NeuroMolecular Medicine

, Volume 14, Issue 4, pp 349–361 | Cite as

Lipidomic Profiling of Phosphocholine Containing Brain Lipids in Mice with Sensorimotor Deficits and Anxiety-Like Features After Exposure to Gulf War Agents

  • Laila Abdullah
  • James E. Evans
  • Alex Bishop
  • Jon M. Reed
  • Gogce Crynen
  • John Phillips
  • Robert Pelot
  • Myles A. Mullan
  • Austin Ferro
  • Christopher M. Mullan
  • Michael J. Mullan
  • Ghania Ait-Ghezala
  • Fiona C. Crawford
Original Paper

Abstract

The central nervous system (CNS)-based symptoms of Gulf War Illness (GWI) include motor dysfunction, anxiety, and cognitive impairment. Gulf War (GW) agents, such as pyridostigmine bromide (PB), permethrin (PER), N,N-diethyl-meta-toluamide (DEET), and stress, are among the contributory factors to the pathobiology of GWI. This study characterizes disturbances in phosphocholine-containing lipids that accompany neurobehavioral and neuropathological features associated with GW agent exposure. Exposed mice received PB orally, dermal application of PER and DEET and restraint stress daily for 28 days, while controls received vehicle during this period. Neurobehavioral studies included the rotarod, open field, and Morris water maze tests. Histopathological assessments included glial fibrillary acid protein, CD45, and Nissl staining. Liquid chromatography/mass spectrometry with source collision-induced dissociation in negative and positive ionization scanning modes was performed to characterize brain phosphatidylcholine (PC) and sphingomyelin (SM). A significant increase in ether containing PC (ePC34:0, ePC36:2, and ePC36:1) or long-chain fatty acid-containing PC (38:1, 40:4, 40:2) was observed in exposed mice compared with controls. Among differentially expressed PCs, levels of those with monounsaturated fatty acids were more affected than those with saturated and polyunsaturated fatty acids. Sensorimotor deficits and anxiety, together with an increase in astrocytosis, were observed in exposed mice compared with controls. These lipid changes suggest that alterations in peroxisomal pathways and stearoyl-CoA desaturase activity accompany neurobehavioral and neuropathological changes after GW agent exposure and represent possible treatment targets for the CNS symptoms of GWI.

Keywords

Gulf War Illness Lipidomics Phosphatidylcholine Sphingomyelin Pyridostigmine bromide Permethrin N,N-diethyl-meta-toluamide and stress 

