Advertisement

NeuroMolecular Medicine

, Volume 14, Issue 4, pp 303–316 | Cite as

Functional Differences of miR-125b on the Invasion of Primary Glioblastoma CD133-Negative Cells and CD133-Positive Cells

  • Lei ShiEmail author
  • Yi Wan
  • Guan Sun
  • Xiaoyan Gu
  • Chunfa Qian
  • Wei Yan
  • Shuguang Zhang
  • Tianhong Pan
  • Zhimin WangEmail author
  • Yongping YouEmail author
Original Paper

Abstract

MicroRNAs (miRNAs) are small noncoding RNAs whose function as modulators of gene expression is crucial for the proper control of cell development, differentiation, and homeostasis. The total number and composition of miRNAs expressed per cell at different stages of development varies widely, and the same miRNA may function differently at different stages of development. In this prospective study, we evaluated the function of miR-125b at different developmental stages of glioblastoma cells, such as primary glioblastoma cells and the corresponding stem cells. CD133 is an important surface marker in glioblastoma stem cells. We found that the upregulation of miR-125b had no effects on the invasion of primary glioblastoma CD133-negative cells but that it could inhibit the invasion of corresponding CD133-positive cells; however, the downregulation of miR-125b also had no effects on the invasion of primary glioblastoma CD133-negative cells but promoted the invasion of CD133-positive cells. Further research into the underlying mechanism demonstrated that the effects of miR-125b on the invasion of glioblastoma CD133-positive cells were associated with the alteration of the expression of MMPs (MMP-2 and MMP-9) and corresponding inhibitors (RECK and TIMP3). Our results demonstrate that miR-125b expression plays an essential role in the invasion of glioblastoma CD133-positive cells but not CD133-negative cells. Therefore, miR-125b may represent a novel target for therapy targeting the invasion of glioblastoma stem cells in the future.

Keywords

MicroRNA Glioblastoma Stem cells 

Notes

Acknowledgments

This work was supported by the China Natural Science Foundation (81000963, 81072078, and 30872657), Jiangsu Province’s 333 Talent Program (BRA2011046), Jiangsu Province’s Natural Science Foundation (BK2008475, 2009444 and 2010580), the Program for Development of Innovative Research Team in the First Affiliated Hospital of NJMU, the Priority Academic Program Development of Jiangsu Higher Education Institutions, the Kunshan Social Development Foundation (Grant Number: KS1006, KS1009), and the Suzhou Social Development Foundation (SYS201063).

Conflict of interest

All authors have declared the sources of research funding for this manuscript and have no financial or other contractual agreements that might cause (or be perceived as causes of) conflicts of interest.

