biol Med (Maywood), 233(2), 131–138.CrossRefGoogle Scholar
  27. Camfield, P., & Camfield, C. (2011). Transition to adult care for children with chronic neurological disorders. Annals of Neurology, 69(3), 437–444.PubMedCrossRefGoogle Scholar
  28. Chan, J. A., Krichevsky, A. M., & Kosik, K. S. (2005). MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Research, 65(14), 6029–6033.PubMedCrossRefGoogle Scholar
  29. Chandrasekar, V., & Dreyer, J. L. (2009). microRNAs miR-124, let-7d and miR-181a regulate cocaine-induced plasticity. Molecular and Cellular Neuroscience, 42(4), 350–362.PubMedCrossRefGoogle Scholar
  30. Chang, H., Zhang, T., Zhang, Z., Bao, R., Fu, C., Wang, Z., et al. (2011). Tissue-specific distribution of aberrant DNA methylation associated with maternal low-folate status in human neural tube defects. The Journal of Nutritional Biochemistry, 22(12), 1172–1177.PubMedCrossRefGoogle Scholar
  31. Chen, X., Guo, J., Lei, Y., Zou, J., Lu, X., Bao, Y., et al. (2010). Global DNA hypomethylation is associated with NTD-affected pregnancy: A case-control study. Birth Defects Research, Part A: Clinical and Molecular Teratology, 88(7), 575–581.CrossRefGoogle Scholar
  32. Chen, W., Jensen, L. R., Gecz, J., Fryns, J. P., Moraine, C., de Brouwer, A., et al. (2007). Mutation screening of brain-expressed X-chromosomal miRNA genes in 464 patients with nonsyndromic X-linked mental retardation. European Journal of Human Genetics, 15(3), 375–378.PubMedCrossRefGoogle Scholar
  33. Ciafre, S. A., Galardi, S., Mangiola, A., Ferracin, M., Liu, C. G., Sabatino, G., et al. (2005). Extensive modulation of a set of microRNAs in primary glioblastoma. Biochemical and Biophysical Research Communications, 334(4), 1351–1358.PubMedCrossRefGoogle Scholar
  34. Collins, P. Y., Patel, V., Joestl, S. S., March, D., Insel, T. R., Daar, A. S., et al. (2011). Grand challenges in global mental health. Nature, 475(7354), 27–30.PubMedCrossRefGoogle Scholar
  35. Corsten, M. F., Miranda, R., Kasmieh, R., Krichevsky, A. M., Weissleder, R., & Shah, K. (2007). MicroRNA-21 knockdown disrupts glioma growth in vivo and displays synergistic cytotoxicity with neural precursor cell delivered S-TRAIL in human gliomas. Cancer Research, 67(19), 8994–9000.PubMedCrossRefGoogle Scholar
  36. Covington, H. E., Lobo, M. K., Maze, I., Vialou, V., Hyman, J. M., et al. (2010). Antidepressant effect of optogenetic stimulation of the medial prefrontal cortex. Journal of Neuro Science, 30(48), 16082–16090.Google Scholar
  37. Cuellar, T. L., Davis, T. H., Nelson, P. T., Loeb, G. B., Harfe, B. D., Ullian, E., et al. (2008). Dicer loss in striatal neurons produces behavioral and neuroanatomical phenotypes in the absence of neurodegeneration. Proceedings of the National academy of Sciences of the United States of America, 105(14), 5614–5619.PubMedCrossRefGoogle Scholar
  38. Davis, T. H., Cuellar, T. L., Koch, S. M., Barker, A. J., Harfe, B. D., McManus, M. T., et al. (2008). Conditional loss of Dicer disrupts cellular and tissue morphogenesis in the cortex and hippocampus. Journal of Neuro Science, 28(17), 4322–4330.Google Scholar
  39. de Graaf, R., Ten Have, M., van Gool, C., & van Dorsselaer, S. (2012). Prevalence of mental disorders and trends from 1996 to 2009. Results from the Netherlands Mental Health Survey and Incidence Study-2. Social Psychiatry and Psychiatric Epidemiology, 47(2), 203–213.PubMedCrossRefGoogle Scholar
  40. De Smaele, E., Ferretti, E., & Gulino, A. (2010). MicroRNAs as biomarkers for CNS cancer and other disorders. Brain Research, 1338, 100–111.PubMedCrossRefGoogle Scholar
  41. Dessy, A., & Gorman, J. M. (2011). The emerging therapeutic role of RNA interference in disorders of the central nervous system. Clinical Pharmacology & Therapeutics, 89(3), 450–454.CrossRefGoogle Scholar
  42. DeVito, L. M., Balu, D. T., Kanter, B. R., Lykken, C., Basu, A. C., Coyle, J. T., et al. (2011). Serine racemase deletion disrupts memory for order and alters cortical dendritic morphology. Genes, Brain, and Behavior, 10(2), 210–222.PubMedCrossRefGoogle Scholar
  43. Dharap, A., Bowen, K., Place, R., Li, L. C., & Vemuganti, R. (2009). Transient focal ischemia induces extensive temporal changes in rat cerebral microRNAome. Journal of Cerebral Blood Flow and Metabolism, 29(4), 675–687.PubMedCrossRefGoogle Scholar
