Advertisement

NeuroMolecular Medicine

, Volume 13, Issue 4, pp 223–250 | Cite as

Oxidative Stress and β-Amyloid Protein in Alzheimer’s Disease

  • Zhiyou Cai
  • Bin Zhao
  • Anna Ratka
Review Paper

Abstract

Oxidative stress has been proposed to be an important factor in the pathogenesis of Alzheimer’s disease (AD) and contributed to β-amyloid (Aβ) generation. Interaction between oxidative stress and neuro-inflammation leads to Aβ generation. AD is associated with an increase in blood–brain barrier (BBB) permeability due to tight junction involvement. Oxidative stress decreases the expression of low-density lipoprotein receptor-related protein 1 and up-regulates receptor for advanced glycation end products in BBB and increases the BBB permeability, which could potentially lead to increased deposition of Aβ within AD brain. Apoptosis takes place in the pathogenesis of AD, and oxidative stress contributes to apoptosis through both extrinsic pathway and intrinsic pathway. Oxidative stress-induced apoptosis may be a potential factor to Aβ generation. Aβ generation requires two sequential cleavages of APP, with the two proteolytic enzymes: β-secretase and γ-secretase. Oxidative damage up-regulates Aβ via inducing activity of β- and γ-secretases. In this review, we will focus on the mechanism and pathway that oxidative stress contributes to Aβ generation.

Keywords

Alzheimer’s disease β-Amyloid protein Oxidative stress 

Abbreviations

Aβ

β-Amyloid

AD

Alzheimer’s disease

ADAMS

Aging, demographics, and memory study

AGEs

Advanced glycation end products

aMCI

Amnestic mild cognitive impairment

AP-1

Ativator protein 1

APP

Amyloid precursor protein

AS

Astrocyte

BACE

Beta-site APP-cleaving enzyme

BBB

Blood–brain barrier

CNS

Cerebral nervous system

ECM

Extracellular matrix

GPx-Se

Glutathione peroxidase Se-dependent

GSH

Glulathione

GSK-3β

Glycogen synthase kinase 3beta

HAG

Human astroglial

HPA

Hypothalamus–pituitary–adrenal

IFN

Interferon

IL

Interleukin

IRAK

Interleukin-1 receptor-associated kinase

IRE

Iron-responsive element

LRP-1

Low-density lipoprotein receptor-related protein 1

MAPK

Mitogen-activated protein kinase

MCI

Mild cognitive impairment

MCP-1

Monocyte chemotactic protein 1

MG

Microglia

MMPs

Matrix metalloproteinases

NMDA

N-Methyl-d-aspartate

NF-κB

Nuclear factor-kappa B

NFT

Neurofibrillary tangles

NGF

Nervous growth factor

NO

Nitric oxide

NT-3

Neurotrofin-3

RAGE

Receptor for advanced glycation end products

RNS

Reactive nitrogen species

ROS

Reactive oxygen species

SP

Senile plaque

TGF

Transforming growth factor

TIMP

Tissue inhibitor of metalloproteinase

TNF-α

Tumor necrosis factor-alpha

TNFR

Tumor necrosis factor receptor

TRADD

TNF-receptor-associated death domain

Notes

Acknowledgments

We thank Professor Lin Lu (Department of Pathology, University of Kansas Medical Center, KUMC) for his encouragement and opinion and Dr. Hongren Wang and Dr. Chunhua Li (KUMC) for designing help. This work was supported by the National Nature Science Foundation of China (81070878/H0902) to Dr. Bin Zhao and Start-up Funds from Texas A&M HSC to Dr. Anna Ratka.