References

  1. Blázquez, C., Salazar, M., Carracedo, A., Lorente, M., Egia, A., González-Feria, L., et al. (2008). Cannabinoids inhibit glioma cell invasion by down-regulating matrix metalloproteinase-2 expression. Cancer Research, 68, 1945–1952.PubMedCrossRefGoogle Scholar
  2. Cairo, S., Wang, Y., de Reyniès, A., Duroure, K., Dahan, J., Redon, M., et al. (2010). Stem cell-like micro-RNA signature driven by Myc in aggressive liver cancer. PNAS, 107, 20471–20476.PubMedCrossRefGoogle Scholar
  3. Cao, Y., Lathia, J. D., Eyler, C. E., Wu, Q., Li, Z., Wang, H., et al. (2010). Erythropoietin receptor signaling through stat3 is required for glioma stem cell maintenance. Genes & Cancer, 1, 50–61.CrossRefGoogle Scholar
  4. Chan, J. A., Krichevsky, A. M., & Kosik, K. S. (2005). MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Research, 65, 6029–6033.PubMedCrossRefGoogle Scholar
  5. Chen, C., Ridzon, D. A., Broomer, A. J., Zhou, Z., Lee, D. H., Nguyen, J. T., et al. (2005). Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Research, 33, e179.PubMedCrossRefGoogle Scholar
  6. Cheng, L., Wu, Q., Guryanova, O. A., Huang, Z., Huang, Q., Rich, J. N., et al. (2011). Elevated invasive potential of glioblastoma stem cells. Biochemical and Biophysical Research Communications, 406, 643–648.PubMedCrossRefGoogle Scholar
  7. Ciafre, S. A., Galardi, S., Mangiola, A., Ferracin, M., Liu, C. G., Sabatino, G., et al. (2005). Extensive modulation of a set of microRNAs in primary glioblastoma. Biochemical and Biophysical Research Communications, 334, 1351–1358.PubMedCrossRefGoogle Scholar
  8. Darling, J. L. (1990). The in vitro biology of human brain tumors. In D. G. T. Thomas (Ed.), Neuro-oncology: Primary malignant brain tumors (pp. 1–25). Baltimore Md: Johns Hopkins University Press.Google Scholar
  9. Gabriely, G., Wurdinger, T., Kesari, S., Esau, C. C., Burchard, J., Linsley, P. S., et al. (2008). MicroRNA 21 promotes glioma invasion by targeting matrix metalloproteinase regulators. Molecular and Cellular Biology, 28, 5369–5380.PubMedCrossRefGoogle Scholar
  10. Hatfield, S. D., Shcherbata, H. R., Fischer, K. A., Nakahara, K., Carthew, R. W., & Ruohola-Baker, H. (2005). Stem cell division is regulated by the microRNA pathway. Nature, 435, 974–978.PubMedCrossRefGoogle Scholar
  11. Johnson, S. M., Grosshans, H., Shingara, J., Byrom, M., Jarvis, R., Cheng, A., et al. (2005). RAS is regulated by the let-7 microRNA family. Cell, 120, 635–647.PubMedCrossRefGoogle Scholar
  12. Kassiri, Z., Oudit, G. Y., Kandalam, V., Awad, A., Wang, X., Ziou, X., et al. (2009). Loss of TIMP3 enhances interstitial nephritis and fibrosis. Journal of the American Society of Nephrology, 20, 1223–1235.PubMedCrossRefGoogle Scholar
  13. Kelly, P. N., Dakic, A., Adams, J. M., Nutt, S. L., & Strasser, A. (2007). Tumor growth need not be driven by rare cancer stem cells. Science, 317, 337.PubMedCrossRefGoogle Scholar
  14. Kuhn, D. E., Nuovo, G. J., Martin, M. M., Malana, G. E., Pleister, A. P., Jiang, J., et al. (2008). Human chromosome 21-derived miRNAs are overexpressed in down syndrome brains and hearts. Biochemical and Biophysical Research Communications, 370, 473–477.PubMedCrossRefGoogle Scholar
  15. Lee, Y. S., Kim, H. K., Chung, S., Kim, K., & Dutta, A. (2005). Depletion of human micro-RNA miR-125b reveals that it is critical for the proliferation of differentiated cells but not for the down-regulation of putative targets during differentiation. Journal of Biological Chemistry, 280, 16635–16641.PubMedCrossRefGoogle Scholar
  16. Liu, L. T., Chang, H. C., Chiang, L. C., & Hung, W. C. (2003). Histone deacetylase inhibitor up-regulates RECK to inhibit MMP-2 activation and cancer cell invasion. Cancer Research, 63, 3069–3072.PubMedGoogle Scholar
  17. Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-Delta Delta C(T)) Method. Methods, 25, 402–408.PubMedCrossRefGoogle Scholar
  18. Nakano, I., & Saya, H. (2010). Cancer stem cells in malignant glioma-the mechanism of cancer initiation and the therapeutic development. No Shinkei Geka, 38, 879–889.PubMedGoogle Scholar