  44. Dugas, J. C., Cuellar, T. L., Scholze, A., Ason, B., Ibrahim, A., Emery, B., et al. (2010). Dicer1 and miR-219 are required for normal oligodendrocyte differentiation and myelination. Neuron, 65(5), 597–611.PubMedCrossRefGoogle Scholar
  45. Edbauer, D., Neilson, J. R., Foster, K. A., Wang, C. F., Seeburg, D. P., Batterton, M. N., et al. (2010). Regulation of synaptic structure and function by FMRP-associated microRNAs miR-125b and miR-132. Neuron, 65(3), 373–384.PubMedCrossRefGoogle Scholar
  46. Eisenberg, I., Alexander, M. S., & Kunkel, L. M. (2009). miRNAS in normal and diseased skeletal muscle. Journal of Cellular and Molecular Medicine, 13(1), 2–11.PubMedCrossRefGoogle Scholar
  47. Eisenberg, I., Eran, A., Nishino, I., Moggio, M., Lamperti, C., Amato, A. A., et al. (2007). Distinctive patterns of microRNA expression in primary muscular disorders. Proceedings of the National academy of Sciences of the United States of America, 104(43), 17016–17021.PubMedCrossRefGoogle Scholar
  48. Emery, B. (2010). Regulation of oligodendrocyte differentiation and myelination. Science, 330(6005), 779–782.PubMedCrossRefGoogle Scholar
  49. Ferretti, E., De Smaele, E., Po, A., Di Marcotullio, L., Tosi, E., Espinola, M. S., et al. (2009). MicroRNA profiling in human medulloblastoma. International Journal of Cancer, 124(3), 568–577.CrossRefGoogle Scholar
  50. Fineberg, S. K., Kosik, K. S., & Davidson, B. L. (2009). MicroRNAs potentiate neural development. Neuron, 64(3), 303–309.PubMedCrossRefGoogle Scholar
  51. Flynt, A. S., & Lai, E. C. (2008). Biological principles of microRNA-mediated regulation: Shared themes amid diversity. Nature Reviews Genetics, 9(11), 831–842.PubMedCrossRefGoogle Scholar
  52. Garcia, K. L., Yu, G., Nicolini, C., Michalski, B., Garzon, D. J., Chiu, V. S., et al. (2012). Altered balance of proteolytic isoforms of pro-brain-derived neurotrophic factor in autism. Journal of Neuropathology and Experimental Neurology, 71(4), 289–297.PubMedCrossRefGoogle Scholar
  53. Gardiner, E., Beveridge, N. J., Wu, J. Q., Carr, V., Scott, R. J, Tooney, P. A., et al. (2011). Imprinted DLK1-DIO3 region of 14q32 defines a schizophrenia-associated miRNA signature in peripheral blood mononuclear cells. Molecular Psychiatry. doi:10.1038/mp.2011.78.
  54. Gerber, J., & Nau, R. (2010). Mechanisms of injury in bacterial meningitis. Current Opinion in Neurology, 23(3), 312–318.PubMedCrossRefGoogle Scholar
  55. Glessner, J. T., Wang, K., Cai, G., Korvatska, O., Kim, C. E., Wood, S., et al. (2009). Autism genome-wide copy number variation reveals ubiquitin and neuronal genes. Nature, 459(7246), 569–573.PubMedCrossRefGoogle Scholar
  56. Godlewski, J., Nowicki, M. O., Bronisz, A., Williams, S., Otsuki, A., Nuovo, G., et al. (2008). Targeting of the Bmi-1 oncogene/stem cell renewal factor by microRNA-128 inhibits glioma proliferation and self-renewal. Cancer Research, 68(22), 9125–9130.PubMedCrossRefGoogle Scholar
  57. Greco, S., De Simone, M., Colussi, C., Zaccagnini, G., Fasanaro, P., Pescatori, M., et al. (2009). Common micro-RNA signature in skeletal muscle damage and regeneration induced by Duchenne muscular dystrophy and acute ischemia. FASEB Journal, 23(10), 3335–3346.PubMedCrossRefGoogle Scholar
  58. Gustavsson, A., Svensson, M., Jacobi, F., Allgulander, C., Alonso, J., Beghi, E., et al. (2011). Cost of disorders of the brain in Europe 2010. European Neuropsychopharmacology, 21(10), 718–779.PubMedCrossRefGoogle Scholar
  59. Hagerman, R., Hoem, G., & Hagerman, P. (2010). Fragile X and autism: Intertwined at the molecular level leading to targeted treatments. Molecular Autism, 1(1), 12.PubMedCrossRefGoogle Scholar
  60. Hansen, T., Olsen, L., Lindow, M., Jakobsen, K. D., Ullum, H., Jonsson, E., et al. (2007). Brain expressed microRNAs implicated in schizophrenia etiology. PLoS One, 2, e873.PubMedCrossRefGoogle Scholar
  61. Harrington, M. G., Fonteh, A. N., Oborina, E., Liao, P., Cowan, R. P., McComb, G., et al. (2009). The morphology and biochemistry of nanostructures provide evidence for synthesis and signaling functions in human cerebrospinal fluid. Cerebrospinal Fluid Research, 6, 10.PubMedCrossRefGoogle Scholar
  62. Harris, S. W., Hessl, D., Goodlin-Jones, B., Ferranti, J., Bacalman, S., Barbato, I., et al. (2008). Autism profiles of males with fragile X syndrome. American Journal of Mental Retardation, 113(6), 427–438.PubMedCrossRefGoogle Scholar
  63. Heaney, A. P. (2006). Pituitary tumour pathogenesis. British Medical Bulletin, 75–76, 81–97.PubMedCrossRefGoogle Scholar