References

  1. Aarli, J. A. (2003). Role of cytokines in neurological disorders. Current Medicinal Chemistry, 10, 1931–1937.PubMedCrossRefGoogle Scholar
  2. Abbott, N. J., Revest, P. A., & Romero, I. A. (1992). Astrocyte-endothelial interaction: Physiology and pathology. Neuropathology and Applied Neurobiology, 18, 424–433.PubMedCrossRefGoogle Scholar
  3. Abbott, N. J., Ronnback, L., & Hansson, E. (2006). Astrocyte-endothelial interactions at the blood–brain barrier. Nature Reviews. Neuroscience, 7, 41–53.PubMedCrossRefGoogle Scholar
  4. Abramov, A. Y., Canevari, L., & Duchen, M. R. (2004). Beta-amyloid peptides induce mitochondrial dysfunction and oxidative stress in astrocytes and death of neurons through activation of NADPH oxidase. Journal of Neuroscience, 24, 565–575.PubMedCrossRefGoogle Scholar
  5. Adlard, P. A., Cherny, R. A., Finkelstein, D. I., Gautier, E., Robb, E., Cortes, M., et al. (2008). Rapid restoration of cognition in Alzheimer’s transgenic mice with 8-hydroxy quinoline analogs is associated with decreased interstitial Abeta. Neuron, 59, 43–55.PubMedCrossRefGoogle Scholar
  6. Agid, Y. (1995). Aging, disease and nerve cell death. Bulletin de l’Académie Nationale de Médecine, 179, 1193–1203 (discussion 1197–1203).Google Scholar
  7. Agostinho, P., Cunha, R. A., & Oliveira, C. (2010). Neuroinflammation, oxidative stress and the pathogenesis of Alzheimer’s disease. Current Pharmaceutical Design, 16, 2766–2778.PubMedGoogle Scholar
  8. Ait-Ghezala, G., Mathura, V. S., Laporte, V., Quadros, A., Paris, D., Patel, N., et al. (2005). Genomic regulation after CD40 stimulation in microglia: Relevance to Alzheimer’s disease. Brain Research. Molecular Brain Research, 140, 73–85.PubMedCrossRefGoogle Scholar
  9. Akama, K. T., Albanese, C., Pestell, R. G., & Van Eldik, L. J. (1998). Amyloid beta-peptide stimulates nitric oxide production in astrocytes through an NFkappaB-dependent mechanism. Proceedings of the National Academy of Sciences of the United States of America, 95, 5795–5800.PubMedCrossRefGoogle Scholar
  10. Aksenov, M. Y., Aksenova, M. V., Carney, J. M., & Butterfield, D. A. (1997). Oxidative modification of glutamine synthetase by amyloid beta peptide. Free Radical Research, 27, 267–281.PubMedCrossRefGoogle Scholar
  11. Akterin, S., Cowburn, R. F., Miranda-Vizuete, A., Jimenez, A., Bogdanovic, N., Winblad, B., et al. (2006). Involvement of glutaredoxin-1 and thioredoxin-1 in beta-amyloid toxicity and Alzheimer’s disease. Cell Death and Differentiation, 13, 1454–1465.PubMedCrossRefGoogle Scholar
  12. Alafuzoff, I., Adolfsson, R., Grundke-Iqbal, I., & Winblad, B. (1987). Blood–brain barrier in Alzheimer dementia and in non-demented elderly. An immunocytochemical study. Acta Neuropathologica, 73, 160–166.PubMedCrossRefGoogle Scholar
  13. Alberdi, E., Sanchez-Gomez, M. V., Cavaliere, F., Perez-Samartin, A., Zugaza, J. L., Trullas, R., et al. (2010). Amyloid beta oligomers induce Ca2+ dysregulation and neuronal death through activation of ionotropic glutamate receptors. Cell Calcium, 47, 264–272.PubMedCrossRefGoogle Scholar
  14. Alberghina, L., & Colangelo, A. M. (2006). The modular systems biology approach to investigate the control of apoptosis in Alzheimer’s disease neurodegeneration. BMC Neuroscience, 7(Suppl 1), S2.Google Scholar
  15. Alexiou, P., Chatzopoulou, M., Pegklidou, K., & Demopoulos, V. J. (2010). RAGE: A multi-ligand receptor unveiling novel insights in health and disease. Current Medicinal Chemistry, 17, 2232–2252.PubMedCrossRefGoogle Scholar
  16. Aliev, G. (2011). Oxidative stress induced-metabolic imbalance, mitochondrial failure, and cellular hypoperfusion as primary pathogenetic factors for the development of Alzheimer disease which can be used as a alternate and successful drug treatment strategy: Past, present and future. CNS & Neurological Disorders Drug Targets, 10, 147–148.Google Scholar
  17. Allan, S. M., Harrison, D. C., Read, S., Collins, B., Parsons, A. A., Philpott, K., et al. (2001). Selective increases in cytokine expression in the rat brain in response to striatal injection of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate and interleukin-1. Brain Research. Molecular Brain Research, 93, 180–189.PubMedCrossRefGoogle Scholar
  18. Allen, C. L., & Bayraktutan, U. (2009a). Antioxidants attenuate hyperglycaemia-mediated brain endothelial cell dysfunction and blood–brain barrier hyperpermeability. Diabetes, Obesity & Metabolism, 11, 480–490.CrossRefGoogle Scholar
  19. Allen, C. L., & Bayraktutan, U. (2009b). Oxidative stress and its role in the pathogenesis of ischaemic stroke. International Journal of Stroke, 4, 461–470.PubMedCrossRefGoogle Scholar
  20. Aluise, C. D., Robinson, R. A., Beckett, T. L., Murphy, M. P., Cai, J., Pierce, W. M., et al. (2010). Preclinical Alzheimer disease: Brain oxidative stress, Abeta peptide and proteomics. Neurobiology of Diseases, 39, 221–228.CrossRefGoogle Scholar
  21. Anderson, I., Adinolfi, C., Doctrow, S., Huffman, K., Joy, K. A., Malfroy, B., et al. (2001). Oxidative signalling and inflammatory pathways in Alzheimer’s disease. Biochemical Society Symposium, 67, 141–149.PubMedGoogle Scholar
  22. Ansari, M. A., Joshi, G., Huang, Q., Opii, W. O., Abdul, H. M., Sultana, R., et al. (2006). In vivo administration of D609 leads to protection of subsequently isolated gerbil brain mitochondria subjected to in vitro oxidative stress induced by amyloid beta-peptide and other oxidative stressors: Relevance to Alzheimer’s disease and other oxidative stress-related neurodegenerative disorders. Free Radical Biology and Medicine, 41, 1694–1703.PubMedCrossRefGoogle Scholar
  23. Ansari, M. A., & Scheff, S. W. (2010). Oxidative stress in the progression of Alzheimer disease in the frontal cortex. Journal of Neuropathology and Experimental Neurology, 69, 155–167.PubMedCrossRefGoogle Scholar
  24. Apelt, J., Bigl, M., Wunderlich, P., & Schliebs, R. (2004). Aging-related increase in oxidative stress correlates with developmental pattern of beta-secretase activity and beta-amyloid plaque formation in transgenic Tg2576 mice with Alzheimer-like pathology. International Journal of Developmental Neuroscience, 22, 475–484.PubMedCrossRefGoogle Scholar
  25. Apelt, J., & Schliebs, R. (2001). Beta-amyloid-induced glial expression of both pro- and anti-inflammatory cytokines in cerebral cortex of aged transgenic Tg2576 mice with Alzheimer plaque pathology. Brain Research, 894, 21–30.PubMedCrossRefGoogle Scholar
  26. Armulik, A., Genove, G., Mae, M., Nisancioglu, M. H., Wallgard, E., Niaudet, C., et al. (2010). Pericytes regulate the blood–brain barrier. Nature, 468, 557–561.PubMedCrossRefGoogle Scholar
  27. Aukrust, P., Berge, R. K., Ueland, T., Aaser, E., Damas, J. K., Wikeby, L., et al. (2001). Interaction between chemokines and oxidative stress: Possible pathogenic role in acute coronary syndromes. Journal of the American College of Cardiology, 37, 485–491.PubMedCrossRefGoogle Scholar
  28. Ayasolla, K., Khan, M., Singh, A. K., & Singh, I. (2004). Inflammatory mediator and beta-amyloid (25–35)-induced ceramide generation and iNOS expression are inhibited by vitamin E. Free Radical Biology and Medicine, 37, 325–338.PubMedCrossRefGoogle Scholar
  29. Bachmeier, C., Mullan, M., & Paris, D. (2010). Characterization and use of human brain microvascular endothelial cells to examine beta-amyloid exchange in the blood–brain barrier. Cytotechnology, 62, 519–529.PubMedCrossRefGoogle Scholar
  30. Backstrom, J. R., Lim, G. P., Cullen, M. J., & Tokes, Z. A. (1996). Matrix metalloproteinase-9 (MMP-9) is synthesized in neurons of the human hippocampus and is capable of degrading the amyloid-beta peptide (1–40). Journal of Neuroscience, 16, 7910–7919.PubMedGoogle Scholar
  31. Bacon, K. B., & Harrison, J. K. (2000). Chemokines and their receptors in neurobiology: Perspectives in physiology and homeostasis. Journal of Neuroimmunology, 104, 92–97.PubMedCrossRefGoogle Scholar
  32. Bader Lange, M. L., Cenini, G., Piroddi, M., Abdul, H. M., Sultana, R., Galli, F., et al. (2008). Loss of phospholipid asymmetry and elevated brain apoptotic protein levels in subjects with amnestic mild cognitive impairment and Alzheimer disease. Neurobiology of Diseases, 29, 456–464.CrossRefGoogle Scholar
  33. Bader Lange, M. L., St. Clair, D., Markesbery, W. R., Studzinski, C. M., Murphy, M. P., & Butterfield, D. A. (2010). Age-related loss of phospholipid asymmetry in APP(NLh)/APP(NLh) × PS-1(P264L)/PS-1(P264L) human double mutant knock-in mice: Relevance to Alzheimer disease. Neurobiology of Diseases, 38, 104–115.CrossRefGoogle Scholar
  34. Bading, J. R., Yamada, S., Mackic, J. B., Kirkman, L., Miller, C., Calero, M., et al. (2002). Brain clearance of Alzheimer’s amyloid-beta40 in the squirrel monkey: A SPECT study in a primate model of cerebral amyloid angiopathy. Journal of Drug Targeting, 10, 359–368.PubMedCrossRefGoogle Scholar
  35. Bajetto, A., Bonavia, R., Barbero, S., Florio, T., & Schettini, G. (2001). Chemokines and their receptors in the central nervous system. Frontiers in Neuroendocrinology, 22, 147–184.PubMedCrossRefGoogle Scholar
  36. Baker, P. R., Schopfer, F. J., O’Donnell, V. B., & Freeman, B. A. (2009). Convergence of nitric oxide and lipid signaling: Anti-inflammatory nitro-fatty acids. Free Radical Biology and Medicine, 46, 989–1003.PubMedCrossRefGoogle Scholar
  37. Bakshi, P., Margenthaler, E., Laporte, V., Crawford, F., & Mullan, M. (2008). Novel role of CXCR2 in regulation of gamma-secretase activity. ACS Chemical Biology, 3, 777–789.PubMedCrossRefGoogle Scholar
  38. Bakshi, P., Margenthaler, E., Reed, J., Crawford, F., & Mullan, M. (2011). Depletion of CXCR2 inhibits gamma-secretase activity and amyloid-beta production in a murine model of Alzheimer’s disease. Cytokine, 53, 163–169.PubMedCrossRefGoogle Scholar
  39. Baranowska-Bik, A., Bik, W., Wolinska-Witort, E., Martynska, L., Chmielowska, M., Barcikowska, M., et al. (2008). Plasma beta amyloid and cytokine profile in women with Alzheimer’s disease. Neuro Endocrinology Letters, 29, 75–79.PubMedGoogle Scholar
  40. Barger, S. W., Smith-Swintosky, V. L., Rydel, R. E., & Mattson, M. P. (1993). Beta-amyloid precursor protein mismetabolism and loss of calcium homeostasis in Alzheimer’s disease. Annals of the New York Academy of Sciences, 695, 158–164.PubMedCrossRefGoogle Scholar
  41. Barten, D. M., & Albright, C. F. (2008). Therapeutic strategies for Alzheimer’s disease. Molecular Neurobiology, 37, 171–186.PubMedCrossRefGoogle Scholar
