NeuroMolecular Medicine

, Volume 14, Issue 3, pp 139–153 | Cite as

Hypothalamic Control of Sleep in Aging

  • Asya RollsEmail author
Review Paper


The timing of sleep and its duration are affected by circadian and homeostatic factors. Physiological and behavioral attributes such as the duration of previous wake period, food availability, temperature, and stress all affect sleep and its quality. As many of these physiological inputs are integrated in the hypothalamus, it is not surprising that this brain structure plays a crucial role in the regulation of sleep. I will discuss this role also in the context of aging, which is associated with changes in both hypothalamic function and the composition of sleep.


Sleep Hypothalamus Aging Hypocretin 



I would like to thank Prof. Luis de Lecea and Megha Makam for their comments and EMBO and the NARSAD for funding.


  1. Acuna-Goycolea, C., Tamamaki, N., et al. (2005). Mechanisms of neuropeptide Y, peptide YY, and pancreatic polypeptide inhibition of identified green fluorescent protein-expressing GABA neurons in the hypothalamic neuroendocrine arcuate nucleus. Journal of Neuroscience, 25(32), 7406–7419.PubMedCrossRefGoogle Scholar
  2. Adamantidis, A., Salvert, D., et al. (2008). Sleep architecture of the melanin-concentrating hormone receptor 1-knockout mice. European Journal of Neuroscience, 27(7), 1793–1800.PubMedCrossRefGoogle Scholar
  3. Adamantidis, A. R., Zhang, F., et al. (2007). Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature, 450(7168), 420–424.PubMedCrossRefGoogle Scholar
  4. Allen, L. S., Hines, M., et al. (1989). Two sexually dimorphic cell groups in the human brain. Journal of Neuroscience, 9(2), 497–506.PubMedGoogle Scholar
  5. Anaclet, C., Parmentier, R., et al. (2009). Orexin/hypocretin and histamine: Distinct roles in the control of wakefulness demonstrated using knock-out mouse models. Journal of Neuroscience, 29(46), 14423–14438.PubMedCrossRefGoogle Scholar
  6. Aujard, F., Dkhissi-Benyahya, O., et al. (2001). Artificially accelerated aging by shortened photoperiod alters early gene expression (Fos) in the suprachiasmatic nucleus and sulfatoxymelatonin excretion in a small primate, Microcebus murinus. Neuroscience, 105(2), 403–412.PubMedCrossRefGoogle Scholar
  7. Baldo, B. A., Gual-Bonilla, L., et al. (2004). Activation of a subpopulation of orexin/hypocretin-containing hypothalamic neurons by GABAA receptor-mediated inhibition of the nucleus accumbens shell, but not by exposure to a novel environment. European Journal of Neuroscience, 19(2), 376–386.PubMedCrossRefGoogle Scholar
  8. Bayer, L., Eggermann, E., et al. (2005). Opposite effects of noradrenaline and acetylcholine upon hypocretin/orexin versus melanin concentrating hormone neurons in rat hypothalamic slices. Neuroscience, 130(4), 807–811.PubMedCrossRefGoogle Scholar
  9. Benington, J. H., Kodali, S. K., et al. (1995). Stimulation of A1 adenosine receptors mimics the electroencephalographic effects of sleep deprivation. Brain Research, 692(1–2), 79–85.PubMedCrossRefGoogle Scholar
  10. Biello, S. M. (2009). Circadian clock resetting in the mouse changes with age. Age (Dordr), 31(4), 293–303.CrossRefGoogle Scholar
  11. Blanton, C. A., Horwitz, B. A., et al. (2001). Reduced feeding response to neuropeptide Y in senescent Fischer 344 rats. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 280(4), R1052–R1060.PubMedGoogle Scholar
  12. Bliwise, D. L., Bliwise, N. G., et al. (1988). Sleep apnea and mortality in an aged cohort. American Journal of Public Health, 78(5), 544–547.PubMedCrossRefGoogle Scholar
  13. Broberger, C., De Lecea, L., et al. (1998). Hypocretin/orexin- and melanin-concentrating hormone-expressing cells form distinct populations in the rodent lateral hypothalamus: Relationship to the neuropeptide Y and agouti gene-related protein systems. The Journal of Comparative Neurology, 402(4), 460–474.PubMedCrossRefGoogle Scholar
  14. Bushey, D., Huber, R., et al. (2007). Drosophila Hyperkinetic mutants have reduced sleep and impaired memory. Journal of Neuroscience, 27(20), 5384–5393.PubMedCrossRefGoogle Scholar
  15. Buysse, D. J. (2004). Insomnia, depression and aging. Assessing sleep and mood interactions in older adults. Geriatrics, 59(2), 47–51; quiz 52.Google Scholar
  16. Buysse, D. J., Browman, K. E., et al. (1992). Napping and 24-hour sleep/wake patterns in healthy elderly and young adults. Journal of the American Geriatrics Society, 40(8), 779–786.PubMedGoogle Scholar
  17. Byne, W., Lasco, M. S., et al. (2000). The interstitial nuclei of the human anterior hypothalamus: An investigation of sexual variation in volume and cell size, number and density. Brain Research, 856(1–2), 254–258.PubMedCrossRefGoogle Scholar