  64. Hébert, S. S., Horré, K., Nicolaï, L., Bergmans, B., Papadopoulou, A. S., Delacourte, A., et al. (2009). MicroRNA regulation of Alzheimer’s Amyloid precursor protein expression. Neurobiology of Diseases, 33(3), 422–428.CrossRefGoogle Scholar
  65. Hébert, S. S., Horré, K., Nicolaï, L., Papadopoulou, A. S., Mandemakers, W., Silahtaroglu, A. N., et al. (2008). Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer’s disease correlates with increased BACE1/beta-secretase expression. Proceedings of the National academy of Sciences of the United States of America, 105(17), 6415–6420.PubMedCrossRefGoogle Scholar
  66. Hu, K., Zhang, C., Long, L., Long, X., Feng, L., Li, Y., et al. (2011). Expression profile of microRNAs in rat hippocampus following lithium–pilocarpine-induced status epilepticus. Neuroscience Letters, 488(3), 252–257.PubMedCrossRefGoogle Scholar
  67. Iossifov, I., Ronemus, M., Levy, D., Wang, Z., Hakker, I., Rosenbaum, J., et al. (2012). De novo gene disruptions in children on the autistic spectrum. Neuron, 74(2), 285–299.PubMedCrossRefGoogle Scholar
  68. Jeyaseelan, K., Herath, W. B., & Armugam, A. (2007). MicroRNAs as therapeutic targets in human diseases. Expert Opinion on Therapeutic Targets, 11(8), 1119–1129.PubMedCrossRefGoogle Scholar
  69. Jeyaseelan, K., Lim, K. Y., & Armugam, A. (2008). MicroRNA expression in the blood and brain of rats subjected to transient focal ischemia by middle cerebral artery occlusion. Stroke, 39(3), 959–966.PubMedCrossRefGoogle Scholar
  70. John, HM., & Richard, G. (2005). Traumatic brain and spinal cord injuries in children. In Bernard L. Maria (Ed.), Current management in child neurology (3rd ed., pp. 515–527). BC Decker Inc.Google Scholar
  71. Kessler, R. C., Cox, B. J., Green, J. G., Ormel, J., McLaughlin, K. A., Merikangas, K. R., et al. (2011). The effects of latent variables in the development of comorbidity among common mental disorders. Depression and Anxiety, 28(1), 29–39.PubMedCrossRefGoogle Scholar
  72. Kim, J., Krichevsky, A., Grad, Y., Hayes, G. D., Kosik, K. S., Church, G. M., et al. (2004). Identification of many microRNAs that copurify with polyribosomes in mammalian neurons. Proceedings of the National academy of Sciences of the United States of America, 101(1), 360–365.PubMedCrossRefGoogle Scholar
  73. Kim, A. H., Reimers, M., Maher, B., Williamson, V., McMichael, O., McClay, J. L., et al. (2010). MicroRNA expression profiling in the prefrontal cortex of individuals affected with schizophrenia and bipolar disorders. Schizophrenia Research, 124(1–3), 183–191.PubMedCrossRefGoogle Scholar
  74. Klein, M. E., Lioy, D. T., Ma, L., Impey, S., Mandel, G., & Goodman, R. H. (2007). Homeostatic regulation of MeCP2 expression by a CREB-induced microRNA. Nature Neuroscience, 10(12), 1513–1514.PubMedCrossRefGoogle Scholar
  75. Kloosterman, W. P., Steiner, F. A., Berezikov, E., de Bruijn, E., van de Belt, J., Verheul, M., et al. (2006). Cloning and expression of new microRNAs from zebrafish. Nucleic Acids Research, 34(9), 2558–2569.PubMedCrossRefGoogle Scholar
  76. Krichevsky, A. M., Sonntag, K. C., Isacson, O., & Kosik, K. S. (2006). Specific microRNAs modulate embryonic stem cell-derived neurogenesis. Stem Cells, 24(4), 857–864.PubMedCrossRefGoogle Scholar
  77. Krol, J., Loedige, I., & Filipowicz, W. (2010). The widespread regulation of microRNA biogenesis, function and decay. Nature Reviews Genetics, 11(9), 597–610.PubMedGoogle Scholar
  78. Kuhn, D. E., Nuovo, G. J., Martin, M. M., Malana, G. E., Pleister, A. P., Jiang, J., et al. (2008). Human chromosome 21-derived miRNAs are overexpressed in down syndrome brains and hearts. Biochemical and Biophysical Research Communications, 370(3), 473–477.PubMedCrossRefGoogle Scholar
  79. Kuss, A. W., & Chen, W. (2008). MicroRNAs in brain function and disease. Current Neurology and Neuroscience Reports, 8(3), 190–197.PubMedCrossRefGoogle Scholar
  80. Kye, M. J., Neveu, P., Lee, Y. S., Zhou, M., Steen, J. A., Sahin, M., et al. (2011). NMDA mediated contextual conditioning changes miRNA expression. PLoS One, 6(9), e24682.PubMedCrossRefGoogle Scholar
  81. Lai, C. Y., Yu, S. L., Hsieh, M. H., Chen, C. H., Chen, H. Y., Wen, C. C., et al. (2011). MicroRNA expression aberration as potential peripheral blood biomarkers for schizophrenia. PLoS One, 6, e21635.PubMedCrossRefGoogle Scholar