References

  1. Abdel-Rahman, A., Abou-Donia, S., El-Masry, E., Shetty, A., & Abou-Donia, M. (2004). Stress and combined exposure to low doses of pyridostigmine bromide, DEET, and permethrin produce neurochemical and neuropathological alterations in cerebral cortex, hippocampus, and cerebellum. Journal of Toxicology and Environmental Health. Part A, 267, 163–192.CrossRefGoogle Scholar
  2. Abdel-Rahman, A., Shetty, A. K., & Abou-Donia, M. B. (2002). Disruption of the blood-brain barrier and neuronal cell death in cingulate cortex, dentate gyrus, thalamus, and hypothalamus in a rat model of Gulf-War syndrome. Neurobiology of Diseases, 10, 306–326.CrossRefGoogle Scholar
  3. Abdullah, L., Crynen, G., Reed, J., Bishop, A., Phillips, J., Ferguson, S., et al. (2011). Proteomic CNS profile of delayed cognitive impairment in mice exposed to Gulf War agents. NeuroMolecular Medicine, 13(4), 275–288.PubMedCrossRefGoogle Scholar
  4. Abou-Donia, M. B., Dechkovskaia, A. M., Goldstein, L. B., Abdel-Rahman, A., Bullman, S. L., & Khan, W. A. (2004). Co-exposure to pyridostigmine bromide, DEET, and/or permethrin causes sensorimotor deficit and alterations in brain acetylcholinesterase activity. Pharmacology Biochemistry and Behavior, 77(2), 253–262.CrossRefGoogle Scholar
  5. Abou-Donia, M. B., Dechkovskaia, A. M., Goldstein, L. B., Bullman, S. L., & Khan, W. A. (2002). Sensorimotor deficit and cholinergic changes following coexposure with pyridostigmine bromide and sarin in rats. Toxicological Sciences, 66(1), 148–158.PubMedCrossRefGoogle Scholar
  6. Abou-Donia, M. B., Goldstein, L. B., Jones, K. H., Abdel-Rahman, A. A., Damodaran, T. V., Dechkovskaia, A. M., et al. (2001). Locomotor and sensorimotor performance deficit in rats following exposure to pyridostigmine bromide, DEET, and permethrin, alone and in combination. Toxicological Sciences, 60(2), 305–314.PubMedCrossRefGoogle Scholar
  7. Amenta, F., & Tayebati, S. K. (2008). Pathways of acetylcholine synthesis, transport and release as targets for treatment of adult-onset cognitive dysfunction. Current Medicinal Chemistry, 15(5), 488–498.PubMedCrossRefGoogle Scholar
  8. Baier, C. J., & Barrantes, F. J. (2007). Sphingolipids are necessary for nicotinic acetylcholine receptor export in the early secretory pathway. Journal of Neurochemistry, 101(4), 1072–1084.PubMedCrossRefGoogle Scholar
  9. Bansal, I., Waghmare, C. K., Anand, T., Gupta, A. K., & Bhattacharya, B. K. (2009). Differential mRNA expression of acetylcholinesterase in the central nervous system of rats with acute and chronic exposure of sarin & physostigmine. Journal of Applied Toxicology, 29, 386–394.PubMedCrossRefGoogle Scholar
  10. Binns, J. H., Barlow, C., Bloom, F. E., Clauw, D. J., Golomb, B. A., Graves J. C. et al. (2008). GWI and the Health of Gulf War veterans: Scientific findings and recommendations, R.A.C.o.G.W.V. Illnesses, Editor. U.S. Government Printing Office.Google Scholar
  11. Black, D. W., Carney, C. P., Peloso, P. M., Woolson, R. F., Schwartz, D. A., Voelker, M. D. et al. (2004). Gulf War veterans with anxiety: prevalence, comorbidity, and risk factors. Epidemiology, 15(2), 135–142.Google Scholar
  12. Blanchard, D. C., Griebel, G., & Blanchard, R. J. (2001). Mouse defensive behaviors: Pharmacological and behavioral assays for anxiety and panic. Neuroscience and Biobehavioral Reviews, 25, 205–218.PubMedCrossRefGoogle Scholar
  13. Bondolfi, L., Calhoun, M., Ermini, F., Kuhn, H. G., Wiederhold, K. H., Walker, L., et al. (2002). Amyloid-associated neuron loss and gliogenesis in the neocortex of amyloid precursor protein transgenic mice. Journal of Neuro Science, 22, 515–522.Google Scholar
  14. Carter, S. F., Schöll, M., Almkvist, O., Wall, A., Engler, H., Långström, B., et al. (2012). Evidence for astrocytosis in prodromal alzheimer disease provided by 11C-deuterium-L-deprenyl: A multitracer PET paradigm combining 11C-Pittsburgh compound B and 18F-FDG. Journal of Nuclear Medicine, 53(1), 37–46.PubMedCrossRefGoogle Scholar
  15. Corbel, V., Stankiewicz, M., Bonnet, J., Grolleau, F., Hougard, J. M., & Lapied, B. (2006). Synergism between insecticides permethrin and propoxur occurs through activation of presynaptic muscarinic negative feedback of acetylcholine release in the insect central nervous system. Neurotoxicology, 27, 508–519.PubMedCrossRefGoogle Scholar