  18. Cai, A., Scarbrough, K., et al. (1997). Fetal grafts containing suprachiasmatic nuclei restore the diurnal rhythm of CRH and POMC mRNA in aging rats. American Journal of Physiology, 273(5 Pt 2), R1764–R1770.PubMedGoogle Scholar
  19. Cameron, A. A., Khan, I. A., et al. (1995). The efferent projections of the periaqueductal gray in the rat: A Phaseolus vulgaris-leucoagglutinin study. I. Ascending projections. The Journal of Comparative Neurology, 351(4), 568–584.PubMedCrossRefGoogle Scholar
  20. Carter, M. E., Adamantidis, A., et al. (2009). Sleep homeostasis modulates hypocretin-mediated sleep-to-wake transitions. Journal of Neuroscience, 29(35), 10939–10949.PubMedCrossRefGoogle Scholar
  21. Chemelli, R. M., Willie, J. T., et al. (1999). Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell, 98(4), 437–451.PubMedCrossRefGoogle Scholar
  22. Chester, J. G., & Rudolph, J. L. (2011). Vital signs in older patients: Age-related changes. Journal of the American Medical Directors Association, 12(5), 337–343.PubMedCrossRefGoogle Scholar
  23. Chou, T. C., Bjorkum, A. A., et al. (2002). Afferents to the ventrolateral preoptic nucleus. Journal of Neuroscience, 22(3), 977–990.PubMedGoogle Scholar
  24. Chou, T. C., Scammell, T. E., et al. (2003). Critical role of dorsomedial hypothalamic nucleus in a wide range of behavioral circadian rhythms. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 23(33), 10691–10702.Google Scholar
  25. Cirelli, C., Bushey, D., et al. (2005). Reduced sleep in Drosophila Shaker mutants. Nature, 434(7037), 1087–1092.PubMedCrossRefGoogle Scholar
  26. Cohen, I. R., & Wise, P. M. (1988). Age-related changes in the diurnal rhythm of serotonin turnover in microdissected brain areas of estradiol-treated ovariectomized rats. Endocrinology, 122(6), 2626–2633.PubMedCrossRefGoogle Scholar
  27. Czeisler, C. A., Allan, J. S., et al. (1986). Bright light resets the human circadian pacemaker independent of the timing of the sleep–wake cycle. Science, 233(4764), 667–671.PubMedCrossRefGoogle Scholar
  28. de Lecea, L., Kilduff, T. S., et al. (1998). The hypocretins: Hypothalamus-specific peptides with neuroexcitatory activity. Proceedings of the National Academy of Sciences of the USA, 95(1), 322–327.PubMedCrossRefGoogle Scholar
  29. Diekelmann, S., & Born, J. (2010). The memory function of sleep. Nature Reviews Neuroscience, 11(2), 114–126.PubMedGoogle Scholar
  30. Diniz Behn, C. G., Klerman, E. B., et al. (2010). Abnormal sleep/wake dynamics in orexin knockout mice. Sleep, 33(3), 297–306.PubMedGoogle Scholar
  31. Duffy, J. F., & Czeisler, C. A. (2002). Age-related change in the relationship between circadian period, circadian phase, and diurnal preference in humans. Neuroscience Letters, 318(3), 117–120.PubMedCrossRefGoogle Scholar
  32. Duncan, M. J., Herron, J. M., et al. (2001). Aging selectively suppresses vasoactive intestinal peptide messenger RNA expression in the suprachiasmatic nucleus of the Syrian hamster. Brain Research. Molecular Brain Research, 87(2), 196–203.PubMedCrossRefGoogle Scholar
  33. Elias, C. F., Saper, C. B., et al. (1998). Chemically defined projections linking the mediobasal hypothalamus and the lateral hypothalamic area. The Journal of Comparative Neurology, 402(4), 442–459.PubMedCrossRefGoogle Scholar
  34. Ericson, H., Blomqvist, A., et al. (1991). Origin of neuronal inputs to the region of the tuberomammillary nucleus of the rat brain. The Journal of Comparative Neurology, 311(1), 45–64.PubMedCrossRefGoogle Scholar
  35. Eriksson, K. S., Sergeeva, O., et al. (2001). Orexin/hypocretin excites the histaminergic neurons of the tuberomammillary nucleus. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 21(23), 9273–9279.Google Scholar
  36. Eriksson, K. S., Sergeeva, O. A., et al. (2004). Orexin (hypocretin)/dynorphin neurons control GABAergic inputs to tuberomammillary neurons. European Journal of Neuroscience, 19(5), 1278–1284.PubMedCrossRefGoogle Scholar
  37. Everson, C. A., Bergmann, B. M., et al. (1989). Sleep deprivation in the rat: III. Total sleep deprivation. Sleep, 12(1), 13–21.PubMedGoogle Scholar
  38. Fellin, T., Halassa, M. M., et al. (2009). Endogenous nonneuronal modulators of synaptic transmission control cortical slow oscillations in vivo. Proceedings of the National Academy of Sciences of the USA, 106(35), 15037–15042.PubMedCrossRefGoogle Scholar
  39. Fu, L. Y., Acuna-Goycolea, C., et al. (2004). Neuropeptide Y inhibits hypocretin/orexin neurons by multiple presynaptic and postsynaptic mechanisms: Tonic depression of the hypothalamic arousal system. Journal of Neuroscience, 24(40), 8741–8751.PubMedCrossRefGoogle Scholar
