Advertisement

NeuroMolecular Medicine

, Volume 14, Issue 1, pp 65–73 | Cite as

Cerebrospinal Fluid Profiles of Amyloid β-Related Biomarkers in Alzheimer’s Disease

  • Christoffer Rosén
  • Ulf Andreasson
  • Niklas Mattsson
  • Jan Marcusson
  • Lennart Minthon
  • Niels Andreasen
  • Kaj Blennow
  • Henrik Zetterberg
Original Paper

Abstract

The amyloid cascade hypothesis on the pathogenesis of Alzheimer’s disease (AD) states that amyloid β (Aβ) accumulation in the brain is a key factor that initiates the neurodegenerative process. Aβ is generated from amyloid precursor protein (APP) through sequential cleavages by BACE1 (the major β-secretase in the brain) and γ-secretase. The purpose of this study was to characterize APP metabolism in vivo in AD patients versus cognitively healthy subjects by examining alterations in cerebrospinal fluid (CSF) biomarkers. We measured BACE1 activity and concentrations of α- and β-cleaved soluble APP (sAPPα and sAPPβ, respectively) and Aβ40 in CSF, biomarkers that all reflect the metabolism of APP, in 75 AD patients and 65 cognitively healthy controls. These analytes were also applied in a multivariate model to determine whether they provided any added diagnostic value to the core CSF AD biomarkers Aβ42, T-tau, and P-tau. We found no significant differences in BACE1 activity or sAPPα, sAPPβ, and Aβ40 concentrations between AD patients and controls. A multivariate model created with all analytes did not improve the separation of AD patients from controls compared with using the core AD biomarkers alone, highlighting the strong diagnostic performance of Aβ42, T-tau, and P-tau for AD. However, AD patients in advanced clinical stage, as determined by low MMSE score (≤20), had lower BACE1 activity and sAPPα, sAPPβ, and Aβ40 concentrations than patients with higher MMSE score, suggesting that these markers may be related to the severity of the disease.

Keywords

Alzheimer APP Biomarkers Amyloid β Cerebrospinal fluid BACE1 

Notes

Acknowledgments

We thank Åsa Källén, Monica Christiansson, Sara Hullberg, and Dzemila Secic for excellent technical assistance. This study was supported by grants from the Swedish Research Council, the Söderberg Foundation, Alzheimer’s Association, Swedish Brain Power, Swedish State Support for Clinical Research, the Lundbeck Foundation, Stiftelsen Psykiatriska Forskningsfonden, Stiftelsen Gamla Tjänarinnor, Uppsala Universitets Medicinska Fakultets stiftelse för psykiatrisk och neurologisk forskning, Alzheimerfonden, Hjärnfonden, the Göteborg Medical Society, Thuréus stiftelse, Pfannenstills stiftelse, and Demensfonden.

Conflict of interest

None reported.