  19. Nelson, P. T., Baldwin, D. A., Kloosterman, W. P., Kauppinen, S., Plasterk, R. H. A., & Mourelatos, Z. (2005). RAKE and LNA-ISH reveal microRNA expression and localization in archival human brain. RNA, 12, 187–191.PubMedCrossRefGoogle Scholar
  20. Pan, T. H., Wang, Y. Y., Zhang, S. G., Zhang, J. X., Li, R., Yan, W., et al. (2011). Research on the effects of PIAS3 expression on the invasion of glioma TJ905 cells. Zhonghua Wai Ke Za Zhi, 49, 440–444.PubMedGoogle Scholar
  21. Pek, J. W., Lim, A. K., & Kai, T. (2009). Drosophila maelstrom ensures proper germline stem cell lineage differentiation by repressing microRNA-7. Developmental Cell, 17, 417–424.PubMedCrossRefGoogle Scholar
  22. Shi, L., Cheng, Z., Zhang, J., Li, R., Zhao, P., Fu, Z., et al. (2008). hsa-mir-181a and hsa-mir-181b function as tumor suppressors in human glioma cells. Brain Research, 1236, 185–193.PubMedCrossRefGoogle Scholar
  23. Shi, L., Zhang, S., Feng, K., Wu, F., Wan, Y., Wang, Z., et al. (2012). MicroRNA-125b-2 confers human glioblastoma stem cells resistance to temozolomide through the mitochondrial pathway of apoptosis. International Journal of Oncology, 40, 119–129.PubMedGoogle Scholar
  24. Shi, L., Zhang, J., Pan, T., Zhou, J., Gong, W., Liu, N., et al. (2010). MiR-125b is critical for the suppression of human U251 glioma stem cell proliferation. Brain Research, 1312, 120–126.PubMedCrossRefGoogle Scholar
  25. Singh, S. K., Hawkins, C., Clarke, I. D., Squire, J. A., Bayani, J., Hide, T., et al. (2004). Identification of human brain tumour initiating cells. Nature, 432, 396–401.PubMedCrossRefGoogle Scholar
  26. Smirnova, L., Gräfe, A., Seiler, A., Schumacher, S., Nitsch, R., & Wulczyn, F. G. (2005). Regulation of miRNA expression during neural cell specification. European Journal of Neuroscience, 21, 1469–1477.PubMedCrossRefGoogle Scholar
  27. Stupp, R., & Hegi, M. E. (2007). Targeting brain-tumor stem cells. Nature Biotechnology, 25, 193–194.PubMedCrossRefGoogle Scholar
  28. Stupp, R., Tonn, J. C., Brada, M., & Pentheroudakis, G. (2010). High-grade malignant glioma: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Annals of Oncology, 21, v190–v193.PubMedCrossRefGoogle Scholar
  29. Vescovi, A. L., Galli, R., & Reynolds, B. A. (2006). Brain tumour stem cells. Nature Reviews Cancer, 6, 425–436.PubMedCrossRefGoogle Scholar
  30. Vlashi, E., Lagadec, C., Vergnes, L., Matsutani, T., Masui, K., Poulou, M., et al. (2011). Metabolic state of glioma stem cells and nontumorigenic cells. PNAS, 108, 16062–16067.PubMedCrossRefGoogle Scholar
  31. Xia, H. F., He, T. Z., Liu, C. M., Cui, Y., Song, P. P., Jin, X. H., et al. (2009a). MiR-125b expression affects the proliferation and apoptosis of human glioma cells by targeting bmf. Cellular Physiology and Biochemistry, 23, 347–358.PubMedCrossRefGoogle Scholar
  32. Xia, H., Qi, Y., Ng, S. S., Chen, X., Li, D., Chen, S., et al. (2009b). microRNA-146b inhibits glioma cell migration and invasion by targeting MMPs. Brain Research, 1269, 158–165.PubMedCrossRefGoogle Scholar
  33. Zhang, D., Jing, Z., Qiu, B., Wu, A., & Wang, Y. (2011). Temozolomide decreases invasion of glioma stem cells by down-regulating TGF-β2. Oncology Reports, 26, 901–908.PubMedGoogle Scholar
  34. Zwaka, T. P., & Thomson, J. A. (2005). Differentiation of human embryonic stem cells occurs through symmetric cell division. Stem Cells, 23, 146–149.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of NeurosurgeryThe First People’s Hospital of Kunshan Affiliated with Jiangsu UniversitySuzhouPeople’s Republic of China
  2. 2.Department of NeurosurgerySuzhou Kowloon Hospital Affiliated with Shanghai Jiao Tong University School of MedicineSuzhouPeople’s Republic of China
  3. 3.Department of Respiratory MedicineThe 454th Hospital of Chinese PLANanjingChina
  4. 4.Department of NeurosurgeryFourth Affiliated Yancheng Hospital of Nantong UniversityYanchengPeople’s Republic of China
  5. 5.Department of NeurosurgeryAffiliated Brain Hospital of Nanjing Medical UniversityNanjingPeople’s Republic of China
  6. 6.Department of NeurosurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingPeople’s Republic of China

Personalised recommendations