  40. Gallopin, T., Fort, P., et al. (2000). Identification of sleep-promoting neurons in vitro. Nature, 404(6781), 992–995.PubMedCrossRefGoogle Scholar
  41. Gaus, S. E., Strecker, R. E., et al. (2002). Ventrolateral preoptic nucleus contains sleep-active, galaninergic neurons in multiple mammalian species. Neuroscience, 115(1), 285–294.PubMedCrossRefGoogle Scholar
  42. Gerashchenko, D., Wisor, J. P., et al. (2008). Identification of a population of sleep-active cerebral cortex neurons. Proceedings of the National Academy of Sciences of the USA, 105(29), 10227–10232.PubMedCrossRefGoogle Scholar
  43. Gong, H., McGinty, D., et al. (2004). Activation of c-fos in GABAergic neurones in the preoptic area during sleep and in response to sleep deprivation. Journal of Physiology, 556(Pt 3), 935–946.PubMedCrossRefGoogle Scholar
  44. Greco, M. A., Fuller, P. M., et al. (2008). Opioidergic projections to sleep-active neurons in the ventrolateral preoptic nucleus. Brain Research, 1245, 96–107.PubMedCrossRefGoogle Scholar
  45. Gvilia, I., Angara, C., et al. (2005). Different neuronal populations of the rat median preoptic nucleus express c-fos during sleep and in response to hypertonic saline or angiotensin-II. Journal of Physiology, 569(Pt 2), 587–599.PubMedCrossRefGoogle Scholar
  46. Haas, H. L., & Reiner, P. B. (1988). Membrane properties of histaminergic tuberomammillary neurones of the rat hypothalamus in vitro. Journal of Physiology, 399, 633–646.PubMedGoogle Scholar
  47. Haas, H. L., Sergeeva, O. A., et al. (2008). Histamine in the nervous system. Physiological Reviews, 88(3), 1183–1241.PubMedCrossRefGoogle Scholar
  48. Halassa, M. M., Florian, C., et al. (2009). Astrocytic modulation of sleep homeostasis and cognitive consequences of sleep loss. Neuron, 61(2), 213–219.PubMedCrossRefGoogle Scholar
  49. Hallanger, A. E., Levey, A. I., et al. (1987). The origins of cholinergic and other subcortical afferents to the thalamus in the rat. The Journal of Comparative Neurology, 262(1), 105–124.PubMedCrossRefGoogle Scholar
  50. Hassani, O. K., Henny, P., et al. (2010). GABAergic neurons intermingled with orexin and MCH neurons in the lateral hypothalamus discharge maximally during sleep. European Journal of Neuroscience, 32(3), 448–457.PubMedCrossRefGoogle Scholar
  51. Hassani, O. K., Lee, M. G., et al. (2009a). Discharge profiles of identified GABAergic in comparison to cholinergic and putative glutamatergic basal forebrain neurons across the sleep–wake cycle. Journal of Neuroscience, 29(38), 11828–11840.PubMedCrossRefGoogle Scholar
  52. Hassani, O. K., Lee, M. G., et al. (2009b). Melanin-concentrating hormone neurons discharge in a reciprocal manner to orexin neurons across the sleep–wake cycle. Proceedings of the National Academy of Sciences of the USA, 106(7), 2418–2422.PubMedCrossRefGoogle Scholar
  53. Horvath, T. L., Diano, S., et al. (1999). Synaptic interaction between hypocretin (orexin) and neuropeptide Y cells in the rodent and primate hypothalamus: a novel circuit implicated in metabolic and endocrine regulations. Journal of Neuroscience, 19(3), 1072–1087.PubMedGoogle Scholar
  54. Hoshino, K. (1996). Food deprivation and hypothermia in desynchronized sleep-deprived rats. Brazilian Journal of Medical and Biological Research (Revista brasileira de pesquisas medicas e biologicas/Sociedade Brasileira de Biofisica … [et al.]), 29(1), 41–46.Google Scholar
  55. Ishizuka, T., Yamamoto, Y., et al. (2002). The effect of orexin-A and -B on the histamine release in the anterior hypothalamus in rats. Neuroscience Letters, 323(2), 93–96.PubMedCrossRefGoogle Scholar
  56. Iwanaga, K., Yamada, M., et al. (1996). A newly discovered age-related synaptic change in the human locus ceruleus: Morphometric and ultrastructural studies. Acta Neuropathologica, 91(4), 337–342.PubMedCrossRefGoogle Scholar
  57. Jagota, A., & Kalyani, D. (2008). Daily serotonin rhythms in rat brain during postnatal development and aging. Biogerontology, 9(4), 229–234.PubMedCrossRefGoogle Scholar
  58. Jiang, C. H., Tsien, J. Z., et al. (2001). The effects of aging on gene expression in the hypothalamus and cortex of mice. Proceedings of the National Academy of Sciences of the USA, 98(4), 1930–1934.PubMedCrossRefGoogle Scholar
  59. John, J., Wu, M. F., et al. (2004). Cataplexy-active neurons in the hypothalamus: Implications for the role of histamine in sleep and waking behavior. Neuron, 42(4), 619–634.PubMedCrossRefGoogle Scholar