References

  1. American Psychiatric Association. (1987). Diagnostic and statistical manual of mental disorders: DSM-III-R (3rd ed.). Washington, DC: American Psychiatric Association.Google Scholar
  2. Andreasen, N., Hesse, C., Davidsson, P., Minthon, L., Wallin, A., Winblad, B., et al. (1999). Cerebrospinal fluid beta-amyloid(1–42) in Alzheimer disease: Differences between early- and late-onset Alzheimer disease and stability during the course of disease. Archives of Neurology, 56, 673–680.PubMedCrossRefGoogle Scholar
  3. Blennow, K., de Leon, M. J., & Zetterberg, H. (2006). Alzheimer’s disease. Lancet, 368, 387–403. doi: 10.1016/S0140-6736(06)69113-7.PubMedCrossRefGoogle Scholar
  4. Blennow, K., Hampel, H., Weiner, M., & Zetterberg, H. (2010). Cerebrospinal fluid and plasma biomarkers in Alzheimer disease. Nature Reviews Neurology, 6, 131–144.PubMedCrossRefGoogle Scholar
  5. Blennow, K., Wallin, A., Agren, H., Spenger, C., Siegfried, J., & Vanmechelen, E. (1995). Tau protein in cerebrospinal fluid: A biochemical marker for axonal degeneration in Alzheimer disease? Molecular and Chemical Neuropathology, 26, 231–245.PubMedCrossRefGoogle Scholar
  6. Blennow, K., Zetterberg, H., Minthon, L., Lannfelt, L., Strid, S., Annas, P., et al. (2007). Longitudinal stability of CSF biomarkers in Alzheimer’s disease. Neuroscience Letters, 419, 18–22.PubMedCrossRefGoogle Scholar
  7. Bylesjö, M., Rantalainen, M., Cloarec, O., Nicholson, J. K., Holmes, E. A., & Trygg, J. (2006). OPLS discriminant analysis: Combining the strengths of PLS-DA and SIMCA classification. Journal of Chemometrics, 20, 341–351.CrossRefGoogle Scholar
  8. Cirrito, J. R., Kang, J. E., Lee, J., Stewart, F. R., Verges, D. K., Silverio, L. M., et al. (2008). Endocytosis is required for synaptic activity-dependent release of amyloid-beta in vivo. Neuron, 58, 42–51.PubMedCrossRefGoogle Scholar
  9. Fagan, A. M., Shaw, L. M., Xiong, C., Vanderstichele, H., Mintun, M. A., Trojanowski, J. Q., et al. (2011). Comparison of analytical platforms for cerebrospinal fluid measures of beta-amyloid 1–42, total tau, and p-tau181 for identifying Alzheimer disease amyloid plaque pathology. Archives of Neurology, 68, 1137–1144.PubMedCrossRefGoogle Scholar
  10. Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12, 189–198.PubMedCrossRefGoogle Scholar
  11. Fukumoto, H., Cheung, B. S., Hyman, B. T., & Irizarry, M. C. (2002). Beta-secretase protein and activity are increased in the neocortex in Alzheimer disease. Archives of Neurology, 59, 1381–1389.PubMedCrossRefGoogle Scholar
  12. Gisslén, M., Krut, J., Andreasson, U., Blennow, K., Cinque, P., Brew, B. J., et al. (2009). Amyloid and tau cerebrospinal fluid biomarkers in HIV infection. BMC Neurology, 9, 63. doi: 10.1186/1471-2377-9-63.PubMedCrossRefGoogle Scholar
  13. Höistad, M., Samskog, J., Jacobsen, K. X., Olsson, A., Hansson, H. A., Brodin, E., et al. (2005). Detection of beta-endorphin in the cerebrospinal fluid after intrastriatal microinjection into the rat brain. Brain Research, 1041, 167–180.PubMedCrossRefGoogle Scholar
  14. Holsinger, R. M., Lee, J. S., Boyd, A., Masters, C. L., & Collins, S. J. (2006). CSF BACE1 activity is increased in CJD and Alzheimer disease versus [corrected] other dementias. Neurology, 67, 710–712.PubMedCrossRefGoogle Scholar
  15. Holsinger, R. M., McLean, C. A., Beyreuther, K., Masters, C. L., & Evin, G. (2002). Increased expression of the amyloid precursor beta-secretase in Alzheimer’s disease. Annals of Neurology, 51, 783–786.PubMedCrossRefGoogle Scholar