  82. Lambert, T. J., Storm, D. R., & Sullivan, J. M. (2010). MicroRNA132 modulates short-term synaptic plasticity but not basal release probability in hippocampal neurons. PLoS One, 5(12), e15182.PubMedCrossRefGoogle Scholar
  83. Le, M. T., Xie, H., Zhou, B., Chia, P. H., Rizk, P., Um, M., et al. (2009). MicroRNA-125b promotes neuronal differentiation in human cells by repressing multiple targets. Molecular and Cellular Biology, 29(19), 5290–5305.PubMedCrossRefGoogle Scholar
  84. Lee, C. T., Risom, T., & Strauss, W. M. (2007). Evolutionary conservation of microRNA regulatory circuits: an examination of microRNA gene complexity and conserved microRNA-target interactions through metazoan phylogeny. DNA and Cell Biology, 26(4), 209–218.PubMedCrossRefGoogle Scholar
  85. Lei, P., Li, Y., Chen, X., Yang, S., & Zhang, J. (2009). Microarray based analysis of microRNA expression in rat cerebral cortex after traumatic brain injury. Brain Research, 1284, 191–201.PubMedCrossRefGoogle Scholar
  86. Li, K. K., Pang, J. C., Ching, A. K., Wong, C. K., Kong, X., Wang, Y., et al. (2009). miR-124 is frequently downregulated in medulloblastoma and is a negative regulator of SLC16A1. Human Pathology, 40(9), 1234–1243.PubMedCrossRefGoogle Scholar
  87. Lin, S. T., & Fu, Y. H. (2009). MiR-23 regulation of lamin B1 is crucial for oligodendrocyte development and myelination. Disease Models & Mechanisms, 2(3–4), 178–188.CrossRefGoogle Scholar
  88. Lise, M. F., & El-Husseini, A. (2006). The neuroligin and neurexin families: From structure to function at the synapse. Cellular and Molecular Life Sciences, 63(16), 1833–1849.PubMedCrossRefGoogle Scholar
  89. Liu, D. Z., Tian, Y., Ander, B. P., Xu, H., Stamova, B. S., Zhan, X., et al. (2010). Brain and blood microRNA expression profiling of ischemic stroke, intracerebral hemorrhage, and kainate seizures. Journal of Cerebral Blood Flow and Metabolism, 30(1), 92–101.PubMedCrossRefGoogle Scholar
  90. Liu, N. K., Wang, X. F., Lu, Q. B., & Xu, X. M. (2009). Altered microRNA expression following traumatic spinal cord injury. Experimental Neurology, 219(2), 424–429.PubMedCrossRefGoogle Scholar
  91. Lugli, G., Torvik, V. I., Larson, J., & Smalheiser, N. R. (2008). Expression of microRNAs and their precursors in synaptic fractions of adult mouse forebrain. Journal of Neurochemistry, 106(2), 650–661.PubMedCrossRefGoogle Scholar
  92. Lujambio, A., & Esteller, M. (2007). CpG island hypermethylation of tumor suppressor microRNAs in human cancer. Cell Cycle, 6(12), 1455–1459.PubMedCrossRefGoogle Scholar
  93. Maller Schulman, B. R., Liang, X., Stahlhut, C., DelConte, C., Stefani, G., & Slack, F. J. (2008). The let-7 microRNA target gene, Mlin41/Trim71 is required for mouse embryonic survival and neural tube closure. Cell Cycle, 7(24), 3935–3942.PubMedCrossRefGoogle Scholar
  94. Marshall, C. R., Noor, A., Vincent, J. B., Lionel, A. C., Feuk, L., Skaug, J., et al. (2008). Structural variation of chromosomes in autism spectrum disorder. American Journal of Human Genetics, 82(2), 477–488.PubMedCrossRefGoogle Scholar
  95. Marsit, C. J., Eddy, K., & Kelsey, K. T. (2006). MicroRNA responses to cellular stress. Cancer Research, 66(22), 10843–10848.PubMedCrossRefGoogle Scholar
  96. Martinelli-Boneschi, F., Fenoglio, C., Brambilla, P., Sorosina, M., Giacalone, G., Esposito, F., et al. (2012). MicroRNA and mRNA expression profile screening in multiple sclerosis patients to unravel novel pathogenic steps and identify potential biomarkers. Neuroscience Letters, 508(1), 4–8.PubMedCrossRefGoogle Scholar
  97. Mellios, N., Sugihara, H., Castro, J., Banerjee, A., Le, C., Kumar, A., et al. (2011). miR-132, an experience dependent microRNA, is essential for visual cortex plasticity. Nature Neuroscience, 14(10), 1240–1242.PubMedCrossRefGoogle Scholar
  98. Miller, C. R., & Perry, A. (2007). Glioblastoma. Archives of Pathology and Laboratory Medicine, 131(3), 397–406.PubMedGoogle Scholar
  99. Miller, D. T., Shen, Y., Weiss, L. A., Korn, J., Anselm, I., Bridgemohan, C., et al. (2009). Microdeletion/duplication at 15q13.2q13.3 among individuals with features of autism and other neuropsychiatric disorders. Journal of Medical Genetics, 46(4), 242–248.PubMedCrossRefGoogle Scholar
  100. Miller, B. H., & Wahlestedt, C. (2010). MicroRNA dysregulation in psychiatric disease. Brain Research, 1338, 89–99.PubMedCrossRefGoogle Scholar