  60. Jones, B. E., & Yang, T. Z. (1985). The efferent projections from the reticular formation and the locus coeruleus studied by anterograde and retrograde axonal transport in the rat. The Journal of Comparative Neurology, 242(1), 56–92.PubMedCrossRefGoogle Scholar
  61. Kallo, I., Kalamatianos, T., et al. (2004). Ageing and the diurnal expression of mRNAs for vasoactive intestinal peptide and for the VPAC2 and PAC1 receptors in the suprachiasmatic nucleus of male rats. Journal of Neuroendocrinology, 16(9), 758–766.PubMedCrossRefGoogle Scholar
  62. Kaneda, T., Makino, S., et al. (2001). Differential neuropeptide responses to starvation with ageing. Journal of Neuroendocrinology, 13(12), 1066–1075.PubMedCrossRefGoogle Scholar
  63. Kawakami, F., Okamura, H., et al. (1997). Loss of day–night differences in VIP mRNA levels in the suprachiasmatic nucleus of aged rats. Neuroscience Letters, 222(2), 99–102.PubMedCrossRefGoogle Scholar
  64. Kessler, B. A., Stanley, E. M., et al. (2011). Age-related loss of orexin/hypocretin neurons. Neuroscience, 178, 82–88.PubMedCrossRefGoogle Scholar
  65. Kmiec, Z. (2010). Central control of food intake in aging. Interdisciplinary Topics in Gerontology, 37, 37–50.PubMedCrossRefGoogle Scholar
  66. Knutson, K. L., & Van Cauter, E. (2008). Associations between sleep loss and increased risk of obesity and diabetes. Annals of the New York Academy of Sciences, 1129, 287–304.PubMedCrossRefGoogle Scholar
  67. Koban, M., & Swinson, K. L. (2005). Chronic REM-sleep deprivation of rats elevates metabolic rate and increases UCP1 gene expression in brown adipose tissue. American Journal of Physiology. Endocrinology and Metabolism, 289(1), E68–E74.PubMedCrossRefGoogle Scholar
  68. Koh, K., Joiner, W. J., et al. (2008). Identification of SLEEPLESS, a sleep-promoting factor. Science, 321(5887), 372–376.PubMedCrossRefGoogle Scholar
  69. Kohler, C., Swanson, L. W., et al. (1985). The cytoarchitecture, histochemistry and projections of the tuberomammillary nucleus in the rat. Neuroscience, 16(1), 85–110.PubMedCrossRefGoogle Scholar
  70. Koyama, Y., & Hayaishi, O. (1994). Firing of neurons in the preoptic/anterior hypothalamic areas in rat: Its possible involvement in slow wave sleep and paradoxical sleep. Neuroscience Research, 19(1), 31–38.PubMedCrossRefGoogle Scholar
  71. Kripke, D. F., Garfinkel, L., et al. (2002). Mortality associated with sleep duration and insomnia. Archives of General Psychiatry, 59(2), 131–136.PubMedCrossRefGoogle Scholar
  72. Krout, K. E., Belzer, R. E., et al. (2002). Brainstem projections to midline and intralaminar thalamic nuclei of the rat. The Journal of Comparative Neurology, 448(1), 53–101.PubMedCrossRefGoogle Scholar
  73. Krout, K. E., & Loewy, A. D. (2000). Periaqueductal gray matter projections to midline and intralaminar thalamic nuclei of the rat. The Journal of Comparative Neurology, 424(1), 111–141.PubMedCrossRefGoogle Scholar
  74. Lee, M. G., Hassani, O. K., et al. (2005a). Discharge of identified orexin/hypocretin neurons across the sleep-waking cycle. Journal of Neuroscience, 25(28), 6716–6720.PubMedCrossRefGoogle Scholar
  75. Lee, H. S., Kim, M. A., et al. (2005b). Retrograde double-labeling study of common afferent projections to the dorsal raphe and the nuclear core of the locus coeruleus in the rat. The Journal of Comparative Neurology, 481(2), 179–193.PubMedCrossRefGoogle Scholar
  76. Leproult, R., & Van Cauter, E. (2010). Role of sleep and sleep loss in hormonal release and metabolism. Endocrine Development, 17, 11–21.PubMedCrossRefGoogle Scholar
  77. Lin, J. S. (2000). Brain structures and mechanisms involved in the control of cortical activation and wakefulness, with emphasis on the posterior hypothalamus and histaminergic neurons. Sleep Medicine Reviews, 4(5), 471–503.PubMedCrossRefGoogle Scholar
  78. Lin, J. S., Anaclet, C., et al. (2011). The waking brain: An update. Cellular and Molecular Life Sciences, 68(15), 2499–2512.PubMedCrossRefGoogle Scholar
  79. Lin, L., Faraco, J., et al. (1999). The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell, 98(3), 365–376.PubMedCrossRefGoogle Scholar
  80. Lin, J. S., Hou, Y., et al. (1996). Histaminergic descending inputs to the mesopontine tegmentum and their role in the control of cortical activation and wakefulness in the cat. Journal of Neuroscience, 16(4), 1523–1537.PubMedGoogle Scholar
  81. Lohr, J. B., & Jeste, D. V. (1988). Locus ceruleus morphometry in aging and schizophrenia. Acta Psychiatrica Scandinavica, 77(6), 689–697.PubMedCrossRefGoogle Scholar
  82. Loughlin, S. E., Foote, S. L., et al. (1982). Locus coeruleus projections to cortex: Topography, morphology and collateralization. Brain Research Bulletin, 9(1–6), 287–294.PubMedCrossRefGoogle Scholar