  42. Baskin, F., Rosenberg, R. N., & Davis, R. M. (1992). Morphological differentiation and proteoglycan synthesis regulate Alzheimer amyloid precursor protein processing in PC-12 and human astrocyte cultures. Journal of Neuroscience Research, 32, 274–279.PubMedCrossRefGoogle Scholar
  43. Basu, A., Castle, V. P., Bouziane, M., Bhalla, K., & Haldar, S. (2006). Crosstalk between extrinsic and intrinsic cell death pathways in pancreatic cancer: Synergistic action of estrogen metabolite and ligands of death receptor family. Cancer Research, 66, 4309–4318.PubMedCrossRefGoogle Scholar
  44. Battaini, F., Pascale, A., Lucchi, L., Pasinetti, G. M., & Govoni, S. (1999). Protein kinase C anchoring deficit in postmortem brains of Alzheimer’s disease patients. Experimental Neurology, 159, 559–564.PubMedCrossRefGoogle Scholar
  45. Bayer, T. A., Schafer, S., Breyhan, H., Wirths, O., Treiber, C., & Multhaup, G. (2006). A vicious circle: Role of oxidative stress, intraneuronal Abeta and Cu in Alzheimer’s disease. Clinical Neuropathology, 25, 163–171.PubMedGoogle Scholar
  46. Behl, C., & Moosmann, B. (2002). Oxidative nerve cell death in Alzheimer’s disease and stroke: Antioxidants as neuroprotective compounds. Biological Chemistry, 383, 521–536.PubMedCrossRefGoogle Scholar
  47. Bell, R. D., & Zlokovic, B. V. (2009). Neurovascular mechanisms and blood–brain barrier disorder in Alzheimer’s disease. Acta Neuropathologica, 118, 103–113.PubMedCrossRefGoogle Scholar
  48. Bergamini, C. M., Gambetti, S., Dondi, A., & Cervellati, C. (2004). Oxygen, reactive oxygen species and tissue damage. Current Pharmaceutical Design, 10, 1611–1626.PubMedCrossRefGoogle Scholar
  49. Bernhard, D., & Wang, X. L. (2007). Smoking, oxidative stress and cardiovascular diseases—do anti-oxidative therapies fail? Current Medicinal Chemistry, 14, 1703–1712.PubMedCrossRefGoogle Scholar
  50. Bezprozvanny, I., & Mattson, M. P. (2008). Neuronal calcium mishandling and the pathogenesis of Alzheimer’s disease. Trends in Neurosciences, 31, 454–463.PubMedCrossRefGoogle Scholar
  51. Blasig, I. E., Mertsch, K., & Haseloff, R. F. (2002). Nitronyl nitroxides, a novel group of protective agents against oxidative stress in endothelial cells forming the blood–brain barrier. Neuropharmacology, 43, 1006–1014.PubMedCrossRefGoogle Scholar
  52. Blass, J. P., & Gibson, G. E. (1991). The role of oxidative abnormalities in the pathophysiology of Alzheimer’s disease. Revue Neurologique (Paris), 147, 513–525.Google Scholar
  53. Blume, A. J., & Vitek, M. P. (1989). Focusing on IL-1-promotion of beta-amyloid precursor protein synthesis as an early event in Alzheimer’s disease. Neurobiology of Aging, 10, 406–408 (discussion 404–412).Google Scholar
  54. Bonda, D. J., Wang, X., Perry, G., Nunomura, A., Tabaton, M., Zhu, X., et al. (2010). Oxidative stress in Alzheimer disease: A possibility for prevention. Neuropharmacology, 59, 290–294.PubMedCrossRefGoogle Scholar
  55. Bonifati, D. M., & Kishore, U. (2007). Role of complement in neurodegeneration and neuroinflammation. Molecular Immunology, 44, 999–1010.PubMedCrossRefGoogle Scholar
  56. Bosco, D., Fava, A., Plastino, M., Montalcini, T., & A. Pujia. (2011). Possible implications of insulin resistance and glucose metabolism in Alzheimer’s disease pathogenesis. Journal of Cellular and Molecular Medicine.Google Scholar
  57. Bossu, P., Ciaramella, A., Moro, M. L., Bellincampi, L., Bernardini, S., Federici, G., et al. (2007). Interleukin 18 gene polymorphisms predict risk and outcome of Alzheimer’s disease. Journal of Neurology, Neurosurgery and Psychiatry, 78, 807–811.CrossRefGoogle Scholar
  58. Boulanger, E., Wautier, J. L., Dequiedt, P., & Schmidt, A. M. (2006). Glycation, glycoxidation and diabetes mellitus. Néphrologie & Thérapeutique, 2(Suppl 1), S8–S16.Google Scholar
  59. Bourne, K. Z., Ferrari, D. C., Lange-Dohna, C., Rossner, S., Wood, T. G., & Perez-Polo, J. R. (2007). Differential regulation of BACE1 promoter activity by nuclear factor-kappaB in neurons and glia upon exposure to beta-amyloid peptides. Journal of Neuroscience Research, 85, 1194–1204.PubMedCrossRefGoogle Scholar
  60. Boyd-Kimball, D., Poon, H. F., Lynn, B. C., Cai, J., Pierce, W. M., Jr., Klein, J. B., et al. (2006). Proteomic identification of proteins specifically oxidized in Caenorhabditis elegans expressing human Abeta(1–42): Implications for Alzheimer’s disease. Neurobiology of Aging, 27, 1239–1249.PubMedCrossRefGoogle Scholar
  61. Bradt, B. M., Kolb, W. P., & Cooper, N. R. (1998). Complement-dependent proinflammatory properties of the Alzheimer’s disease beta-peptide. Journal of Experimental Medicine, 188, 431–438.PubMedCrossRefGoogle Scholar
  62. Buchhave, P., Zetterberg, H., Blennow, K., Minthon, L., Janciauskiene, S., & Hansson, O. (2010). Soluble TNF receptors are associated with Abeta metabolism and conversion to dementia in subjects with mild cognitive impairment. Neurobiology of Aging, 31, 1877–1884.PubMedCrossRefGoogle Scholar
  63. Buoso, E., Lanni, C., Schettini, G., Govoni, S., & Racchi, M. (2010). Beta-amyloid precursor protein metabolism: Focus on the functions and degradation of its intracellular domain. Pharmacological Research, 62, 308–317.PubMedCrossRefGoogle Scholar
  64. Bush, A. I. (2002). Metal complexing agents as therapies for Alzheimer’s disease. Neurobiology of Aging, 23, 1031–1038.PubMedCrossRefGoogle Scholar
  65. Butterfield, D. A., & Boyd-Kimball, D. (2004). Amyloid beta-peptide(1–42) contributes to the oxidative stress and neurodegeneration found in Alzheimer disease brain. Brain Pathology, 14, 426–432.PubMedCrossRefGoogle Scholar
  66. Butterfield, D. A., Galvan, V., Lange, M. B., Tang, H., Sowell, R. A., Spilman, P., et al. (2010a). In vivo oxidative stress in brain of Alzheimer disease transgenic mice: Requirement for methionine 35 in amyloid beta-peptide of APP. Free Radical Biology and Medicine, 48, 136–144.PubMedCrossRefGoogle Scholar
  67. Butterfield, D. A., Griffin, S., Munch, G., & Pasinetti, G. M. (2002). Amyloid beta-peptide and amyloid pathology are central to the oxidative stress and inflammatory cascades under which Alzheimer’s disease brain exists. Journal of Alzheimer’s Disease, 4, 193–201.PubMedGoogle Scholar
  68. Butterfield, D. A., Hardas, S. S., & Lange, M. L. (2010b). Oxidatively modified glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and Alzheimer’s disease: Many pathways to neurodegeneration. Journal of Alzheimer’s Disease, 20, 369–393.PubMedGoogle Scholar
  69. Butterfield, D. A., & Lauderback, C. M. (2002). Lipid peroxidation and protein oxidation in Alzheimer’s disease brain: Potential causes and consequences involving amyloid beta-peptide-associated free radical oxidative stress. Free Radical Biology and Medicine, 32, 1050–1060.PubMedCrossRefGoogle Scholar
  70. Butterfield, D. A., & Pocernich, C. B. (2003). The glutamatergic system and Alzheimer’s disease: Therapeutic implications. CNS Drugs, 17, 641–652.PubMedCrossRefGoogle Scholar
  71. Butterfield, D. A., Reed, T., Newman, S. F., & Sultana, R. (2007). Roles of amyloid beta-peptide-associated oxidative stress and brain protein modifications in the pathogenesis of Alzheimer’s disease and mild cognitive impairment. Free Radical Biology and Medicine, 43, 658–677.PubMedCrossRefGoogle Scholar
  72. Cabello-Verrugio, C., & Brandan, E. (2007). A novel modulatory mechanism of transforming growth factor-beta signaling through decorin and LRP-1. The Journal of Biological Chemistry, 282, 18842–18850.PubMedCrossRefGoogle Scholar
  73. Calingasan, N. Y., Baker, H., Sheu, K. F., & Gibson, G. E. (1995). Blood–brain barrier abnormalities in vulnerable brain regions during thiamine deficiency. Experimental Neurology, 134, 64–72.PubMedCrossRefGoogle Scholar
  74. Camins, A., Pallas, M., & Silvestre, J. S. (2008). Apoptotic mechanisms involved in neurodegenerative diseases: Experimental and therapeutic approaches. Methods and Findings in Experimental and Clinical Pharmacology, 30, 43–65.PubMedCrossRefGoogle Scholar
  75. Campos, S. P., Wang, Y., Koj, A., & Baumann, H. (1993). Divergent transforming growth factor-beta effects on IL-6 regulation of acute phase plasma proteins in rat hepatoma cells. Journal of Immunology, 151, 7128–7137.Google Scholar
  76. Candelario-Jalil, E., Thompson, J., Taheri, S., Grossetete, M., Adair, J. C., Edmonds, E., et al. (2011). Matrix metalloproteinases are associated with increased blood–brain barrier opening in vascular cognitive impairment. Stroke, 42, 1345–1350.PubMedCrossRefGoogle Scholar
  77. Candore, G., Bulati, M., Caruso, C., Castiglia, L., Colonna-Romano, G., Di Bona, D., et al. (2010). Inflammation, cytokines, immune response, apolipoprotein E, cholesterol, and oxidative stress in Alzheimer disease: Therapeutic implications. Rejuvenation Research, 13, 301–313.PubMedCrossRefGoogle Scholar
  78. Carrano, A., Hoozemans, J. J., van der Vies, S. M., Rozemuller, A. J., van Horssen, J., & H. E. de Vries. (2011). Amyloid beta induces oxidative stress-mediated blood–brain barrier changes in capillary amyloid angiopathy. Antioxidants & Redox Signaling, 15, 1167–1178.CrossRefGoogle Scholar
  79. Carta, M. G., Serra, P., Ghiani, A., Manca, E., Hardoy, M. C., Del Giacco, G. S., et al. (2002). Chemokines and pro-inflammatory cytokines in Down’s syndrome: An early marker for Alzheimer-type dementia? Psychotherapy and Psychosomatics, 71, 233–236.PubMedCrossRefGoogle Scholar
  80. Cechetto, D. F. (2001). Role of nuclear factor kappa B in neuropathological mechanisms. Progress in Brain Research, 132, 391–404.PubMedCrossRefGoogle Scholar
  81. Cenini, G., Sultana, R., Memo, M., & Butterfield, D. A. (2008a). Effects of oxidative and nitrosative stress in brain on p53 proapoptotic protein in amnestic mild cognitive impairment and Alzheimer disease. Free Radical Biology and Medicine, 45, 81–85.PubMedCrossRefGoogle Scholar
  82. Cenini, G., Sultana, R., Memo, M., & Butterfield, D. A. (2008b). Elevated levels of pro-apoptotic p53 and its oxidative modification by the lipid peroxidation product, HNE, in brain from subjects with amnestic mild cognitive impairment and Alzheimer’s disease. Journal of Cellular and Molecular Medicine, 12, 987–994.PubMedCrossRefGoogle Scholar
  83. Chan, A., & Shea, T. B. (2007). Folate deprivation increases presenilin expression, gamma-secretase activity, and Abeta levels in murine brain: potentiation by ApoE deficiency and alleviation by dietary S-adenosyl methionine. Journal of Neurochemistry, 102, 753–760.PubMedCrossRefGoogle Scholar
  84. Chang, S., ran Ma, T., Miranda, R. D., Balestra, M. E., Mahley, R. W., & Huang, Y. (2005). Lipid- and receptor-binding regions of apolipoprotein E4 fragments act in concert to cause mitochondrial dysfunction and neurotoxicity. Proceedings of the National Academy of Sciences of the United States of America, 102, 18694–18699.PubMedCrossRefGoogle Scholar