  101. Miller, B. H., Zeier, Z., Xi, L., Lanz, T. A., Deng, S., Strathmann, J., et al. (2012). MicroRNA-132 dysregulation in schizophrenia has implications for both neurodevelopment and adult brain function. Proceedings of the National academy of Sciences of the United States of America, 109(8), 3125–3130.PubMedCrossRefGoogle Scholar
  102. Mitchell, P. S., Parkin, R. K., Kroh, E. M., Fritz, B. R., Wyman, S. K., Pogosova-Agadjanyan, E. L., et al. (2008). Circulating microRNAs as stable blood-based markers for cancer detection. Proceedings of the National academy of Sciences of the United States of America, 105(30), 10513–10518.PubMedCrossRefGoogle Scholar
  103. Mizuno, H., Nakamura, A., Aoki, Y., Ito, N., Kishi, S., & Yamamoto, K. (2011). Identification of muscle-specific microRNAs in serum of muscular dystrophy animal models: promising novel blood-based markers for muscular dystrophy. PLoS One, 6(3), e18388.PubMedCrossRefGoogle Scholar
  104. Moreau, M. P., Bruse, S. E., David-Rus, R., Buyske, S., & Brzustowicz, L. M. (2011). Altered microRNA expression profiles in postmortem brain samples from individuals with schizophrenia and bipolar disorder. Biological Psychiatry, 69(2), 188–193.PubMedCrossRefGoogle Scholar
  105. Nelson, P. T., & Keller, J. N. (2007). RNA in brain disease: no longer just “the messenger in the middle”. Journal of Neuropathology and Experimental Neurology, 66(6), 461–468.PubMedCrossRefGoogle Scholar
  106. Nicoloso, M. S., & Calin, G. A. (2008). MicroRNA involvement in brain tumors: from bench to bedside. Brain Pathology, 18(1), 122–129.PubMedCrossRefGoogle Scholar
  107. Olde Loohuis, N. F., Kos, A., Martens, G. J., Van Bokhoven, H., Nadif Kasri, N., & Aschrafi, A. (2012). MicroRNA networks direct neuronal development and plasticity. Cellular and Molecular Life Sciences, 69(1), 89–102.PubMedCrossRefGoogle Scholar
  108. Omran, A., Peng, J., Zhang, C., Xiang, Q. L., Xue, J., Gan, N., et al. (2012a). Interleukin-1 beta and microRNA-146a in an immature rat model and children with mesial temporal lobe epilepsy. Epilepsia, 53(7), 1215–1224.Google Scholar
  109. Omran, A., Peng, J., Zhang, C., Xue, J., Xiang Q. L., & Yin, F. (2012b). The expression of interleukin-1B and miRNA-146a in the cerebral cortex of acute Escherichia Coli meningitis immature rat model. African Journal of Infectious Diseases, 6(2), 41–47.Google Scholar
  110. Packer, A. N., Xing, Y., Harper, S. Q., Jones, L., & Davidson, B. L. (2008). The bifunctional microRNA miR-9/miR-9* regulates REST and CoREST and is downregulated in Huntington’s disease. Journal of Neuro Science, 28(53), 14341–14346.Google Scholar
  111. Peng, T., Jia, Y. J., Wen, Q. Q., Guan, W. J., Zhao, E. Y., & Zhang, B. A. (2010). Expression of microRNA in neonatal rats with hypoxic-ischemic brain damage. Zhongguo Dang Dai Er Ke Za Zhi, 12(5), 373–376.PubMedGoogle Scholar
  112. Perkins, D. O., Jeffries, C. D., Jarskog, L. F., Thomson, J. M., Woods, K., Newman, M. A., et al. (2007). MicroRNA expression in the prefrontal cortex of individuals with schizophrenia and schizoaffective disorder. Genome Biology, 8(2), R27.PubMedCrossRefGoogle Scholar
  113. Prasadarao, N. V. (2002). Identification of Escherichia coli outer membrane protein A receptor on human brain microvascular endothelial cells. Infection and Immunity, 70(8), 4556–4563.PubMedCrossRefGoogle Scholar
  114. Prince, M., Patel, V., Saxena, S., Maj, M., Maselko, J., Phillips, M. R., et al. (2007). No health without mental health. Lancet, 370(9590), 859–877.PubMedCrossRefGoogle Scholar
  115. Qiu, J., Hong, Q., Chen, R. H., Tong, M. L., Zhang, M., Fei, L., et al. (2010). Gene expression profiles in the prefrontal cortex of SHR rats by cDNA microarrays. Molecular Biology Reports, 37(4), 1733–1740.PubMedCrossRefGoogle Scholar
  116. Redell, J. B., Liu, Y., & Dash, P. K. (2009). Traumatic brain injury alters expression of hippocampal microRNAs: Potential regulators of multiple pathophysiological processes. Journal of Neuroscience Research, 87(6), 1435–1448.PubMedCrossRefGoogle Scholar
  117. Ripke, S., Sanders, A. R., Kendler, K. S., Levinson, D. F., Sklar, P., Holmans, P. A., et al. (2011). Genome-wide association study identifies five new schizophrenia loci. Nature Genetics, 43(10), 969–976.CrossRefGoogle Scholar
  118. Rota, R., Ciarapica, R., Giordano, A., Miele, L., & Locatelli, F. (2011). MicroRNAs in rhabdomyosarcoma: pathogenetic implications and translational potentiality. Molecular Cancer, 10, 120.PubMedCrossRefGoogle Scholar