  83. Lu, J., Bjorkum, A. A., et al. (2002). Selective activation of the extended ventrolateral preoptic nucleus during rapid eye movement sleep. Journal of Neuroscience, 22(11), 4568–4576.PubMedGoogle Scholar
  84. Lu, J., Greco, M. A., et al. (2000). Effect of lesions of the ventrolateral preoptic nucleus on NREM and REM sleep. Journal of Neuroscience, 20(10), 3830–3842.PubMedGoogle Scholar
  85. Lu, J., Zhang, Y. H., et al. (2001). Contrasting effects of ibotenate lesions of the paraventricular nucleus and subparaventricular zone on sleep–wake cycle and temperature regulation. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 21(13), 4864–4874.Google Scholar
  86. Ma, X., Zubcevic, L., et al. (2007). Electrical inhibition of identified anorexigenic POMC neurons by orexin/hypocretin. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 27(7), 1529–1533.CrossRefGoogle Scholar
  87. Madeira, M. D., Andrade, J. P., et al. (2000). Hypertrophy of the ageing rat medial preoptic nucleus. Journal of Neurocytology, 29(3), 173–197.PubMedCrossRefGoogle Scholar
  88. Manaye, K. F., McIntire, D. D., et al. (1995). Locus coeruleus cell loss in the aging human brain: A non-random process. The Journal of Comparative Neurology, 358(1), 79–87.PubMedCrossRefGoogle Scholar
  89. Marcus, J. N., Aschkenasi, C. J., et al. (2001). Differential expression of orexin receptors 1 and 2 in the rat brain. The Journal of Comparative Neurology, 435(1), 6–25.PubMedCrossRefGoogle Scholar
  90. Marsh, D. J., Weingarth, D. T., et al. (2002). Melanin-concentrating hormone 1 receptor-deficient mice are lean, hyperactive, and hyperphagic and have altered metabolism. Proceedings of the National Academy of Sciences of the USA, 99(5), 3240–3245.PubMedCrossRefGoogle Scholar
  91. McBride, R. L., & Sutin, J. (1976). Projections of the locus coeruleus and adjacent pontine tegmentum in the cat. The Journal of Comparative Neurology, 165(3), 265–284.PubMedCrossRefGoogle Scholar
  92. Mesas, A. E., Lopez-Garcia, E., et al. (2010). Sleep duration and mortality according to health status in older adults. Journal of the American Geriatrics Society, 58(10), 1870–1877.PubMedCrossRefGoogle Scholar
  93. Mileykovskiy, B. Y., Kiyashchenko, L. I., et al. (2005). Behavioral correlates of activity in identified hypocretin/orexin neurons. Neuron, 46(5), 787–798.PubMedCrossRefGoogle Scholar
  94. Miller, M. A., Kolb, P. E., et al. (1999). Preservation of noradrenergic neurons in the locus ceruleus that coexpress galanin mRNA in Alzheimer’s disease. Journal of Neurochemistry, 73(5), 2028–2036.PubMedGoogle Scholar
  95. Mochizuki, T., Arrigoni, E., et al. (2011). Orexin receptor 2 expression in the posterior hypothalamus rescues sleepiness in narcoleptic mice. Proceedings of the National Academy of Sciences of the USA, 108(11), 4471–4476.PubMedCrossRefGoogle Scholar
  96. Modirrousta, M., Mainville, L., et al. (2004). Gabaergic neurons with alpha2-adrenergic receptors in basal forebrain and preoptic area express c-Fos during sleep. Neuroscience, 129(3), 803–810.PubMedCrossRefGoogle Scholar
  97. Monti, J. M. (1993). Involvement of histamine in the control of the waking state. Life Sciences, 53(17), 1331–1338.PubMedCrossRefGoogle Scholar
  98. Morley, J. E. (2007). The aging gut: physiology. Clinics in Geriatric Medicine, 23(4), 757–767, v–vi.Google Scholar
  99. Moruzzi, G., & Magoun, H. W. (1949). Brain stem reticular formation and activation of the EEG. Electroencephalography and Clinical Neurophysiology, 1(4), 455–473.PubMedGoogle Scholar
  100. Muroya, S., Funahashi, H., et al. (2004). Orexins (hypocretins) directly interact with neuropeptide Y, POMC and glucose-responsive neurons to regulate Ca 2+ signaling in a reciprocal manner to leptin: Orexigenic neuronal pathways in the mediobasal hypothalamus. European Journal of Neuroscience, 19(6), 1524–1534.PubMedCrossRefGoogle Scholar
  101. Nakamura, T. J., Nakamura, W., et al. (2011). Age-related decline in circadian output. Journal of Neuroscience, 31(28), 10201–10205.PubMedCrossRefGoogle Scholar
  102. Nauta, W. J. (1946). Hypothalamic regulation of sleep in rats: An experimental study. Journal of Neurophysiology, 9, 285–316.PubMedGoogle Scholar
  103. Nishino, S., Ripley, B., et al. (2000). Hypocretin (orexin) deficiency in human narcolepsy. Lancet, 355(9197), 39–40.PubMedCrossRefGoogle Scholar
  104. Osorio, R. S., Pirraglia, E., et al. (2011). Greater risk of Alzheimer’s disease in older adults with insomnia. Journal of the American Geriatrics Society, 59(3), 559–562.PubMedCrossRefGoogle Scholar
  105. Panossian, L., Fenik, P., et al. (2011). SIRT1 regulation of wakefulness and senescence-like phenotype in wake neurons. Journal of Neuroscience, 31(11), 4025–4036.PubMedCrossRefGoogle Scholar