  85. Chen, L., Na, R., Gu, M., Richardson, A., & Ran, Q. (2008). Lipid peroxidation up-regulates BACE1 expression in vivo: a possible early event of amyloidogenesis in Alzheimer’s disease. Journal of Neurochemistry, 107, 197–207.PubMedCrossRefGoogle Scholar
  86. Chen, X., Walker, D. G., Schmidt, A. M., Arancio, O., Lue, L. F., & Yan, S. D. (2007). RAGE: A potential target for Abeta-mediated cellular perturbation in Alzheimer’s disease. Current Molecular Medicine, 7, 735–742.PubMedCrossRefGoogle Scholar
  87. Chen, C. H., Zhou, W., Liu, S., Deng, Y., Cai, F., Tone, M., et al. (2011). Increased NF-kappaB signalling up-regulates BACE1 expression and its therapeutic potential in Alzheimer’s disease. The International Journal of Neuropsychopharmacology, 18, 1–14.CrossRefGoogle Scholar
  88. Cherny, R. A., Legg, J. T., McLean, C. A., Fairlie, D. P., Huang, X., Atwood, C. S., et al. (1999). Aqueous dissolution of Alzheimer’s disease Abeta amyloid deposits by biometal depletion. The Journal of Biological Chemistry, 274, 23223–23228.PubMedCrossRefGoogle Scholar
  89. Choe, W., Stoica, G., Lynn, W., & Wong, P. K. (1998). Neurodegeneration induced by MoMuLV-ts1 and increased expression of Fas and TNF-alpha in the central nervous system. Brain Research, 779, 1–8.PubMedCrossRefGoogle Scholar
  90. Chong, Y. H., Shin, S. A., Lee, H. J., Kang, J. H., & Suh, Y. H. (2002). Molecular mechanisms underlying cyclic AMP inhibition of macrophage dependent TNF-alpha production and neurotoxicity in response to amyloidogenic C-terminal fragment of Alzheimer’s amyloid precursor protein. Journal of Neuroimmunology, 133, 160–174.PubMedCrossRefGoogle Scholar
  91. Christen, Y. (2000). Oxidative stress and Alzheimer disease. American Journal of Clinical Nutrition, 71, 621S–629S.PubMedGoogle Scholar
  92. Cirrito, J. R., Deane, R., Fagan, A. M., Spinner, M. L., Parsadanian, M., Finn, M. B., et al. (2005). P-glycoprotein deficiency at the blood–brain barrier increases amyloid-beta deposition in an Alzheimer disease mouse model. Journal of Clinical Investigation, 115, 3285–3290.PubMedCrossRefGoogle Scholar
  93. Cole, S. L., & Vassar, R. (2008). The role of amyloid precursor protein processing by BACE1, the beta-secretase, in Alzheimer disease pathophysiology. The Journal of Biological Chemistry, 283, 29621–29625.PubMedCrossRefGoogle Scholar
  94. Combarros, O., van Duijn, C. M., Hammond, N., Belbin, O., Arias-Vasquez, A., Cortina-Borja, M., et al. (2009). Replication by the Epistasis Project of the interaction between the genes for IL-6 and IL-10 in the risk of Alzheimer’s disease. Journal of Neuroinflammation, 6, 22.PubMedCrossRefGoogle Scholar
  95. Combs, C. K., Johnson, D. E., Karlo, J. C., Cannady, S. B., & Landreth, G. E. (2000). Inflammatory mechanisms in Alzheimer’s disease: inhibition of beta-amyloid-stimulated proinflammatory responses and neurotoxicity by PPARgamma agonists. Journal of Neuroscience, 20, 558–567.PubMedGoogle Scholar
  96. Combs, C. K., Karlo, J. C., Kao, S. C., & Landreth, G. E. (2001). Beta-amyloid stimulation of microglia and monocytes results in TNFalpha-dependent expression of inducible nitric oxide synthase and neuronal apoptosis. Journal of Neuroscience, 21, 1179–1188.PubMedGoogle Scholar
  97. Conway, E. L., Gundlach, A. L., & Craven, J. A. (1998). Temporal changes in glial fibrillary acidic protein messenger RNA and [3H]PK11195 binding in relation to imidazoline-I2-receptor and alpha 2-adrenoceptor binding in the hippocampus following transient global forebrain ischaemia in the rat. Neuroscience, 82, 805–817.PubMedCrossRefGoogle Scholar
  98. Cotman, C. W. (1998). Apoptosis decision cascades and neuronal degeneration in Alzheimer’s disease. Neurobiology of Aging, 19, S29–S32.PubMedCrossRefGoogle Scholar
  99. Cruz-Sanchez, F. F., Girones, X., Ortega, A., Alameda, F., & Lafuente, J. V. (2010). Oxidative stress in Alzheimer’s disease hippocampus: A topographical study. Journal of the Neurological Sciences, 299, 163–167.PubMedCrossRefGoogle Scholar
  100. Cui, J. G., Li, Y. Y., Zhao, Y., Bhattacharjee, S., & Lukiw, W. J. (2010). Differential regulation of interleukin-1 receptor-associated kinase-1 (IRAK-1) and IRAK-2 by microRNA-146a and NF-kappaB in stressed human astroglial cells and in Alzheimer disease. The Journal of Biological Chemistry, 285, 38951–38960.PubMedCrossRefGoogle Scholar
  101. Cuschieri, J., & Maier, R. V. (2007). Oxidative stress, lipid rafts, and macrophage reprogramming. Antioxidants & Redox Signaling, 9, 1485–1497.CrossRefGoogle Scholar
  102. Cuvelier, A., Kuntz, C., Sesboue, R., Muir, J. F., & Martin, J. P. (1997). Metalloproteinases in the extracellular matrix: Structure and activity. Revue des Maladies Respiratoires, 14, 1–10.PubMedGoogle Scholar
  103. Dal Pra, I., Chiarini, A., Pacchiana, R., Chakravarthy, B., Whitfield, J. F., & Armato, U. (2008). Emerging concepts of how beta-amyloid proteins and pro-inflammatory cytokines might collaborate to produce an ‘Alzheimer brain’ (review). Molecular Medicine Reports, 1, 173–178.PubMedGoogle Scholar
  104. De Felice, F. G., Velasco, P. T., Lambert, M. P., Viola, K., Fernandez, S. J., Ferreira, S. T., et al. (2007). Abeta oligomers induce neuronal oxidative stress through an N-methyl-d-aspartate receptor-dependent mechanism that is blocked by the Alzheimer drug memantine. The Journal of Biological Chemistry, 282, 11590–11601.PubMedCrossRefGoogle Scholar
  105. de la Monte, S. M., Luong, T., Neely, T. R., Robinson, D., & Wands, J. R. (2000). Mitochondrial DNA damage as a mechanism of cell loss in Alzheimer’s disease. Laboratory Investigation, 80, 1323–1335.CrossRefGoogle Scholar
  106. de la Torre, J. C., & Mussivand, T. (1993). Can disturbed brain microcirculation cause Alzheimer’s disease? Neurological Research, 15, 146–153.Google Scholar
  107. Deane, R., Bell, R. D., Sagare, A., & Zlokovic, B. V. (2009). Clearance of amyloid-beta peptide across the blood–brain barrier: Implication for therapies in Alzheimer’s disease. CNS & Neurological Disorders Drug Targets, 8, 16–30.CrossRefGoogle Scholar
  108. Deane, R., Du Yan, S., Submamaryan, R. K., LaRue, B., Jovanovic, S., Hogg, E., et al. (2003). RAGE mediates amyloid-beta peptide transport across the blood–brain barrier and accumulation in brain. Nature Medicine, 9, 907–913.PubMedCrossRefGoogle Scholar
  109. Deane, R., Sagare, A., Hamm, K., Parisi, M., Lane, S., Finn, M. B., et al. (2008a). apoE isoform-specific disruption of amyloid beta peptide clearance from mouse brain. Journal of Clinical Investigation, 118, 4002–4013.PubMedCrossRefGoogle Scholar
  110. Deane, R., Sagare, A., & Zlokovic, B. V. (2008b). The role of the cell surface LRP and soluble LRP in blood–brain barrier Abeta clearance in Alzheimer’s disease. Current Pharmaceutical Design, 14, 1601–1605.PubMedCrossRefGoogle Scholar
  111. Deane, R., Wu, Z., & Zlokovic, B. V. (2004). RAGE (yin) versus LRP (yang) balance regulates alzheimer amyloid beta-peptide clearance through transport across the blood–brain barrier. Stroke, 35, 2628–2631.PubMedCrossRefGoogle Scholar
  112. Deigner, H. P., Haberkorn, U., & Kinscherf, R. (2000). Apoptosis modulators in the therapy of neurodegenerative diseases. Expert Opinion on Investigational Drugs, 9, 747–764.PubMedCrossRefGoogle Scholar
  113. Del Bo, R., Angeretti, N., Lucca, E., De Simoni, M. G., & Forloni, G. (1995). Reciprocal control of inflammatory cytokines, IL-1 and IL-6, and beta-amyloid production in cultures. Neuroscience Letters, 188, 70–74.PubMedCrossRefGoogle Scholar
  114. Del Villar, K., & Miller, C. A. (2004). Down-regulation of DENN/MADD, a TNF receptor binding protein, correlates with neuronal cell death in Alzheimer’s disease brain and hippocampal neurons. Proceedings of the National Academy of Sciences of the United States of America, 101, 4210–4215.PubMedCrossRefGoogle Scholar
  115. del Zoppo, G. J., & Milner, R. (2006). Integrin-matrix interactions in the cerebral microvasculature. Arteriosclerosis, Thrombosis, and Vascular Biology, 26, 1966–1975.PubMedCrossRefGoogle Scholar
  116. Del Zoppo, G. J., Milner, R., Mabuchi, T., Hung, S., Wang, X., & Koziol, J. A. (2006). Vascular matrix adhesion and the blood–brain barrier. Biochemical Society Transactions, 34, 1261–1266.PubMedCrossRefGoogle Scholar
  117. Dickson, D. W., Lee, S. C., Mattiace, L. A., Yen, S. H., & Brosnan, C. (1993). Microglia and cytokines in neurological disease, with special reference to AIDS and Alzheimer’s disease. Glia, 7, 75–83.PubMedCrossRefGoogle Scholar
  118. Dinarello, C. A. (2000). Proinflammatory cytokines. Chest, 118, 503–508.PubMedCrossRefGoogle Scholar
  119. Donahue, J. E., Flaherty, S. L., Johanson, C. E., Duncan, J. A., III, Silverberg, G. D., Miller, M. C., et al. (2006). RAGE, LRP-1, and amyloid-beta protein in Alzheimer’s disease. Acta Neuropathologica, 112, 405–415.PubMedCrossRefGoogle Scholar
  120. Donahue, J. E., & Johanson, C. E. (2008). Apolipoprotein E, amyloid-beta, and blood–brain barrier permeability in Alzheimer disease. Journal of Neuropathology and Experimental Neurology, 67, 261–270.PubMedCrossRefGoogle Scholar
  121. Donnelly, R. J., Friedhoff, A. J., Beer, B., Blume, A. J., & Vitek, M. P. (1990). Interleukin-1 stimulates the beta-amyloid precursor protein promoter. Cellular and Molecular Neurobiology, 10, 485–495.PubMedCrossRefGoogle Scholar
  122. Du, Y., Wooten, M. C., Gearing, M., & Wooten, M. W. (2009). Age-associated oxidative damage to the p62 promoter: Implications for Alzheimer disease. Free Radical Biology and Medicine, 46, 492–501.PubMedCrossRefGoogle Scholar
  123. Dumont, M., & Beal, M. F. (2010). Neuroprotective strategies involving ROS in Alzheimer disease. Free Radical Biology & Medicine, 51, 1014–1026.CrossRefGoogle Scholar
  124. Duyckaerts, C., Delatour, B., & Potier, M. C. (2009). Classification and basic pathology of Alzheimer disease. Acta Neuropathologica, 118, 5–36.PubMedCrossRefGoogle Scholar
  125. El Khoury, J. B., Moore, K. J., Means, T. K., Leung, J., Terada, K., Toft, M., et al. (2003). CD36 mediates the innate host response to beta-amyloid. Journal of Experimental Medicine, 197, 1657–1666.PubMedCrossRefGoogle Scholar
  126. Eliceiri, B. P., Gonzalez, A. M., & Baird, A. (2011). Zebrafish model of the blood–brain barrier: Morphological and permeability studies. Methods in Molecular Biology, 686, 371–378.PubMedCrossRefGoogle Scholar
  127. Elmore, S. (2007). Apoptosis: A review of programmed cell death. Toxicologic Pathology, 35, 495–516.PubMedCrossRefGoogle Scholar