  119. Roth, R. H., Edbauer, D., Kleiman, R. J., & Wahlestedt, C. (2012). MicroRNA-132 dysregulation in schizophrenia has implications for both neurodevelopment and adult brain function. Proceedings of the National academy of Sciences of the United States of America, 109(8), 3125–3130.PubMedCrossRefGoogle Scholar
  120. Roth, P., Wischhusen, J., Happold, C., Chandran, P. A., Hofer, S., Eisele, G., et al. (2011). A specific miRNA signature in the peripheral blood of glioblastoma patients. Journal of Neurochemistry, 118(3), 449–457.PubMedCrossRefGoogle Scholar
  121. Sarachana, T., Zhou, R., Chen, G., Manji, H. K., & Hu, V. W. (2010). Investigation of post-transcriptional gene regulatory networks associated with autism spectrum disorders by microRNA expression profiling of lymphoblastoid cell lines. Genome Medicine, 2(4), 23.PubMedCrossRefGoogle Scholar
  122. Schratt, G. (2009). MicroRNAs at the synapse. Nature Reviews Neuroscience, 10(12), 842–849.PubMedCrossRefGoogle Scholar
  123. Schratt, G. M., Tuebing, F., Nigh, E. A., Kane, C. G., Sabatini, M. E., Kiebler, M., et al. (2006). A brain-specific microRNA regulates dendritic spine development. Nature, 439(7074), 283–289.PubMedCrossRefGoogle Scholar
  124. Sellner, J., Täuber, M. G., & Leib, S. L. (2010). Pathogenesis and pathophysiology of bacterial CNS infections. Handbook of Clinical Neurology, 96, 1–16.PubMedCrossRefGoogle Scholar
  125. Shi, Y., Zhao, X., Hsieh, J., Wichterle, H., Impey, S., Banerjee, S., et al. (2010). MicroRNA regulation of neural stem cells and neurogenesis. Journal of Neuro Science, 30(45), 14931–14936.Google Scholar
  126. Shin, D., Shin, J. Y., McManus, M. T., Ptacek, L. J., & Fu, Y. H. (2009). Dicer ablation in oligodendrocytes provokes neuronal impairment in mice. Annals of Neurology, 66(6), 843–857.PubMedCrossRefGoogle Scholar
  127. Silber, J., Lim, D. A., Petritsch, C., Persson, A. I., Maunakea, A. K., Yu, M., et al. (2008). miR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cells and induce differentiation of brain tumor stem cells. BMC Medicine, 6, 14.PubMedCrossRefGoogle Scholar
  128. Simon, D. J., Madison, J. M., Conery, A. L., Thompson-Peer, K. L., Soskis, M., Ruvkun, G. B., et al. (2008). The microRNA miR-1 regulates a MEF-2-dependent retrograde signal at neuromuscular junctions. Cell, 133(5), 903–915.PubMedCrossRefGoogle Scholar
  129. Smalheiser, N. R., & Lugli, G. (2009). microRNA regulation of synaptic plasticity. NeuroMolecular Medicine, 11(3), 133–140.PubMedCrossRefGoogle Scholar
  130. Smalheiser, N. R., Lugli, G., Rizavi, H. S., Torvik, V. I., Turecki, G., & Dwivedi, Y. (2012). MicroRNA expression is down-regulated and reorganized in prefrontal cortex of depressed suicide subjects. PLoS One, 7(3), e33201.PubMedCrossRefGoogle Scholar
  131. Sokol, N. S., Xu, P., Jan, Y. N., & Ambros, V. (2008). Drosophila let-7 microRNA is required for remodeling of the neuromusculature during metamorphosis. Genes and Development, 22(12), 1591–1596.PubMedCrossRefGoogle Scholar
  132. Song, Y. J., Tian, X. B., Zhang, S., Zhang, Y. X., Li, X., Li, D., et al. (2011). Temporal lobe epilepsy induces differential expression of hippocampal miRNAs including let-7e and miR-23a/b. Brain Research, 1387, 134–140.PubMedCrossRefGoogle Scholar
  133. Stark, K. L., Xu, B., Bagchi, A., Lai, W. S., Liu, H., Hsu, R., et al. (2008). Altered brain microRNA biogenesis contributes to phenotypic deficits in a 22q11-deletion mouse model. Nature Genetics, 40(6), 751–760.PubMedCrossRefGoogle Scholar
  134. Talebizadeh, Z., Butler, M. G., & Theodoro, M. F. (2008). Feasibility and relevance of examining lymphoblastoid cell lines to study role of microRNAs in autism. Autism Research, 1(4), 240–250.PubMedCrossRefGoogle Scholar
  135. Talebizadeh, Z., Lam, D. Y., Theodoro, M. F., Bittel, D. C., Lushington, G. H., & Butler, M. G. (2006). Novel splice isoforms for NLGN3 and NLGN4 with possible implications in autism. Journal of Medical Genetics, 43(5), e21.PubMedCrossRefGoogle Scholar
  136. Tamura, K., Makino, A., Hullin-Matsuda, F., Kobayashi, T., Furihata, M., Chung, S., et al. (2009). Novel lipogenic enzyme ELOVL7 is involved in prostate cancer growth through saturated long-chain fatty acid metabolism. Cancer Research, 69(20), 8133–8140.PubMedCrossRefGoogle Scholar
  137. Tan, K. S., Armugam, A., Sepramaniam, S., Lim, K. Y., Setyowati, K. D., Wang, C. W., et al. (2009). Expression profile of MicroRNAs in young stroke patients. PLoS One, 4(11), e7689.PubMedCrossRefGoogle Scholar