  106. Panula, P., Yang, H. Y., et al. (1984). Histamine-containing neurons in the rat hypothalamus. Proceedings of the National Academy of Sciences of the USA, 81(8), 2572–2576.PubMedCrossRefGoogle Scholar
  107. Petervari, E., Soos, S., et al. (2011). Alterations in the peptidergic regulation of energy balance in the course of aging. Current Protein and Peptide Science, 12(4), 316–324.PubMedCrossRefGoogle Scholar
  108. Peyron, C., Sapin, E., et al. (2009). Role of the melanin-concentrating hormone neuropeptide in sleep regulation. Peptides, 30(11), 2052–2059.PubMedCrossRefGoogle Scholar
  109. Peyron, C., Tighe, D. K., et al. (1998). Neurons containing hypocretin (orexin) project to multiple neuronal systems. Journal of Neuroscience, 18(23), 9996–10015.PubMedGoogle Scholar
  110. Piper, D. C., Upton, N., et al. (2000). The novel brain neuropeptide, orexin-A, modulates the sleep–wake cycle of rats. European Journal of Neuroscience, 12(2), 726–730.PubMedCrossRefGoogle Scholar
  111. Porkka-Heiskanen, T., Alanko, L., et al. (2004). The effect of age on prepro-orexin gene expression and contents of orexin A and B in the rat brain. Neurobiology of Aging, 25(2), 231–238.PubMedCrossRefGoogle Scholar
  112. Qiu, M. H., Vetrivelan, R., et al. (2010). Basal ganglia control of sleep–wake behavior and cortical activation. European Journal of Neuroscience, 31(3), 499–507.PubMedCrossRefGoogle Scholar
  113. Qu, D., Ludwig, D. S., et al. (1996). A role for melanin-concentrating hormone in the central regulation of feeding behaviour. Nature, 380(6571), 243–247.PubMedCrossRefGoogle Scholar
  114. Rechtschaffen, A., & Bergmann, B. M. (1995). Sleep deprivation in the rat by the disk-over-water method. Behavioural Brain Research, 69(1–2), 55–63.PubMedCrossRefGoogle Scholar
  115. Rolls, A., Colas, D., et al. (2011). Optogenetic disruption of sleep continuity impairs memory consolidation. Proc Natl Acad Sci USA, 108,13305–13310.Google Scholar
  116. Saito, Y., Cheng, M., et al. (2001). Expression of the melanin-concentrating hormone (MCH) receptor mRNA in the rat brain. The Journal of Comparative Neurology, 435(1), 26–40.PubMedCrossRefGoogle Scholar
  117. Sakurai, T., Amemiya, A., et al. (1998). Orexins and orexin receptors: A family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell, 92(4), 573–585.PubMedCrossRefGoogle Scholar
  118. Sakurai, T., Nagata, R., et al. (2005). Input of orexin/hypocretin neurons revealed by a genetically encoded tracer in mice. Neuron, 46(2), 297–308.PubMedCrossRefGoogle Scholar
  119. Sallanon, M., Denoyer, M., et al. (1989). Long-lasting insomnia induced by preoptic neuron lesions and its transient reversal by muscimol injection into the posterior hypothalamus in the cat. Neuroscience, 32(3), 669–683.PubMedCrossRefGoogle Scholar
  120. Salminen, A., Ojala, J., et al. (2011). Astrocytes in the aging brain express characteristics of senescence-associated secretory phenotype. European Journal of Neuroscience, 34(1), 3–11.PubMedCrossRefGoogle Scholar
  121. Saper, C. B., Cano, G., et al. (2005a). Homeostatic, circadian, and emotional regulation of sleep. The Journal of Comparative Neurology, 493(1), 92–98.PubMedCrossRefGoogle Scholar
  122. Saper, C. B., Chou, T. C., et al. (2001). The sleep switch: hypothalamic control of sleep and wakefulness. Trends in Neurosciences, 24(12), 726–731.PubMedCrossRefGoogle Scholar
  123. Saper, C. B., Fuller, P. M., et al. (2010). Sleep state switching. Neuron, 68(6), 1023–1042.PubMedCrossRefGoogle Scholar
  124. Saper, C. B., Scammell, T. E., et al. (2005b). Hypothalamic regulation of sleep and circadian rhythms. Nature, 437(7063), 1257–1263.PubMedCrossRefGoogle Scholar
  125. Satinoff, E., Li, H., et al. (1993). Do the suprachiasmatic nuclei oscillate in old rats as they do in young ones? American Journal of Physiology, 265(5 Pt 2), R1216–R1222.PubMedGoogle Scholar
  126. Sawai, N., Ueta, Y., et al. (2010). Developmental and aging change of orexin-A and -B immunoreactive neurons in the male rat hypothalamus. Neuroscience Letters, 468(1), 51–55.PubMedCrossRefGoogle Scholar
  127. Seals, D. R., & Esler, M. D. (2000). Human ageing and the sympathoadrenal system. Journal of Physiology, 528(Pt 3), 407–417.PubMedCrossRefGoogle Scholar
  128. Sehgal, A., & Mignot, E. (2011). Genetics of sleep and sleep disorders. Cell, 146(2), 194–207.PubMedCrossRefGoogle Scholar
  129. Senut, M. C., de Bilbao, F., et al. (1989). Age-related loss of galanin-immunoreactive cells in the rat septal area. Neuroscience Letters, 105(3), 257–262.PubMedCrossRefGoogle Scholar