  128. Fang, F., Lue, L. F., Yan, S., Xu, H., Luddy, J. S., Chen, D., et al. (2010). RAGE-dependent signaling in microglia contributes to neuroinflammation, Abeta accumulation, and impaired learning/memory in a mouse model of Alzheimer’s disease. FASEB J, 24, 1043–1055.PubMedCrossRefGoogle Scholar
  129. Fedorov, V. P., Ushakov, I. B., Kordenko, A. N., Drobyshev, V. I., & Davydov, B. I. (1989). Structuro-functional organization of the blood–brain barrier. Izvestiia Akademii Nauk. Seriia biologicheskaia, Jan–Feb(1), 24–34.Google Scholar
  130. Feghali, C. A., & Wright, T. M. (1997). Cytokines in acute and chronic inflammation. Frontiers in Bioscience, 2, d12–d26.PubMedGoogle Scholar
  131. Fenoglio, C., Galimberti, D., Lovati, C., Guidi, I., Gatti, A., Fogliarino, S., et al. (2004). MCP-1 in Alzheimer’s disease patients: A-2518G polymorphism and serum levels. Neurobiology of Aging, 25, 1169–1173.PubMedCrossRefGoogle Scholar
  132. Fiala, M., & Veerhuis, R. (2010). Biomarkers of inflammation and amyloid-beta phagocytosis in patients at risk of Alzheimer disease. Experimental Gerontology, 45, 57–63.PubMedCrossRefGoogle Scholar
  133. Filiz, G., Price, K. A., Caragounis, A., Du, T., Crouch, P. J., & White, A. R. (2008). The role of metals in modulating metalloprotease activity in the AD brain. European Biophysics Journal, 37, 315–321.PubMedCrossRefGoogle Scholar
  134. Fillit, H., Ding, W. H., Buee, L., Kalman, J., Altstiel, L., Lawlor, B., et al. (1991). Elevated circulating tumor necrosis factor levels in Alzheimer’s disease. Neuroscience Letters, 129, 318–320.PubMedCrossRefGoogle Scholar
  135. Finder, V. H. (2010). Alzheimer’s disease: A general introduction and pathomechanism. Journal of Alzheimer’s Disease, 22(Suppl 3), 5–19.PubMedGoogle Scholar
  136. Flex, A., Gaetani, E., Proia, A. S., Pecorini, G., Straface, G., Biscetti, F., et al. (2006). Analysis of functional polymorphisms of metalloproteinase genes in persons with vascular dementia and Alzheimer’s disease. Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 61, 1065–1069.Google Scholar
  137. Forman, H. J., Fukuto, J. M., & Torres, M. (2004). Redox signaling: Thiol chemistry defines which reactive oxygen and nitrogen species can act as second messengers. American Journal of Physiology, 287, C246–C256.PubMedCrossRefGoogle Scholar
  138. Frackowiak, J., Zoltowska, A., & Wisniewski, H. M. (1994). Non-fibrillar beta-amyloid protein is associated with smooth muscle cells of vessel walls in Alzheimer disease. Journal of Neuropathology and Experimental Neurology, 53, 637–645.PubMedCrossRefGoogle Scholar
  139. Fujita, S., Seino, K., Sato, K., Sato, Y., Eizumi, K., Yamashita, N., et al. (2006). Regulatory dendritic cells act as regulators of acute lethal systemic inflammatory response. Blood, 107, 3656–3664.PubMedCrossRefGoogle Scholar
  140. Fuller, S., Steele, M., & Munch, G. (2010). Activated astroglia during chronic inflammation in Alzheimer’s disease—do they neglect their neurosupportive roles? Mutation Research, 690, 40–49.PubMedCrossRefGoogle Scholar
  141. Galasko, D., & Montine, T. J. (2010). Biomarkers of oxidative damage and inflammation in Alzheimer’s disease. Biomarkers in Medicine, 4, 27–36.PubMedCrossRefGoogle Scholar
  142. Garcia-Matas, S., de Vera, N., Aznar, A. O., Marimon, J. M., Adell, A., Planas, A. M., et al. (2010). In vitro and in vivo activation of astrocytes by amyloid-beta is potentiated by pro-oxidant agents. Journal of Alzheimer’s Disease, 20, 229–245.PubMedGoogle Scholar
  143. Garcia-Ospina, G. P., Jimenez-Del Rio, M., Lopera, F., & Velez-Pardo, C. (2003). Neuronal DNA damage correlates with a positive detection of c-Jun, nuclear factor kB, p53 and Par-4 transcription factors in Alzheimer’s disease. Revista de Neurologia, 36, 1004–1010.PubMedGoogle Scholar
  144. Garrido, N., Meseguer, M., Simon, C., Pellicer, A., & Remohi, J. (2004). Pro-oxidative and anti-oxidative imbalance in human semen and its relation with male fertility. Asian Journal of Andrology, 6, 59–65.PubMedGoogle Scholar
  145. Gasche, Y., Copin, J. C., Sugawara, T., Fujimura, M., & Chan, P. H. (2001). Matrix metalloproteinase inhibition prevents oxidative stress-associated blood–brain barrier disruption after transient focal cerebral ischemia. Journal of Cerebral Blood Flow and Metabolism, 21, 1393–1400.PubMedGoogle Scholar
  146. Gasic-Milenkovic, J., Loske, C., & Munch, G. (2003). Advanced glycation endproducts cause lipid peroxidation in the human neuronal cell line SH-SY5Y. Journal of Alzheimer’s Disease, 5, 25–30.PubMedGoogle Scholar
  147. Ge, Y. W., & Lahiri, D. K. (2002). Regulation of promoter activity of the APP gene by cytokines and growth factors: Implications in Alzheimer’s disease. Annals of the New York Academy of Sciences, 973, 463–467.PubMedCrossRefGoogle Scholar
  148. Gella, A., & Durany, N. (2009). Oxidative stress in Alzheimer disease. Cell Adhesion & Migration, 3, 88–93.CrossRefGoogle Scholar
  149. Ghiso, J., Tomidokoro, Y., Revesz, T., Frangione, B., & Rostagno, A. (2010). Cerebral amyloid angiopathy and Alzheimer’s disease. Hirosaki Igaku, 61, S111–S124.PubMedGoogle Scholar
  150. Ghribi, O., Golovko, M. Y., Larsen, B., Schrag, M., & Murphy, E. J. (2006). Deposition of iron and beta-amyloid plaques is associated with cortical cellular damage in rabbits fed with long-term cholesterol-enriched diets. Journal of Neurochemistry, 99, 438–449.PubMedCrossRefGoogle Scholar
  151. Giardino, I., Edelstein, D., & Brownlee, M. (1996). BCL-2 expression or antioxidants prevent hyperglycemia-induced formation of intracellular advanced glycation endproducts in bovine endothelial cells. Journal of Clinical Investigation, 97, 1422–1428.PubMedCrossRefGoogle Scholar
  152. Gibson, G. E., Park, L. C., Zhang, H., Sorbi, S., & Calingasan, N. Y. (1999). Oxidative stress and a key metabolic enzyme in Alzheimer brains, cultured cells, and an animal model of chronic oxidative deficits. Annals of the New York Academy of Sciences, 893, 79–94.PubMedCrossRefGoogle Scholar
  153. Gilgun-Sherki, Y., Melamed, E., & Offen, D. (2001). Oxidative stress induced-neurodegenerative diseases: The need for antioxidants that penetrate the blood brain barrier. Neuropharmacology, 40, 959–975.PubMedCrossRefGoogle Scholar
  154. Gilgun-Sherki, Y., Melamed, E., & Offen, D. (2003). Antioxidant treatment in Alzheimer’s disease: Current state. Journal of Molecular Neuroscience, 21, 1–11.PubMedCrossRefGoogle Scholar
  155. Glinsky, G. V., & Glinsky, V. V. (1996). Apoptosis and metastasis: A superior resistance of metastatic cancer cells to programmed cell death. Cancer Letters, 101, 43–51.PubMedCrossRefGoogle Scholar
  156. Golde, T. E. (2002). Inflammation takes on Alzheimer disease. Nature Medicine, 8, 936–938.PubMedCrossRefGoogle Scholar
  157. Goldgaber, D., Harris, H. W., Hla, T., Maciag, T., Donnelly, R. J., Jacobsen, J. S., et al. (1989). Interleukin 1 regulates synthesis of amyloid beta-protein precursor mRNA in human endothelial cells. Proceedings of the National Academy of Sciences of the United States of America, 86, 7606–7610.PubMedCrossRefGoogle Scholar
  158. Griffin, W. S. (2006). Inflammation and neurodegenerative diseases. American Journal of Clinical Nutrition, 83, 470S–474S.PubMedGoogle Scholar
  159. Griffin, B., Selassie, M., & Gwebu, E. T. (2000). Aged garlic extract suppresses lipid peroxidation induced by beta-amyloid in PC12 cells. In Vitro Cellular & Developmental Biology. Animal, 36, 279–280.CrossRefGoogle Scholar
  160. Griffin, W. S., Sheng, J. G., Gentleman, S. M., Graham, D. I., Mrak, R. E., & Roberts, G. W. (1994). Microglial interleukin-1 alpha expression in human head injury: Correlations with neuronal and neuritic beta-amyloid precursor protein expression. Neuroscience Letters, 176, 133–136.PubMedCrossRefGoogle Scholar
  161. Griffin, W. S., Sheng, J. G., Roberts, G. W., & Mrak, R. E. (1995). Interleukin-1 expression in different plaque types in Alzheimer’s disease: Significance in plaque evolution. Journal of Neuropathology and Experimental Neurology, 54, 276–281.PubMedCrossRefGoogle Scholar
  162. Grundman, M., & Delaney, P. (2002). Antioxidant strategies for Alzheimer’s disease. Proceedings of the Nutrition Society, 61, 191–202.PubMedCrossRefGoogle Scholar
  163. Gu, Y., Dee, C. M., & Shen, J. (2011a). Interaction of free radicals, matrix metalloproteinases and caveolin-1 impacts blood–brain barrier permeability. Frontiers in Bioscience (Scholar Edition), 3, 1216–1231.CrossRefGoogle Scholar
  164. Gu, Y., Nieves, J. W., Luchsinger, J. A., & Scarmeas, N. (2011b). Dietary inflammation factor rating system and risk of Alzheimer disease in elders. Alzheimer Disease and Associated Disorders, 25, 149–154.PubMedCrossRefGoogle Scholar
  165. Guo, Q., Fu, W., Sopher, B. L., Miller, M. W., Ware, C. B., Martin, G. M., et al. (1999). Increased vulnerability of hippocampal neurons to excitotoxic necrosis in presenilin-1 mutant knock-in mice. Nature Medicine, 5, 101–106.PubMedCrossRefGoogle Scholar
  166. Gupta, M. K., Neelakantan, T. V., Sanghamitra, M., Tyagi, R. K., Dinda, A., Maulik, S., et al. (2006). An assessment of the role of reactive oxygen species and redox signaling in norepinephrine-induced apoptosis and hypertrophy of H9c2 cardiac myoblasts. Antioxidants & Redox Signaling, 8, 1081–1093.CrossRefGoogle Scholar
  167. Gutierrez, J., Ballinger, S. W., Darley-Usmar, V. M., & Landar, A. (2006). Free radicals, mitochondria, and oxidized lipids: The emerging role in signal transduction in vascular cells. Circulation Research, 99, 924–932.PubMedCrossRefGoogle Scholar
  168. Haddad, J. J. (2002). Antioxidant and prooxidant mechanisms in the regulation of redox(y)-sensitive transcription factors. Cellular Signalling, 14, 879–897.PubMedCrossRefGoogle Scholar
  169. Haddad, J. J. (2003). Science review: Redox and oxygen-sensitive transcription factors in the regulation of oxidant-mediated lung injury: Role for hypoxia-inducible factor-1alpha. Critical Care, 7, 47–54.PubMedCrossRefGoogle Scholar
  170. Haorah, J., Ramirez, S. H., Schall, K., Smith, D., Pandya, R., & Persidsky, Y. (2007). Oxidative stress activates protein tyrosine kinase and matrix metalloproteinases leading to blood–brain barrier dysfunction. Journal of Neurochemistry, 101, 566–576.PubMedCrossRefGoogle Scholar
  171. Hawkins, B. T., Lundeen, T. F., Norwood, K. M., Brooks, H. L., & Egleton, R. D. (2007). Increased blood–brain barrier permeability and altered tight junctions in experimental diabetes in the rat: Contribution of hyperglycaemia and matrix metalloproteinases. Diabetologia, 50, 202–211.PubMedCrossRefGoogle Scholar