  16. Holsinger, R. M., McLean, C. A., Collins, S. J., Masters, C. L., & Evin, G. (2004). Increased beta-secretase activity in cerebrospinal fluid of Alzheimer’s disease subjects. Annals of Neurology, 55, 898–899.PubMedCrossRefGoogle Scholar
  17. Jack, C. R., Jr, Knopman, D. S., Jagust, W. J., Shaw, L. M., Aisen, P. S., Weiner, M. W., et al. (2010). Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurology, 9, 119–128.PubMedCrossRefGoogle Scholar
  18. Johansson, P., Mattsson, N., Hansson, O., Wallin, A., Johansson, J. O., Andreasson, U., et al. (2011). Cerebrospinal fluid biomarkers for Alzheimer’s disease: Diagnostic performance in a homogeneous mono-center population. Journal of Alzheimers Disease, 24, 537–546.Google Scholar
  19. Johnston, J. A., Liu, W. W., Todd, S. A., Coulson, D. T., Murphy, S., Irvine, G. B., et al. (2005). Expression and activity of beta-site amyloid precursor protein cleaving enzyme in Alzheimer’s disease. Biochemical Society Transactions, 33, 1096–1100.PubMedCrossRefGoogle Scholar
  20. Lewczuk, P., Kamrowski-Kruck, H., Peters, O., Heuser, I., Jessen, F., Popp, J., et al. (2010). Soluble amyloid precursor proteins in the cerebrospinal fluid as novel potential biomarkers of Alzheimer’s disease: A multicenter study. Molecular Psychiatry, 15, 138–145.PubMedCrossRefGoogle Scholar
  21. Mattson, M. P., Barger, S. W., Furukawa, K., Bruce, A. J., Wyss-Coray, T., Mark, R. J., et al. (1997). Cellular signaling roles of TGF beta, TNF alpha and beta APP in brain injury responses and Alzheimer’s disease. Brain Research Reviews, 23, 47–61.PubMedCrossRefGoogle Scholar
  22. Mattsson, N., Axelsson, M., Haghighi, S., Malmeström, C., Wu, G., Anckarsäter, R., et al. (2009). Reduced cerebrospinal fluid BACE1 activity in multiple sclerosis. Multiple Sclerosis, 15, 448–454.PubMedCrossRefGoogle Scholar
  23. Mattsson, N., Bremell, D., Anckarsäter, R., Blennow, K., Anckarsäter, H., Zetterberg, H., et al. (2010). Neuroinflammation in Lyme neuroborreliosis affects amyloid metabolism. BMC Neurology, 10, 51. doi: 10.1186/1471-2377-10-51.PubMedCrossRefGoogle Scholar
  24. Mattsson, N., Zetterberg, H., Bianconi, S., Yanjanin, N. M., Fu, R., Månsson, J. E., et al. (2011). Gamma-secretase-dependent amyloid-beta is increased in Niemann-Pick type C: A cross-sectional study. Neurology, 76, 366–372.PubMedCrossRefGoogle Scholar
  25. May, P. C., Dean, R. A., Lowe, S. L., Martenyi, F., Sheehan, S. M., Boggs, L. N., et al. (2011). Robust central reduction of amyloid-beta in humans with an orally available, non-peptidic beta-secretase inhibitor. Journal of Neuroscience, 31, 16507–16516.PubMedCrossRefGoogle Scholar
  26. McKhann, G., Drachman, D., Folstein, M., Katzman, R., Price, D., & Stadlan, E. M. (1984). Clinical diagnosis of Alzheimer’s disease: Report of the NINCDS-ADRDA Work Group under the auspices of department of health and human services task force on Alzheimer’s disease. Neurology, 34, 939–944.PubMedGoogle Scholar
  27. Mungas, D. (1991). In-office mental status testing: A practical guide. Geriatrics, 46, 54–58.PubMedGoogle Scholar
  28. Olsson, A., Vanderstichele, H., Andreasen, N., De Meyer, G., Wallin, A., Holmberg, B., et al. (2005). Simultaneous measurement of beta-amyloid(1–42), total tau, and phosphorylated tau (Thr181) in cerebrospinal fluid by the xMAP technology. Clinical Chemistry, 51, 336–345.PubMedCrossRefGoogle Scholar