  130. Sherin, J. E., Elmquist, J. K., et al. (1998). Innervation of histaminergic tuberomammillary neurons by GABAergic and galaninergic neurons in the ventrolateral preoptic nucleus of the rat. Journal of Neuroscience, 18(12), 4705–4721.PubMedGoogle Scholar
  131. Sherin, J. E., Shiromani, P. J., et al. (1996). Activation of ventrolateral preoptic neurons during sleep. Science, 271(5246), 216–219.PubMedCrossRefGoogle Scholar
  132. Shimada, M., Tritos, N. A., et al. (1998). Mice lacking melanin-concentrating hormone are hypophagic and lean. Nature, 396(6712), 670–674.PubMedCrossRefGoogle Scholar
  133. Shiromani, P. J., Lu, J., et al. (2000). Compensatory sleep response to 12 h wakefulness in young and old rats. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 278(1), R125–R133.PubMedGoogle Scholar
  134. Sibille, E., Su, J., et al. (2007). Lack of serotonin1B receptor expression leads to age-related motor dysfunction, early onset of brain molecular aging and reduced longevity. Mol Psychiatry, 12(11), 1042–1056, 1975.Google Scholar
  135. Siegel, J. (2004a). Brain mechanisms that control sleep and waking. Die Naturwissenschaften, 91(8), 355–365.PubMedCrossRefGoogle Scholar
  136. Siegel, J. M. (2004b). Hypocretin (orexin): Role in normal behavior and neuropathology. Annual Review of Psychology, 55, 125–148.PubMedCrossRefGoogle Scholar
  137. Silva, A. P., Carvalho, A. P., et al. (2003). Functional interaction between neuropeptide Y receptors and modulation of calcium channels in the rat hippocampus. Neuropharmacology, 44(2), 282–292.PubMedCrossRefGoogle Scholar
  138. Sobel, E., & Corbett, D. (1984). Axonal branching of ventral tegmental and raphe projections to the frontal cortex in the rat. Neuroscience Letters, 48(2), 121–125.PubMedCrossRefGoogle Scholar
  139. Sohn, E. H., Wolden-Hanson, T., et al. (2002). Testosterone (T)-induced changes in arcuate nucleus cocaine-amphetamine-regulated transcript and NPY mRNA are attenuated in old compared to young male brown Norway rats: Contribution of T to age-related changes in cocaine-amphetamine-regulated transcript and NPY gene expression. Endocrinology, 143(3), 954–963.PubMedCrossRefGoogle Scholar
  140. Stamatakis, K. A., & Punjabi, N. M. (2007). Long sleep duration: A risk to health or a marker of risk? Sleep Medicine Reviews, 11(5), 337–339.PubMedCrossRefGoogle Scholar
  141. Steriade, M., & Hobson, J. (1976). Neuronal activity during the sleep-waking cycle. Progress in Neurobiology, 6(3–4), 155–376.PubMedGoogle Scholar
  142. Stevens, D. R., Kuramasu, A., et al. (2004). Alpha 2-adrenergic receptor-mediated presynaptic inhibition of GABAergic IPSPs in rat histaminergic neurons. Neuropharmacology, 46(7), 1018–1022.PubMedCrossRefGoogle Scholar
  143. Suntsova, N., Szymusiak, R., et al. (2002). Sleep-waking discharge patterns of median preoptic nucleus neurons in rats. Journal of Physiology, 543(Pt 2), 665–677.PubMedCrossRefGoogle Scholar
  144. Swaab, D. F., & Hofman, M. A. (1988). Sexual differentiation of the human hypothalamus: Ontogeny of the sexually dimorphic nucleus of the preoptic area. Brain Research. Developmental Brain Research, 44(2), 314–318.PubMedCrossRefGoogle Scholar
  145. Swanson, L. W., & Cwan, W. M. (1975). A note on the connections and development of the nucleus accumbens. Brain Research, 92(2), 324–330.PubMedCrossRefGoogle Scholar
  146. Swett, C. P., & Hobson, J. A. (1968). The effects of posterior hypothalamic lesions on behavioral and electrographic manifestations of sleep and waking in cats. Archives Italiennes de Biologie, 106(3), 283–293.PubMedGoogle Scholar
  147. Szymusiak, R., Alam, N., et al. (1998). Sleep-waking discharge patterns of ventrolateral preoptic/anterior hypothalamic neurons in rats. Brain Research, 803(1–2), 178–188.PubMedCrossRefGoogle Scholar
  148. Szymusiak, R., & McGinty, D. (1986). Sleep-related neuronal discharge in the basal forebrain of cats. Brain Research, 370(1), 82–92.PubMedCrossRefGoogle Scholar
  149. Szymusiak, R., & McGinty, D. (2008). Hypothalamic regulation of sleep and arousal. Annals of the New York Academy of Sciences, 1129, 275–286.PubMedCrossRefGoogle Scholar
  150. Takahashi, K., Lin, J. S., et al. (2008). Neuronal activity of orexin and non-orexin waking-active neurons during wake–sleep states in the mouse. Neuroscience, 153(3), 860–870.PubMedCrossRefGoogle Scholar
  151. Takahashi, K., Lin, J. S., et al. (2009). Characterization and mapping of sleep-waking specific neurons in the basal forebrain and preoptic hypothalamus in mice. Neuroscience, 161(1), 269–292.PubMedCrossRefGoogle Scholar
  152. Takano, S., Kanai, S., et al. (2004). Orexin-A does not stimulate food intake in old rats. American Journal of Physiology. Gastrointestinal and Liver Physiology, 287(6), G1182–G1187.PubMedCrossRefGoogle Scholar