  16. Corbel, V., Stankiewicz, M., Pennetier, C., Fournier, D., Stojan, J., Girard, E., et al. (2009). Evidence for inhibition of cholinesterases in insect and mammalian nervous systems by the insect repellent deet. BMC Biology, 7, 47.PubMedCrossRefGoogle Scholar
  17. David, A. S., Farrin, L., Hull, L., Unwin, C., Wessely, S., & Wykes, T. (2002). Cognitive functioning and disturbances of mood in UK veterans of the Persian Gulf War: A comparative study. Psychological Medicine, 32, 1357–1370.PubMedCrossRefGoogle Scholar
  18. De Keyser, J., Mostert, J. P., & Koch, M. W. (2008). Dysfunctional astrocytes as key players in the pathogenesis of central nervous system disorders. Journal of Neurological Sciences, 267, 3–16.CrossRefGoogle Scholar
  19. Faul, F., Erdfelder, E., Lang, A. G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175–191.PubMedCrossRefGoogle Scholar
  20. Folch, J., Lees, M., & Sloane Stanely, G. H. (1957). A simple method for the isolation and purification of total lipides from animal tissues. Journal of Biological Chemistry, 226(1), 497–509.PubMedGoogle Scholar
  21. Gallegos, C. E., Pediconi, M. F., & Barrantes, F. J. (2008). Ceramides modulate cell-surface acetylcholine receptor levels. Biochimica et Biophysica Acta, 1778(4), 917–930.PubMedCrossRefGoogle Scholar
  22. Golomb, B. A. (2008). Acetylcholinesterase inhibitors and Gulf War illnesses. Proceedings of the National academy of Sciences of the United States of America, 105(11), 4295–4300.PubMedCrossRefGoogle Scholar
  23. Graessler, J., Schwudke, D., Schwarz, P. E., Herzog, R., Shevchenko, A., & Bornstein, S. R. (2009). Top–down lipidomics reveals ether lipid deficiency in blood plasma of hypertensive patients. PLoS One, 4(7), e6261.PubMedCrossRefGoogle Scholar
  24. Gray, G. C., Kaiser, K. S., Hawksworth, A. W., Hall, F. W., & Barrett-Connor, E. (1999). Increased postwar symptoms and psychological morbidity among U.S. Navy Gulf War veterans. American Journal of Tropical Medicine and Hygiene, 60, 758–766.PubMedGoogle Scholar
  25. Haley, R. W., Kurt, T. L., & Hom, J. (1997). Is there a Gulf War Syndrome? Searching for syndromes by factor analysis of symptoms. JAMA, 277(3), 215–222.PubMedCrossRefGoogle Scholar
  26. Hoy, J. B., Cody, B. A., Karlix, J. L., Schmidt, C. J., Tebbett, I. R., Toffollo, S., et al. (1999). Pyridostigmine bromide alters locomotion and thigmotaxis of rats: Gender effects. Pharmacology Biochemistry and Behavior, 63(3), 401–406.CrossRefGoogle Scholar
  27. Hoy, J. B., Cornell, J. A., Karlix, J. L., Tebbett, I. R., & van Haaren, F. (2000). Repeated coadministrations of pyridostigmine bromide, DEET, and permethrin alter locomotor behavior of rats. Veterinary and Human Toxicology, 42, 72–76.PubMedGoogle Scholar
  28. Institute of Medicine. (2010). Gulf war and health, volume 8: Update of health effects of serving in the gulf war. Washington, DC: The National Academies Press.Google Scholar
  29. Kayihan, G. C., Wood, M., Mouzon, B., Ferguson, S., Margenthaler, E., Mathura, V., et al. (2010). Gulf War agents trigger discrete transcriptional changes in human neuronal cells. Toxicology of Environment Chemistry, 92(9).Google Scholar
  30. Lamproglou, I., Barbier, L., Diserbo, M., Fauvelle, F., Fauquette, W., & Amourette, C. (2009). Repeated stress in combination with pyridostigmine part I: Long-term behavioural consequences. Behavioural Brain Research, 197, 301–310.PubMedCrossRefGoogle Scholar
  31. Li, B., Mahan, C. M., Kang, H. K., Eisen, S. A., & Engel, C. C. (2011). Longitudinal health study of US 1991 Gulf War veterans: Changes in health status at 10-year follow-up. American Journal of Epidemiology, 174(7), 761–768.PubMedCrossRefGoogle Scholar
  32. Liu, P., Aslan, S., Li, X., Buhner, D. M., Spence, J. S., Briggs, R. W., et al. (2011). Perfusion deficit to cholinergic challenge in veterans with Gulf War Illness. Neurotoxicology, 32(2), 242–246.PubMedCrossRefGoogle Scholar
  33. Katz. (2006). Multivariable analysis, a practical guide. Cambridge: Cambridge University Press.Google Scholar