  138. Tognini, P., Putignano, E., Coatti, A., & Pizzorusso, T. (2011). Experience-dependent expression of miR-132 regulates ocular dominance plasticity. Nature Neuroscience, 14(10), 1237–1239.PubMedCrossRefGoogle Scholar
  139. Townsend, J. D., Eberhart, N. K., Bookheimer, S. Y., Eisenberger, N. I., Foland-Ross, L. C., et al. (2010). fMRI activation in the amygdala and the orbitofrontal cortex inunmedicated subjects with major depressive disorder. Psychiatry Research, 183(3), 209–217.PubMedCrossRefGoogle Scholar
  140. Van Rooij, E., Liu, N., & Olson, E. N. (2008). MicroRNAs flex their muscles. Trends in Genetics, 24(4), 159–166.PubMedCrossRefGoogle Scholar
  141. Vo, N. K., Cambronne, X. A., & Goodman, R. H. (2010). MicroRNA pathways in neural development and plasticity. Current Opinion in Neurobiology, 20(4), 457–465.PubMedCrossRefGoogle Scholar
  142. Vo, N., Klein, M. E., Varlamova, O., Keller, D. M., Yamamoto, T., Goodman, R. H., et al. (2005). A Camp response element binding protein-induced microRNA regulates neuronal morphogenesis. Proceedings of the National academy of Sciences of the United States of America, 102(45), 16426–16431.PubMedCrossRefGoogle Scholar
  143. Volinia, S., Calin, G. A., Liu, C. G., Ambs, S., Cimmino, A., Petrocca, F., et al. (2006). A microRNA expression signature of human solid tumors defines cancer gene targets. Proceedings of the National academy of Sciences of the United States of America, 103(7), 2257–2261.PubMedCrossRefGoogle Scholar
  144. Wang, J., Chen, J., Chang, P., LeBlanc, A., Li, D., Abbruzzesse, J. L., et al. (2009a). MicroRNAs in plasma of pancreatic ductal adenocarcinoma patients as novel blood-based biomarkers of disease. Cancer prevention research (Philadelphia, Pa.), 2(9), 807–813.CrossRefGoogle Scholar
  145. Wang, W. X., Rajeev, B. W., Stromberg, A. J., Ren, N., Tang, G., Huang, Q., et al. (2008). The expression of microRNA miR-107 decreases early in Alzheimer’s disease and may accelerate disease progression through regulation of beta-site amyloid precursor protein-cleaving enzyme 1. Journal of Neuro Science, 28(5), 1213–1223.Google Scholar
  146. Wang, L., Wang, F., Guan, J., Le, J., Wu, L., Zou, J., et al. (2010). Relation between hypomethylation of long interspersed nucleotide elements and risk of neural tube defects. American Journal of Clinical Nutrition, 91(5), 1359–1367.PubMedCrossRefGoogle Scholar
  147. Wang, L. L., Zhang, Z., Li, Q., Ynag, R., Pei, X., Xu, Y., et al. (2009b). Ethanol exposure induces differential microRNA and target gene expression and teratogenic effects, which can be suppressed by folic acid supplementation. Human Reproduction, 24(3), 562–579.PubMedCrossRefGoogle Scholar
  148. Wang, K., Zhang, H., Ma, D., Bucan, M., Glessner, J. T., Abrahams, B. S., et al. (2009c). Common genetic variants on 5p14.1 associate with autism spectrum disorders. Nature, 459(7246), 528–533.PubMedCrossRefGoogle Scholar
  149. Watkins, T. A., Emery, B., Mulinyawe, S., & Barres, B. A. (2008). Distinct stages of myelination regulated by gamma-secretase and astrocytes in a rapidly myelinating CNS coculture system. Neuron, 60(4), 555–569.PubMedCrossRefGoogle Scholar
  150. Weiss, L. A., Shen, Y., Korn, J. M., Arking, D. E., Miller, D. T., Fossdal, R., et al. (2008). Association between microdeletion and microduplication at 16p11.2 and autism. New England Journal of Medicine, 358(7), 667–675.PubMedCrossRefGoogle Scholar
  151. Werner, N. S., Meindl, T., Materne, J., Engel, R. R., Huber, D., Riedel, M., et al. (2009). Functional MRI study of memory-related brain regions in patients with depressive disorder. Journal of Affective Disorders, 119(1–3), 124–131.PubMedCrossRefGoogle Scholar
  152. Williams, A. E. (2008). Functional aspects of animal microRNAs. Cellular and Molecular Life Sciences, 65(4), 545–562.PubMedCrossRefGoogle Scholar
  153. Williams, A. H., Valdez, G., Moresi, V., Qi, X., McAnally, J., Elliott, J. L., et al. (2009). MicroRNA206 delays ALS progression and promotes regeneration of neuromuscular synapses in mice. Science, 326(5959), 1549–1554.PubMedCrossRefGoogle Scholar
  154. Wong, J., Duncan, C. E., Beveridge, N. J, Webster, M. J., Cairns, M. J., & Shannon Weickert, C. (2012). Expression of NPAS3 in the human cortex and evidence of its posttranscriptional regulation by miR-17 during development, with implications for schizophrenia. Schizophrenia bulletin. doi:10.1093/schbul/sbr177.