  172. Heimlich, G., & Cidlowski, J. A. (2006). Selective role of intracellular chloride in the regulation of the intrinsic but not extrinsic pathway of apoptosis in Jurkat T-cells. The Journal of Biological Chemistry, 281, 2232–2241.PubMedCrossRefGoogle Scholar
  173. Helzner, E. P., Scarmeas, N., Cosentino, S., Tang, M. X., Schupf, N., & Stern, Y. (2008). Survival in Alzheimer disease: A multiethnic, population-based study of incident cases. Neurology, 71, 1489–1495.PubMedCrossRefGoogle Scholar
  174. Heneka, M. T., & O’Banion, M. K. (2007). Inflammatory processes in Alzheimer’s disease. Journal of Neuroimmunology, 184, 69–91.PubMedCrossRefGoogle Scholar
  175. Heneka, M. T., O’Banion, M. K., Terwel, D., & Kummer, M. P. (2010). Neuroinflammatory processes in Alzheimer’s disease. Journal of Neural Transmission, 117, 919–947.PubMedCrossRefGoogle Scholar
  176. Hensley, K., Mhatre, M., Mou, S., Pye, Q. N., Stewart, C., West, M., et al. (2006). On the relation of oxidative stress to neuroinflammation: Lessons learned from the G93A-SOD1 mouse model of amyotrophic lateral sclerosis. Antioxidants & Redox Signaling, 8, 2075–2087.CrossRefGoogle Scholar
  177. Heo, H. J., Cho, H. Y., Hong, B., Kim, H. K., Kim, E. K., Kim, B. G., et al. (2001). Protective effect of 4′,5-dihydroxy-3′,6,7-trimethoxyflavone from Artemisia asiatica against Abeta-induced oxidative stress in PC12 cells. Amyloid, 8, 194–201.PubMedCrossRefGoogle Scholar
  178. Hernanz, A., De la Fuente, M., Navarro, M., & Frank, A. (2007). Plasma aminothiol compounds, but not serum tumor necrosis factor receptor II and soluble receptor for advanced glycation end products, are related to the cognitive impairment in Alzheimer’s disease and mild cognitive impairment patients. Neuroimmunomodulation, 14, 163–167.PubMedCrossRefGoogle Scholar
  179. Herring, A., Blome, M., Ambree, O., Sachser, N., Paulus, W., & Keyvani, K. (2010). Reduction of cerebral oxidative stress following environmental enrichment in mice with Alzheimer-like pathology. Brain Pathology, 20, 166–175.PubMedCrossRefGoogle Scholar
  180. Hirsch-Reinshagen, V., Burgess, B. L., & Wellington, C. L. (2009). Why lipids are important for Alzheimer disease? Molecular and Cellular Biochemistry, 326, 121–129.PubMedCrossRefGoogle Scholar
  181. Hong, H., Liu, L. P., Liao, J. M., Wang, T. S., Ye, F. Y., Wu, J., et al. (2009). Downregulation of LRP1 [correction of LPR1] at the blood–brain barrier in streptozotocin-induced diabetic mice. Neuropharmacology, 56, 1054–1059.PubMedCrossRefGoogle Scholar
  182. Horstmann, S., Budig, L., Gardner, H., Koziol, J., Deuschle, M., Schilling, C., et al. (2010). Matrix metalloproteinases in peripheral blood and cerebrospinal fluid in patients with Alzheimer’s disease. International Psychogeriatrics, 22, 966–972.PubMedCrossRefGoogle Scholar
  183. Huang, X., Moir, R. D., Tanzi, R. E., Bush, A. I., & Rogers, J. T. (2004). Redox-active metals, oxidative stress, and Alzheimer’s disease pathology. Annals of the New York Academy of Sciences, 1012, 153–163.PubMedCrossRefGoogle Scholar
  184. Hyodo, F., Chuang, K. H., Goloshevsky, A. G., Sulima, A., Griffiths, G. L., Mitchell, J. B., et al. (2008). Brain redox imaging using blood–brain barrier-permeable nitroxide MRI contrast agent. Journal of Cerebral Blood Flow and Metabolism, 28, 1165–1174.PubMedCrossRefGoogle Scholar
  185. Igarashi, Y., Utsumi, H., Chiba, H., Yamada-Sasamori, Y., Tobioka, H., Kamimura, Y., et al. (1999). Glial cell line-derived neurotrophic factor induces barrier function of endothelial cells forming the blood–brain barrier. Biochemical and Biophysical Research Communications, 261, 108–112.PubMedCrossRefGoogle Scholar
  186. Ill-Raga, G., Ramos-Fernandez, E., Guix, F. X., Tajes, M., Bosch-Morato, M., Palomer, E., et al. (2010). Amyloid-beta peptide fibrils induce nitro-oxidative stress in neuronal cells. Journal of Alzheimer’s Disease, 22, 641–652.PubMedGoogle Scholar
  187. Jaeger, L. B., Dohgu, S., Hwang, M. C., Farr, S. A., Murphy, M. P., Fleegal-DeMotta, M. A., et al. (2009a). Testing the neurovascular hypothesis of Alzheimer’s disease: LRP-1 antisense reduces blood–brain barrier clearance, increases brain levels of amyloid-beta protein, and impairs cognition. Journal of Alzheimer’s Disease, 17, 553–570.PubMedGoogle Scholar
  188. Jaeger, L. B., Dohgu, S., Sultana, R., Lynch, J. L., Owen, J. B., Erickson, M. A., et al. (2009b). Lipopolysaccharide alters the blood–brain barrier transport of amyloid beta protein: A mechanism for inflammation in the progression of Alzheimer’s disease. Brain, Behavior, and Immunity, 23, 507–517.PubMedCrossRefGoogle Scholar
  189. Jeynes, B., & Provias, J. (2008). Evidence for altered LRP/RAGE expression in Alzheimer lesion pathogenesis. Current Alzheimer Research, 5, 432–437.PubMedCrossRefGoogle Scholar
  190. Ji, Y., Permanne, B., Sigurdsson, E. M., Holtzman, D. M., & Wisniewski, T. (2001). Amyloid beta40/42 clearance across the blood–brain barrier following intra-ventricular injections in wild-type, apoE knock-out and human apoE3 or E4 expressing transgenic mice. Journal of Alzheimer’s Disease, 3, 23–30.PubMedGoogle Scholar
  191. Jian Liu, K., & Rosenberg, G. A. (2005). Matrix metalloproteinases and free radicals in cerebral ischemia. Free Radical Biology and Medicine, 39, 71–80.PubMedCrossRefGoogle Scholar
  192. John, G. R., Chen, L., Rivieccio, M. A., Melendez-Vasquez, C. V., Hartley, A., & Brosnan, C. F. (2004). Interleukin-1beta induces a reactive astroglial phenotype via deactivation of the Rho GTPase-Rock axis. Journal of Neuroscience, 24, 2837–2845.PubMedCrossRefGoogle Scholar
  193. Jomova, K., Vondrakova, D., Lawson, M., & Valko, M. (2010). Metals, oxidative stress and neurodegenerative disorders. Molecular and Cellular Biochemistry, 345, 91–104.PubMedCrossRefGoogle Scholar
  194. Joseph, J. A., Denisova, N., Villalobos-Molina, R., Erat, S., & Strain, J. (1996). Oxidative stress and age-related neuronal deficits. Molecular and Chemical Neuropathology, 28, 35–40.PubMedCrossRefGoogle Scholar
  195. Joshi, G., Sultana, R., Perluigi, M., & Butterfield, D. A. (2005). In vivo protection of synaptosomes from oxidative stress mediated by Fe2+/H2O2 or 2,2-azobis-(2-amidinopropane) dihydrochloride by the glutathione mimetic tricyclodecan-9-yl-xanthogenate. Free Radical Biology and Medicine, 38, 1023–1031.PubMedCrossRefGoogle Scholar
  196. Kalaria, R. N. (1997). Cerebrovascular degeneration is related to amyloid-beta protein deposition in Alzheimer’s disease. Annals of the New York Academy of Sciences, 826, 263–271.PubMedCrossRefGoogle Scholar
  197. Kalaria, R. N. (2002). Small vessel disease and Alzheimer’s dementia: Pathological considerations. Cerebrovascular Diseases, 13(Suppl 2), 48–52.PubMedCrossRefGoogle Scholar
  198. Kalaria, R. N., & Harik, S. I. (1989). Reduced glucose transporter at the blood–brain barrier and in cerebral cortex in Alzheimer disease. Journal of Neurochemistry, 53, 1083–1088.PubMedCrossRefGoogle Scholar
  199. Kang, R., Tang, D., Loze, M. T., & Zeh, H. J. (2011). Apoptosis to autophagy switch triggered by the MHC class III-encoded receptor for advanced glycation endproducts (RAGE). Autophagy, 7, 91–93.PubMedCrossRefGoogle Scholar
  200. Kanski, J., Aksenova, M., Schoneich, C., & Butterfield, D. A. (2002). Substitution of isoleucine-31 by helical-breaking proline abolishes oxidative stress and neurotoxic properties of Alzheimer’s amyloid beta-peptide. Free Radical Biology and Medicine, 32, 1205–1211.PubMedCrossRefGoogle Scholar
  201. Kawai, M., Kalaria, R. N., Harik, S. I., & Perry, G. (1990). The relationship of amyloid plaques to cerebral capillaries in Alzheimer’s disease. American Journal of Pathology, 137, 1435–1446.PubMedGoogle Scholar
  202. Kawas, C. H., & Corrada, M. M. (2006). Alzheimer’s and dementia in the oldest-old: A century of challenges. Current Alzheimer Research, 3, 411–419.PubMedCrossRefGoogle Scholar
  203. Kingsley, M. (2006). Effects of phosphatidylserine supplementation on exercising humans. Sports Medicine, 36, 657–669.PubMedCrossRefGoogle Scholar
  204. Kitamura, Y. (1998). Functional activation of glial cells in early and delayed episodes of the brain damage. Nippon Yakurigaku Zasshi, 111, 147–156.PubMedCrossRefGoogle Scholar
  205. Klegeris, A., Walker, D. G., & McGeer, P. L. (1997). Interaction of Alzheimer beta-amyloid peptide with the human monocytic cell line THP-1 results in a protein kinase C-dependent secretion of tumor necrosis factor-alpha. Brain Research, 747, 114–121.PubMedCrossRefGoogle Scholar
  206. Kobayashi, K., Hayashi, M., Nakano, H., Shimazaki, M., Sugimori, K., & Koshino, Y. (2004). Correlation between astrocyte apoptosis and Alzheimer changes in gray matter lesions in Alzheimer’s disease. Journal of Alzheimer’s Disease, 6, 623–632 (discussion 673–681).Google Scholar
  207. Koczyk, D., & Oderfeld-Nowak, B. (2000). Long-term microglial and astroglial activation in the hippocampus of trimethyltin-intoxicated rat: Stimulation of NGF and TrkA immunoreactivities in astroglia but not in microglia. International Journal of Developmental Neuroscience, 18, 591–606.PubMedCrossRefGoogle Scholar
  208. Koistinaho, M., Lin, S., Wu, X., Esterman, M., Koger, D., Hanson, J., et al. (2004). Apolipoprotein E promotes astrocyte colocalization and degradation of deposited amyloid-beta peptides. Nature Medicine, 10, 719–726.PubMedCrossRefGoogle Scholar
  209. Kovacic, P., & Somanathan, R. (2011). Cell signaling and receptors with resorcinols and flavonoids: Redox, reactive oxygen species, and physiological effects. Journal of Receptor and Signal Transduction Research, 31, 265–270.PubMedCrossRefGoogle Scholar
  210. Kurt, M. A., Davies, D. C., & Kidd, M. (1997). Paired helical filament morphology varies with intracellular location in Alzheimer’s disease brain. Neuroscience Letters, 239, 41–44.PubMedCrossRefGoogle Scholar
  211. Laws, S. M., Perneczky, R., Wagenpfeil, S., Muller, U., Forstl, H., Martins, R. N., et al. (2005). TNF polymorphisms in Alzheimer disease and functional implications on CSF beta-amyloid levels. Human Mutation, 26, 29–35.PubMedCrossRefGoogle Scholar
  212. Le Sueur, L. P., Collares-Buzato, C. B., & da Cruz-Hofling, M. A. (2004). Mechanisms involved in the blood–brain barrier increased permeability induced by Phoneutria nigriventer spider venom in rats. Brain Research, 1027, 38–47.PubMedCrossRefGoogle Scholar
  213. Leake, A., Morris, C. M., & Whateley, J. (2000). Brain matrix metalloproteinase 1 levels are elevated in Alzheimer’s disease. Neuroscience Letters, 291, 201–203.PubMedCrossRefGoogle Scholar