  34. Moore, S. A., Yoder, E., Murphy, S., Dutton, G. R., & Spector, A. A. (1991). Astrocytes, not neurons, produce docosahexaenoic acid (22:6 omega-3) and arachidonic acid (20:4 omega-6). Journal of Neurochemistry, 56(2), 518–524.PubMedCrossRefGoogle Scholar
  35. Patil, S. S., Sunyer, B., Höger, H., & Lubec, G. (2009). Evaluation of spatial memory of C57BL/6 J and CD1 mice in the Barnes maze, the Multiple T-maze and in the Morris water maze. Behavioural Brain Research, 198(1), 58–68.PubMedCrossRefGoogle Scholar
  36. Pellegrino, M., Steinbach, N., Stensmyr, M. C., Hansson, B. S., & Vosshall, L. B. (2011). A natural polymorphism alters odour and DEET sensitivity in an insect odorant receptor. Nature, 478(7370), 511–514.PubMedCrossRefGoogle Scholar
  37. Pope, C., Karanth, S., & Liu, J. (2005). Pharmacology and toxicology of cholinesterase inhibitors: Uses and misuses of a common mechanism of action. Environmental Toxicology and Pharmacology, 19(3), 433–446.PubMedCrossRefGoogle Scholar
  38. Rappley, I., Myers, D. S., Milne, S. B., Ivanova, P. T., Lavoie, M. J., Brown, H. A., et al. (2009). Lipidomic profiling in mouse brain reveals differences between ages and genders, with smaller changes associated with alpha-synuclein genotype. Journal of Neurochemistry, 111(1), 15–25.PubMedCrossRefGoogle Scholar
  39. Ray, D. E., & Fry, J. R. (2006). A reassessment of the neurotoxicity of pyrethroid insecticides. Pharmacology & Therapeutics, 111(1), 174–193.CrossRefGoogle Scholar
  40. Rona, R. J., Fear, N. T., Hull, L., Wessely, S. (2007). Women in novel occupational roles: mental health trends in the UK Armed Forces. International Journal of Epidemiology, 36(2), 319–326.Google Scholar
  41. Shetty, et al. (2010). Neural stem cell dysfunction and its implications on memory and mood functions in a rat model of Gulf War illness. Society for neuroscience annual meeting.Google Scholar
  42. Singh, A., & Prasad, R. (2011). Comparative lipidomics of azole sensitive and resistant clinical isolates of Candida albicans reveals unexpected diversity in molecular lipid imprints. PLoS One, 6(4), e19266.PubMedCrossRefGoogle Scholar
  43. Somani, S. M., Husain, K., Asha, T., & Helfert, R. (2000). Interactive and delayed effects of pyridostigmine and physical stress on biochemical and histological changes in peripheral tissues of mice. Journal of Applied Toxicology, 20(4), 327–334.PubMedCrossRefGoogle Scholar
  44. Stanford, S. C. (2007). The open field test: Reinventing the wheel. Journal of Psychopharmacology, 21, 134–135.PubMedCrossRefGoogle Scholar
  45. Steele, L. (2000). Prevalence and patterns of Gulf War Illness in Kansas veterans: Association of symptoms with characteristics of person, place, and time of military service. American Journal of Epidemiology, 152, 992–1002.PubMedCrossRefGoogle Scholar
  46. Steele, L., Sastre, A., Gerkovich, M. M., & Cook, M. R. (2012). Complex factors in the etiology of Gulf War Illness: Wartime exposures and risk factors in veteran subgroups. Environment Health Perspective, 120(1), 112–118.CrossRefGoogle Scholar
  47. Toomey, R., Alpern, R., Vasterling, J. J., Baker, D. G., Reda, D. J., Lyons, M. J., et al. (2009). Neuropsychological functioning of U.S. Gulf War veterans 10 years after the war. Journal of the International Neuropsychological Society, 15, 717–729.PubMedCrossRefGoogle Scholar
  48. Zhang, D., Hu, X., Qian, L., O’Callaghan, J. P., & Hong, J. S. (2010). Astrogliosis in CNS pathologies: Is there a role for microglia? Molecular Neurobiology, 41(2–3), 232–241.PubMedCrossRefGoogle Scholar
  49. Zhou, Z., Marepally, S. R., Nune, D. S., Pallakollu, P., Ragan, G., Roth, M. R., et al. (2011). LipidomeDB data calculation environment: Online processing of direct-infusion mass spectral data for lipid profiles. Lipids, 46(9), 879–884.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Laila Abdullah
    • 1
  • James E. Evans
    • 1
  • Alex Bishop
    • 1
  • Jon M. Reed
    • 1
  • Gogce Crynen
    • 1
  • John Phillips
    • 1
  • Robert Pelot
    • 1
  • Myles A. Mullan
    • 1
  • Austin Ferro
    • 1
  • Christopher M. Mullan
    • 1
  • Michael J. Mullan
    • 1
  • Ghania Ait-Ghezala
    • 1
  • Fiona C. Crawford
    • 1
  1. 1.Roskamp InstituteSarasotaUSA

Personalised recommendations