  155. Wong, R. L., Wlodarczyk, B. J., Min, K. S., Scott, M. L., Kartiko, S., Yu, W., et al. (2008). Mouse Fkbp8 activity is required to inhibit cell death and establish dorsoventral patterning in the posterior neural tube. Human Molecular Genetics, 17(4), 587–601.PubMedCrossRefGoogle Scholar
  156. World Health Organization. (2008). The global burden of disease: 2004 update. Geneva: WHO.Google Scholar
  157. Wu, L., Zhao, Q., Zhu, X., Peng, M., Jia, C., Wu, W., et al. (2010). A novel function of microRNA let-7d in regulation of galectin-3 expression in attention deficit hyperactivity disorder rat brain. Brain Pathology, 20(6), 1042–1054.PubMedCrossRefGoogle Scholar
  158. Xu, Y., Liu, H., Li, F., Sun, N., Ren, Y., Liu, Z., et al. (2010). A polymorphism in the microRNA-30e precursor associated with major depressive disorder risk and P300 waveform. Journal of Affective Disorders, 127(1–3), 332–336.PubMedCrossRefGoogle Scholar
  159. Yin, K. J., Deng, Z., Huang, H., Hamblin, M., Xie, C., Zhang, J., et al. (2010). MiR-497 regulates neuronal death in mouse brain after transient focal cerebral ischemia. Neurobiology of Diseases, 38(1), 17–26.CrossRefGoogle Scholar
  160. Yuasa, K., Hagiwara, Y., Ando, M., Nakamura, A., Takeda, S., & Hijikata, T. (2008). MicroRNA-206 is highly expressed in newly formed muscle fibers: Implications regarding potential for muscle regeneration and maturation in muscular dystrophy. Cell Structure and Function, 33(2), 163–169.PubMedCrossRefGoogle Scholar
  161. Zhang, Z., Chang, H., Li, Y., Zhang, T., Zou, J., Zheng, X., et al. (2010). MicroRNAs potential regulators involved in human anencephaly. The International Journal of Biochemistry & Cell Biology, 42(2), 367–374.CrossRefGoogle Scholar
  162. Zhang, Y., Chao, T., Li, R., Liu, W., Chen, Y., Yan, X., et al. (2009). MicroRNA-128 inhibits glioma cells proliferation by targeting transcription factor E2F3a. Journal of Molecular Medicine, 87(1), 43–51.PubMedCrossRefGoogle Scholar
  163. Zhang, L., Huang, J., Yang, N., Greshock, J., Megraw, M. S., Giannakakis, A., et al. (2006a). MicroRNAs exhibit high frequency genomic alterations in human cancer. Proceedings of the National academy of Sciences of the United States of America, 103(24), 9136–9141.PubMedCrossRefGoogle Scholar
  164. Zhang, L., Wang, T., Wright, A. F., Suri, M., Schwartz, C. E., Stevenson, R. E., et al. (2006b). A microdeletion in Xp11.3 accounts for co-segregation of retinitis pigmentosa and mental retardation in a large kindred. American Journal of Medical Genetics. Part A, 140(4), 349–357.PubMedCrossRefGoogle Scholar
  165. Zhao, C., Sun, G., Li, S., Lang, M. F., Yang, S., Li, W., et al. (2010). MicroRNA let-7b regulates neural stem cell proliferation and differentiation by targeting nuclear receptor TLX signaling. Proceedings of the National academy of Sciences of the United States of America, 107(5), 1876–1881.PubMedCrossRefGoogle Scholar
  166. Zhao, J., Sun, D., Wang, J., Liu, S., Zhang, C., Zhu, M., et al. (2008). Retinoic acid downregulates microRNAs to induce abnormal development of spinal cord in spina bifida rat model. Childs Nervous System, 24(4), 485–492.CrossRefGoogle Scholar
  167. Zheng, K., Li, H., Zhu, Y., Zhu, Q., & Qiu, M. (2010). MicroRNAs are essential for the developmental switch from neurogenesis to oliogenesis in the developing spinal cord. Journal of Neuro Science, 30(24), 8245–8250.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Ahmed Omran
    • 1
    • 2
  • Dalia Elimam
    • 2
  • Sherien Shalaby
    • 2
  • Jing Peng
    • 1
  • Fei Yin
    • 1
  1. 1.Department of PediatricsXiangya Hospital of Central South UniversityChangshaChina
  2. 2.Department of Pediatrics and NeonatologySuez Canal UniversityIsmailiaEgypt

Personalised recommendations