  153. Takeda, N., Inagaki, S., et al. (1984). Origins of histamine-containing fibers in the cerebral cortex of rats studied by immunohistochemistry with histidine decarboxylase as a marker and transection. Brain Research, 323(1), 55–63.PubMedCrossRefGoogle Scholar
  154. Thannickal, T. C., Moore, R. Y., et al. (2000). Reduced number of hypocretin neurons in human narcolepsy. Neuron, 27(3), 469–474.PubMedCrossRefGoogle Scholar
  155. Tillet, Y. (1992). Serotoninergic projections from the raphe nuclei to the preoptic area in sheep as revealed by immunohistochemistry and retrograde labeling. The Journal of Comparative Neurology, 320(2), 267–272.PubMedCrossRefGoogle Scholar
  156. Uschakov, A., Gong, H., et al. (2007). Efferent projections from the median preoptic nucleus to sleep- and arousal-regulatory nuclei in the rat brain. Neuroscience, 150(1), 104–120.PubMedCrossRefGoogle Scholar
  157. van den Pol, A. N., Acuna-Goycolea, C., et al. (2004). Physiological properties of hypothalamic MCH neurons identified with selective expression of reporter gene after recombinant virus infection. Neuron, 42(4), 635–652.PubMedCrossRefGoogle Scholar
  158. Van Reeth, O., Zhang, Y., et al. (1994). Grafting fetal suprachiasmatic nuclei in the hypothalamus of old hamsters restores responsiveness of the circadian clock to a phase shifting stimulus. Brain Research, 643(1–2), 338–342.PubMedCrossRefGoogle Scholar
  159. Verret, L., Goutagny, R., et al. (2003). A role of melanin-concentrating hormone producing neurons in the central regulation of paradoxical sleep. BMC Neuroscience, 4, 19.PubMedCrossRefGoogle Scholar
  160. Vertes, R. P., & Martin, G. F. (1988). Autoradiographic analysis of ascending projections from the pontine and mesencephalic reticular formation and the median raphe nucleus in the rat. The Journal of Comparative Neurology, 275(4), 511–541.PubMedCrossRefGoogle Scholar
  161. Vgontzas, A. N., Liao, D., et al. (2010). Insomnia with short sleep duration and mortality: The Penn State cohort. Sleep, 33(9), 1159–1164.PubMedGoogle Scholar
  162. Viswanathan, N., & Davis, F. C. (1995). Suprachiasmatic nucleus grafts restore circadian function in aged hamsters. Brain Research, 686(1), 10–16.PubMedCrossRefGoogle Scholar
  163. Wang, M., Gamo, N. J., et al. (2011). Neuronal basis of age-related working memory decline. Nature, 476(7359), 210–213.PubMedCrossRefGoogle Scholar
  164. Watanabe, A., Shibata, S., et al. (1995). Circadian rhythm of spontaneous neuronal activity in the suprachiasmatic nucleus of old hamster in vitro. Brain Research, 695(2), 237–239.PubMedCrossRefGoogle Scholar
  165. Watts, A. G., & Swanson, L. W. (1987). Efferent projections of the suprachiasmatic nucleus: II. Studies using retrograde transport of fluorescent dyes and simultaneous peptide immunohistochemistry in the rat. The Journal of Comparative Neurology, 258(2), 230–252.PubMedCrossRefGoogle Scholar
  166. Weitzman, E. D., Moline, M. L., et al. (1982). Chronobiology of aging: Temperature, sleep–wake rhythms and entrainment. Neurobiology of Aging, 3(4), 299–309.PubMedCrossRefGoogle Scholar
  167. Willie, J. T., Sinton, C. M., et al. (2008). Abnormal response of melanin-concentrating hormone deficient mice to fasting: Hyperactivity and rapid eye movement sleep suppression. Neuroscience, 156(4), 819–829.PubMedCrossRefGoogle Scholar
  168. Wouterlood, F. G., & Gaykema, R. P. (1988). Innervation of histaminergic neurons in the posterior hypothalamic region by medial preoptic neurons. Anterograde tracing with Phaseolus vulgaris leucoagglutinin combined with immunocytochemistry of histidine decarboxylase in the rat. Brain Research, 455(1), 170–176.PubMedCrossRefGoogle Scholar
  169. Wu, M. N., Joiner, W. J., et al. (2010). SLEEPLESS, a Ly-6/neurotoxin family member, regulates the levels, localization and activity of Shaker. Nature Neuroscience, 13(1), 69–75.PubMedCrossRefGoogle Scholar
  170. Yamanaka, A., Beuckmann, C. T., et al. (2003). Hypothalamic orexin neurons regulate arousal according to energy balance in mice. Neuron, 38(5), 701–713.PubMedCrossRefGoogle Scholar
  171. Yanovsky, Y., Li, S., et al. (2011). L-Dopa activates histaminergic neurons. Journal of Physiology, 589(Pt 6), 1349–1366.PubMedCrossRefGoogle Scholar
  172. Zhdanova, I. V., Masuda, K., et al. (2011). Aging of intrinsic circadian rhythms and sleep in a diurnal nonhuman primate, Macaca mulatta. Journal of Biological Rhythms, 26(2), 149–159.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Psychiatry and Behavioral ScienceStanford UniversityStanfordUSA

Personalised recommendations