  29. Perneczky, R., Tsolakidou, A., Arnold, A., Diehl-Schmid, J., Grimmer, T., Förstl, H., et al. (2011). CSF soluble amyloid precursor proteins in the diagnosis of incipient Alzheimer disease. Neurology, 77, 35–38.PubMedCrossRefGoogle Scholar
  30. Selnes, P., Blennow, K., Zetterberg, H., Grambaite, R., Rosengren, L., Johnsen, L., et al. (2010). Effects of cerebrovascular disease on amyloid precursor protein metabolites in cerebrospinal fluid. Cerebrospinal Fluid Research, 7, 10. doi: 10.1186/1743-8454-7-10.PubMedCrossRefGoogle Scholar
  31. Shankar, G. M., & Walsh, D. M. (2009). Alzheimer’s disease: Synaptic dysfunction and Abeta. Molecular Neurodegeneration, 4, 48. doi: 10.1186/1750-1326-4-48.PubMedCrossRefGoogle Scholar
  32. Shi, X. P., Tugusheva, K., Bruce, J. E., Lucka, A., Chen-Dodson, E., Hu, B., et al. (2005). Novel mutations introduced at the beta-site of amyloid beta protein precursor enhance the production of amyloid beta peptide by BACE1 in vitro and in cells. Journal of Alzheimers Disease, 7, 139–148.Google Scholar
  33. Steinacker, P., Fang, L., Kuhle, J., Petzold, A., Tumani, H., Ludolph, A. C., et al. (2011). Soluble beta-amyloid precursor protein is related to disease progression in amyotrophic lateral sclerosis. PLoS One, 6, e23600. doi: 10.1371/journal.pone.0023600.PubMedCrossRefGoogle Scholar
  34. Vanmechelen, E., Vanderstichele, H., Davidsson, P., Van Kerschaver, E., Van Der Perre, B., Sjögren, M., et al. (2000). Quantification of tau phosphorylated at threonine 181 in human cerebrospinal fluid: a sandwich ELISA with a synthetic phosphopeptide for standardization. Neuroscience Letters, 285, 49–52.PubMedCrossRefGoogle Scholar
  35. Verheijen, J. H., Huisman, L. G., van Lent, N., Neumann, U., Paganetti, P., Hack, C. E., et al. (2006). Detection of a soluble form of BACE-1 in human cerebrospinal fluid by a sensitive activity assay. Clinical Chemistry, 52, 1168–1174.PubMedCrossRefGoogle Scholar
  36. Yang, L. B., Lindholm, K., Yan, R., Citron, M., Xia, W., Yang, X. L., et al. (2003). Elevated beta-secretase expression and enzymatic activity detected in sporadic Alzheimer disease. Nature Medicine, 9, 3–4.PubMedCrossRefGoogle Scholar
  37. Zetterberg, H., Andreasson, U., Hansson, O., Wu, G., Sankaranarayanan, S., Andersson, M. E., et al. (2008). Elevated cerebrospinal fluid BACE1 activity in incipient Alzheimer disease. Archives of Neurology, 65, 1102–1107.PubMedCrossRefGoogle Scholar
  38. Zhong, Z., Ewers, M., Teipel, S., Bürger, K., Wallin, A., Blennow, K., et al. (2007). Levels of beta-secretase (BACE1) in cerebrospinal fluid as a predictor of risk in mild cognitive impairment. Archives of General Psychiatry, 64, 718–726.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Christoffer Rosén
    • 1
  • Ulf Andreasson
    • 1
  • Niklas Mattsson
    • 1
  • Jan Marcusson
    • 2
  • Lennart Minthon
    • 3
  • Niels Andreasen
    • 4
  • Kaj Blennow
    • 1
  • Henrik Zetterberg
    • 1
  1. 1.Clinical Neurochemistry Laboratory, Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of GothenburgMölndalSweden
  2. 2.Department of Geriatric MedicineUniversity HospitalLinköpingSweden
  3. 3.Clinical Memory Research Unit, Department of Clinical Sciences MalmöLund UniversityLundSweden
  4. 4.Department of Geriatric Medicine, Memory Clinic, M51Karolinska University HospitalHuddinge, StockholmSweden

Personalised recommendations