  214. Lecanu, L., Greeson, J., & Papadopoulos, V. (2006). Beta-amyloid and oxidative stress jointly induce neuronal death, amyloid deposits, gliosis, and memory impairment in the rat brain. Pharmacology, 76, 19–33.PubMedCrossRefGoogle Scholar
  215. Lee, R. K., Araki, W., & Wurtman, R. J. (1997). Stimulation of amyloid precursor protein synthesis by adrenergic receptors coupled to cAMP formation. Proceedings of the National Academy of Sciences of the United States of America, 94, 5422–5426.PubMedCrossRefGoogle Scholar
  216. Lee, Y. J., Han, S. B., Nam, S. Y., Oh, K. W., & Hong, J. T. (2010a). Inflammation and Alzheimer’s disease. Archives of Pharmacal Research, 33, 1539–1556.PubMedCrossRefGoogle Scholar
  217. Lee, E. O., Kang, J. L., & Chong, Y. H. (2005). The amyloid-beta peptide suppresses transforming growth factor-beta1-induced matrix metalloproteinase-2 production via Smad7 expression in human monocytic THP-1 cells. The Journal of Biological Chemistry, 280, 7845–7853.PubMedCrossRefGoogle Scholar
  218. Lee, K. W., Kim, J. B., Seo, J. S., Kim, T. K., Im, J. Y., Baek, I. S., et al. (2009). Behavioral stress accelerates plaque pathogenesis in the brain of Tg2576 mice via generation of metabolic oxidative stress. Journal of Neurochemistry, 108, 165–175.PubMedCrossRefGoogle Scholar
  219. Lee, Y. H., Lee, N. H., Bhattarai, G., Yun, J. S., Kim, T. I., Jhee, E. C., et al. (2010b). PPARgamma inhibits inflammatory reaction in oxidative stress induced human diploid fibloblast. Cell Biochemistry and Function, 28, 490–496.PubMedCrossRefGoogle Scholar
  220. Lehner, C., Gehwolf, R., Tempfer, H., Krizbai, I., Hennig, B., Bauer, H. C., et al. (2011). Oxidative stress and blood–brain barrier dysfunction under particular consideration of matrix metalloproteinases. Antioxidants & Redox Signaling.Google Scholar
  221. Levy, E., Prelli, F., & Frangione, B. (2006). Studies on the first described Alzheimer’s disease amyloid beta mutant, the Dutch variant. Journal of Alzheimer’s Disease, 9, 329–339.PubMedGoogle Scholar
  222. Li, X., Alafuzoff, I., Soininen, H., Winblad, B., & Pei, J. J. (2005). Levels of mTOR and its downstream targets 4E-BP1, eEF2, and eEF2 kinase in relationships with tau in Alzheimer’s disease brain. FEBS J, 272, 4211–4220.PubMedCrossRefGoogle Scholar
  223. Li, Y. J., Scott, W. K., Zhang, L., Lin, P. I., Oliveira, S. A., Skelly, T., et al. (2006). Revealing the role of glutathione S-transferase omega in age-at-onset of Alzheimer and Parkinson diseases. Neurobiology of Aging, 27, 1087–1093.PubMedCrossRefGoogle Scholar
  224. Liao, M. C., & Van Nostrand, W. E. (2010). Degradation of soluble and fibrillar amyloid beta-protein by matrix metalloproteinase (MT1-MMP) in vitro. Biochemistry, 49, 1127–1136.PubMedCrossRefGoogle Scholar
  225. Lim, G. P., Chu, T., Yang, F., Beech, W., Frautschy, S. A., & Cole, G. M. (2001a). The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. Journal of Neuroscience, 21, 8370–8377.PubMedGoogle Scholar
  226. Lim, G. P., Yang, F., Chu, T., Gahtan, E., Ubeda, O., Beech, W., et al. (2001b). Ibuprofen effects on Alzheimer pathology and open field activity in APPsw transgenic mice. Neurobiology of Aging, 22, 983–991.PubMedCrossRefGoogle Scholar
  227. Lin, Y. L., Liu, C. C., Chuang, J. I., Lei, H. Y., Yeh, T. M., Lin, Y. S., et al. (2000). Involvement of oxidative stress, NF-IL-6, and RANTES expression in dengue-2-virus-infected human liver cells. Virology, 276, 114–126.PubMedCrossRefGoogle Scholar
  228. Liu, H., Funke, S. A., & Willbold, D. (2010). Transport of Alzheimer disease amyloid-beta-binding d-amino acid peptides across an in vitro blood–brain barrier model. Rejuvenation Research, 13, 210–213.PubMedCrossRefGoogle Scholar
  229. Liu, L. P., Hong, H., Liao, J. M., Wang, T. S., Wu, J., Chen, S. S., et al. (2009a). Upregulation of RAGE at the blood–brain barrier in streptozotocin-induced diabetic mice. Synapse, 63, 636–642.PubMedCrossRefGoogle Scholar
  230. Liu, Q., Zhang, J., Tran, H., Verbeek, M. M., Reiss, K., Estus, S., et al. (2009b). LRP1 shedding in human brain: roles of ADAM10 and ADAM17. Molecular Neurodegeneration, 4, 17.PubMedCrossRefGoogle Scholar
  231. Lochhead, J. J., McCaffrey, G., Quigley, C. E., Finch, J., DeMarco, K. M., Nametz, N., et al. (2010). Oxidative stress increases blood–brain barrier permeability and induces alterations in occludin during hypoxia-reoxygenation. Journal of Cerebral Blood Flow and Metabolism, 30, 1625–1636.PubMedCrossRefGoogle Scholar
  232. Loh, K. P., Huang, S. H., De Silva, R., Tan, B. K., & Zhu, Y. Z. (2006). Oxidative stress: Apoptosis in neuronal injury. Current Alzheimer Research, 3, 327–337.PubMedCrossRefGoogle Scholar
  233. Lorenzl, S., Albers, D. S., Relkin, N., Ngyuen, T., Hilgenberg, S. L., Chirichigno, J., et al. (2003). Increased plasma levels of matrix metalloproteinase-9 in patients with Alzheimer’s disease. Neurochemistry International, 43, 191–196.PubMedCrossRefGoogle Scholar
  234. Love, S. (1999). Oxidative stress in brain ischemia. Brain Pathology, 9, 119–131.PubMedCrossRefGoogle Scholar
  235. Lue, L. F., Yan, S. D., Stern, D. M., & Walker, D. G. (2005). Preventing activation of receptor for advanced glycation endproducts in Alzheimer’s disease. Current Drug Targets. CNS and Neurological Disorders, 4, 249–266.PubMedCrossRefGoogle Scholar
  236. Lynch, T., Cherny, R. A., & Bush, A. I. (2000). Oxidative processes in Alzheimer’s disease: The role of abeta-metal interactions. Experimental Gerontology, 35, 445–451.PubMedCrossRefGoogle Scholar
  237. Ma, G. J. (1987). The relationship of astrocyte activation and fibrous gliosis to the development of Alzheimer type I cells in Wilson disease. Zhonghua Bing Li Xue Za Zhi, 16, 7–10.PubMedGoogle Scholar
  238. Maccioni, R. B., Rojo, L. E., Fernandez, J. A., & Kuljis, R. O. (2009). The role of neuroimmunomodulation in Alzheimer’s disease. Annals of the New York Academy of Sciences, 1153, 240–246.PubMedCrossRefGoogle Scholar
  239. Mancuso, M., Orsucci, D., LoGerfo, A., Calsolaro, V., & Siciliano, G. (2010). Clinical features and pathogenesis of Alzheimer’s disease: Involvement of mitochondria and mitochondrial DNA. Advances in Experimental Medicine and Biology, 685, 34–44.PubMedCrossRefGoogle Scholar
  240. Mancuso, C., Scapagini, G., Curro, D., Giuffrida Stella, A. M., De Marco, C., Butterfield, D. A., et al. (2007). Mitochondrial dysfunction, free radical generation and cellular stress response in neurodegenerative disorders. Frontiers in Bioscience, 12, 1107–1123.PubMedCrossRefGoogle Scholar
  241. Marchesi, V. T. (2011). Alzheimer’s dementia begins as a disease of small blood vessels, damaged by oxidative-induced inflammation and dysregulated amyloid metabolism: Implications for early detection and therapy. FASEB J, 25, 5–13.PubMedCrossRefGoogle Scholar
  242. Markesbery, W. R., & Carney, J. M. (1999). Oxidative alterations in Alzheimer’s disease. Brain Pathology, 9, 133–146.PubMedCrossRefGoogle Scholar
  243. Martin-Aragon, S., Bermejo-Bescos, P., Benedi, J., Felici, E., Gil, P., Ribera, J. M., et al. (2009). Metalloproteinase’s activity and oxidative stress in mild cognitive impairment and Alzheimer’s disease. Neurochemical Research, 34, 373–378.PubMedCrossRefGoogle Scholar
  244. Masliah, E., Raber, J., Alford, M., Mallory, M., Mattson, M. P., Yang, D., et al. (1998). Amyloid protein precursor stimulates excitatory amino acid transport. Implications for roles in neuroprotection and pathogenesis. The Journal of Biological Chemistry, 273, 12548–12554.PubMedCrossRefGoogle Scholar
  245. Matos, M., Augusto, E., Oliveira, C. R., & Agostinho, P. (2008). Amyloid-beta peptide decreases glutamate uptake in cultured astrocytes: involvement of oxidative stress and mitogen-activated protein kinase cascades. Neuroscience, 156, 898–910.PubMedCrossRefGoogle Scholar
  246. Mattson, M. P. (1994). Calcium and neuronal injury in Alzheimer’s disease. Contributions of beta-amyloid precursor protein mismetabolism, free radicals, and metabolic compromise. Annals of the New York Academy of Sciences, 747, 50–76.PubMedCrossRefGoogle Scholar
  247. Mattson, M. P., & Chan, S. L. (2003). Neuronal and glial calcium signaling in Alzheimer’s disease. Cell Calcium, 34, 385–397.PubMedCrossRefGoogle Scholar
  248. Mattson, M. P., Cheng, B., Davis, D., Bryant, K., Lieberburg, I., & Rydel, R. E. (1992). Beta-amyloid peptides destabilize calcium homeostasis and render human cortical neurons vulnerable to excitotoxicity. Journal of Neuroscience, 12, 376–389.PubMedGoogle Scholar
  249. Mattson, M. P., Pedersen, W. A., Duan, W., Culmsee, C., & Camandola, S. (1999). Cellular and molecular mechanisms underlying perturbed energy metabolism and neuronal degeneration in Alzheimer’s and Parkinson’s diseases. Annals of the New York Academy of Sciences, 893, 154–175.PubMedCrossRefGoogle Scholar
  250. McAlpine, F. E., Lee, J. K., Harms, A. S., Ruhn, K. A., Blurton-Jones, M., Hong, J., et al. (2009). Inhibition of soluble TNF signaling in a mouse model of Alzheimer’s disease prevents pre-plaque amyloid-associated neuropathology. Neurobiology of Diseases, 34, 163–177.CrossRefGoogle Scholar
  251. McConlogue, L., Buttini, M., Anderson, J. P., Brigham, E. F., Chen, K. S., Freedman, S. B., et al. (2007). Partial reduction of BACE1 has dramatic effects on Alzheimer plaque and synaptic pathology in APP Transgenic Mice. The Journal of Biological Chemistry, 282, 26326–26334.PubMedCrossRefGoogle Scholar
  252. McNiff, P. A., Laliberte, R. E., Svensson, L., Pazoles, C. J., & Gabel, C. A. (1995). Inhibition of cytokine activation processes in vitro by tenidap, a novel anti-inflammatory agent. Cytokine, 7, 196–208.PubMedCrossRefGoogle Scholar
  253. Medeiros, R., Prediger, R. D., Passos, G. F., Pandolfo, P., Duarte, F. S., Franco, J. L., et al. (2007). Connecting TNF-alpha signaling pathways to iNOS expression in a mouse model of Alzheimer’s disease: Relevance for the behavioral and synaptic deficits induced by amyloid beta protein. Journal of Neuroscience, 27, 5394–5404.PubMedCrossRefGoogle Scholar
  254. Mehlhorn, G., Hollborn, M., & Schliebs, R. (2000). Induction of cytokines in glial cells surrounding cortical beta-amyloid plaques in transgenic Tg2576 mice with Alzheimer pathology. International Journal of Developmental Neuroscience, 18, 423–431.PubMedCrossRefGoogle Scholar
  255. Mhatre, M., Floyd, R. A., & Hensley, K. (2004). Oxidative stress and neuroinflammation in Alzheimer’s disease and amyotrophic lateral sclerosis: Common links and potential therapeutic targets. Journal of Alzheimer’s Disease, 6, 147–157.PubMedGoogle Scholar
  256. Middeldorp, J., van den Berge, S. A., Aronica, E., Speijer, D., & Hol, E. M. (2009). Specific human astrocyte subtype revealed by affinity purified GFAP antibody; unpurified serum cross-reacts with neurofilament-L in Alzheimer. PLoS One, 4, e7663.PubMedCrossRefGoogle Scholar
  257. Minter, R. M., Rectenwald, J. E., Fukuzuka, K., Tannahill, C. L., La Face, D., Tsai, V., et al. (2000). TNF-alpha receptor signaling and IL-10 gene therapy regulate the innate and humoral immune responses to recombinant adenovirus in the lung. Journal of Immunology, 164, 443–451.Google Scholar
  258. Misonou, H., Morishima-Kawashima, M., & Ihara, Y. (2000). Oxidative stress induces intracellular accumulation of amyloid beta-protein (Abeta) in human neuroblastoma cells. Biochemistry, 39, 6951–6959.PubMedCrossRefGoogle Scholar
  259. Miyakawa, T. (2010). Vascular pathology in Alzheimer’s disease. Psychogeriatrics, 10, 39–44.PubMedCrossRefGoogle Scholar
  260. Mlekusch, R., & Humpel, C. (2009). Matrix metalloproteinases-2 and -3 are reduced in cerebrospinal fluid with low beta-amyloid1-42 levels. Neuroscience Letters, 466, 135–138.PubMedCrossRefGoogle Scholar
  261. Moreira, P. I., Santos, M. S., Oliveira, C. R., Shenk, J. C., Nunomura, A., Smith, M. A., et al. (2008). Alzheimer disease and the role of free radicals in the pathogenesis of the disease. CNS & Neurological Disorders Drug Targets, 7, 3–10.CrossRefGoogle Scholar
  262. Mosley, R. L., Benner, E. J., Kadiu, I., Thomas, M., Boska, M. D., Hasan, K., et al. (2006). Neuroinflammation, oxidative stress and the pathogenesis of Parkinson’s disease. Clinical Neuroscience Research, 6, 261–281.PubMedCrossRefGoogle Scholar
  263. Mrak, R. E., & Griffinbc, W. S. (2001). The role of activated astrocytes and of the neurotrophic cytokine S100B in the pathogenesis of Alzheimer’s disease. Neurobiology of Aging, 22, 915–922.PubMedCrossRefGoogle Scholar
  264. Multhaup, G. (2006). Amyloid precursor protein and BACE function as oligomers. Neurodegenerative Diseases, 3, 270–274.PubMedCrossRefGoogle Scholar
  265. Nadler, Y., Alexandrovich, A., Grigoriadis, N., Hartmann, T., Rao, K. S., Shohami, E., et al. (2008). Increased expression of the gamma-secretase components presenilin-1 and nicastrin in activated astrocytes and microglia following traumatic brain injury. Glia, 56, 552–567.PubMedCrossRefGoogle Scholar
  266. Nalivaeva, N. N., Fisk, L. R., Belyaev, N. D., & Turner, A. J. (2008). Amyloid-degrading enzymes as therapeutic targets in Alzheimer’s disease. Current Alzheimer Research, 5, 212–224.PubMedCrossRefGoogle Scholar
  267. Nanetti, L., Vignini, A., Moroni, C., Bartolini, M., Luzzi, S., Provinciali, L., et al. (2005). Peroxynitrite production and NOS expression in astrocytes U373MG incubated with lipoproteins from Alzheimer patients. Brain Research, 1054, 38–44.PubMedCrossRefGoogle Scholar
  268. Newby, A. C., Southgate, K. M., & Davies, M. (1994). Extracellular matrix degrading metalloproteinases in the pathogenesis of arteriosclerosis. Basic Research in Cardiology, 89(Suppl 1), 59–70.PubMedGoogle Scholar
  269. Newman, M., Musgrave, I. F., & Lardelli, M. (2007). Alzheimer disease: Amyloidogenesis, the presenilins and animal models. Biochimica et Biophysica Acta, 1772, 285–297.PubMedGoogle Scholar
  270. Niki, E. (2009). Lipid peroxidation: physiological levels and dual biological effects. Free Radical Biology and Medicine, 47, 469–484.PubMedCrossRefGoogle Scholar
  271. Onyango, I. G., & Khan, S. M. (2006). Oxidative stress, mitochondrial dysfunction, and stress signaling in Alzheimer’s disease. Current Alzheimer Research, 3, 339–349.PubMedCrossRefGoogle Scholar
  272. Op den Velde, W., & Stam, F. C. (1976). Some cerebral proteins and enzyme systems in Alzheimer’s presenile and senile dementia. Journal of the American Geriatrics Society, 24, 12–16.PubMedGoogle Scholar
  273. Opii, W. O., Sultana, R., Abdul, H. M., Ansari, M. A., Nath, A., & Butterfield, D. A. (2007). Oxidative stress and toxicity induced by the nucleoside reverse transcriptase inhibitor (NRTI)–2′,3′-dideoxycytidine (ddC): Relevance to HIV-dementia. Experimental Neurology, 204, 29–38.PubMedCrossRefGoogle Scholar
  274. Orrenius, S. (2004). Mitochondrial regulation of apoptotic cell death. Toxicology Letters, 149, 19–23.PubMedCrossRefGoogle Scholar
  275. Owen, J. B., Sultana, R., Aluise, C. D., Erickson, M. A., Price, T. O., Bu, G., et al. (2010). Oxidative modification to LDL receptor-related protein 1 in hippocampus from subjects with Alzheimer disease: Implications for Abeta accumulation in AD brain. Free Radical Biology and Medicine, 49, 1798–1803.PubMedCrossRefGoogle Scholar
  276. Palade, F., Alexa, I. D., Azoicai, D., Panaghiu, L., & Ungureanu, G. (2003). Oxidative stress in atherosclerosis. Revista Medico-Chirurgicala A Societatii de Medici si Naturalisti din Iasi, 107, 502–511.PubMedGoogle Scholar
  277. Pallas, M., Camins, A., Smith, M. A., Perry, G., Lee, H. G., & Casadesus, G. (2008). From aging to Alzheimer’s disease: unveiling “the switch” with the senescence-accelerated mouse model (SAMP8). Journal of Alzheimer’s Disease, 15, 615–624.PubMedGoogle Scholar
  278. Pan, W., Solomon, B., Maness, L. M., & Kastin, A. J. (2002). Antibodies to beta-amyloid decrease the blood-to-brain transfer of beta-amyloid peptide. Experimental Biology and Medicine (Maywood), 227, 609–615.Google Scholar
  279. Paoletti, F., Mocali, A., & Tombaccini, D. (1997). Cysteine proteinases are responsible for characteristic transketolase alterations in Alzheimer fibroblasts. Journal of Cellular Physiology, 172, 63–68.PubMedCrossRefGoogle Scholar
  280. Papassotiropoulos, A., Hock, C., & Nitsch, R. M. (2001). Genetics of interleukin 6: Implications for Alzheimer’s disease. Neurobiology of Aging, 22, 863–871.PubMedCrossRefGoogle Scholar
  281. Pardridge, W. M. (1988). Does the brain’s gatekeeper falter in aging? Neurobiology of Aging, 9, 44–46.PubMedCrossRefGoogle Scholar
  282. Parks, J. K., Smith, T. S., Trimmer, P. A., Bennett, J. P., Jr., & Parker, W. D., Jr. (2001). Neurotoxic Abeta peptides increase oxidative stress in vivo through NMDA-receptor and nitric-oxide-synthase mechanisms, and inhibit complex IV activity and induce a mitochondrial permeability transition in vitro. Journal of Neurochemistry, 76, 1050–1056.PubMedCrossRefGoogle Scholar
  283. Pasparakis, M., Alexopoulou, L., Episkopou, V., & Kollias, G. (1996). Immune and inflammatory responses in TNF alpha-deficient mice: A critical requirement for TNF alpha in the formation of primary B cell follicles, follicular dendritic cell networks and germinal centers, and in the maturation of the humoral immune response. Journal of Experimental Medicine, 184, 1397–1411.PubMedCrossRefGoogle Scholar
  284. Pattison, D. I., Dean, R. T., & Davies, M. J. (2002). Oxidation of DNA, proteins and lipids by DOPA, protein-bound DOPA, and related catechol(amine)s. Toxicology, 177, 23–37.PubMedCrossRefGoogle Scholar
  285. Paul, R., Lorenzl, S., Koedel, U., Sporer, B., Vogel, U., Frosch, M., et al. (1998). Matrix metalloproteinases contribute to the blood–brain barrier disruption during bacterial meningitis. Annals of Neurology, 44, 592–600.PubMedCrossRefGoogle Scholar
  286. Pedersen, N. L., Berg, S., Johansson, B., Johansson, K., Viitanen, M., Winblad, B., et al. (1998). Genetic factors are often found in Alzheimer disease. An extensive twin study to clarify the heredity-environment relationship. Lakartidningen, 95, 2585–2588.PubMedGoogle Scholar
  287. Pereira, C., Santos, M. S., & Oliveira, C. (1999). Involvement of oxidative stress on the impairment of energy metabolism induced by A beta peptides on PC12 cells: Protection by antioxidants. Neurobiology of Diseases, 6, 209–219.CrossRefGoogle Scholar
  288. Pflanzner, T., Janko, M. C., Andre-Dohmen, B., Reuss, S., Weggen, S., Roebroek, A. J., et al. (2010). LRP1 mediates bidirectional transcytosis of amyloid-beta across the blood–brain barrier. Neurobiology of Aging. doi: 10.1016/j.neurobiolaging.2010.05.025.
  289. Pike, C. J., Walencewicz, A. J., Glabe, C. G., & Cotman, C. W. (1991). In vitro aging of beta-amyloid protein causes peptide aggregation and neurotoxicity. Brain Research, 563, 311–314.PubMedCrossRefGoogle Scholar
  290. Pillai, S., Oresajo, C., & Hayward, J. (2005). Ultraviolet radiation and skin aging: Roles of reactive oxygen species, inflammation and protease activation, and strategies for prevention of inflammation-induced matrix degradation—A review. International Journal of Cosmetic Science, 27, 17–34.PubMedCrossRefGoogle Scholar
  291. Pimplikar, S. W. (2009). Reassessing the amyloid cascade hypothesis of Alzheimer’s disease. International Journal of Biochemistry and Cell Biology, 41, 1261–1268.PubMedCrossRefGoogle Scholar
  292. Poleshchuk, N. N., Votyakov, V. I., Ilkevich Yu, G., Duboiskaya, G. P., Grigoriev, D. G., & Kolomiets, N. D. (1992). Structural and functional changes of blood–brain barrier and indication of prion amyloid filaments in experimental amyotrophic leucospongiosis. Acta Virologica, 36, 293–303.PubMedGoogle Scholar
  293. Popescu, B. O., Toescu, E. C., Popescu, L. M., Bajenaru, O., Muresanu, D. F., Schultzberg, M., et al. (2009). Blood–brain barrier alterations in ageing and dementia. Journal of the Neurological Sciences, 283, 99–106.PubMedCrossRefGoogle Scholar
  294. Pratico, D., Uryu, K., Leight, S., Trojanoswki, J. Q., & Lee, V. M. (2001). Increased lipid peroxidation precedes amyloid plaque formation in an animal model of Alzheimer amyloidosis. Journal of Neuroscience, 21, 4183–4187.PubMedGoogle Scholar
  295. Price, D. L., Sisodia, S. S., & Gandy, S. E. (1995). Amyloid beta amyloidosis in Alzheimer’s disease. Current Opinion in Neurology, 8, 268–274.PubMedCrossRefGoogle Scholar
  296. Pun, P. B., Lu, J., & Moochhala, S. (2009). Involvement of ROS in BBB dysfunction. Free Radical Research, 43, 348–364.PubMedCrossRefGoogle Scholar
  297. Putcha, G. V., Harris, C. A., Moulder, K. L., Easton, R. M., Thompson, C. B., & Johnson, E. M., Jr. (2002). Intrinsic and extrinsic pathway signaling during neuronal apoptosis: Lessons from the analysis of mutant mice. Journal of Cell Biology, 157, 441–453.PubMedCrossRefGoogle Scholar
  298. Ramirez, S. H., Potula, R., Fan, S., Eidem, T., Papugani, A., Reichenbach, N., et al. (2009). Methamphetamine disrupts blood–brain barrier function by induction of oxidative stress in brain endothelial cells. Journal of Cerebral Blood Flow and Metabolism, 29, 1933–1945.PubMedCrossRefGoogle Scholar
  299. Rathke-Hartlieb, S., Schmidt, V. C., Jockusch, H., Schmitt-John, T., & Bartsch, J. W. (1999). Spatiotemporal progression of neurodegeneration and glia activation in the wobbler neuropathy of the mouse. Neuroreport, 10, 3411–3416.PubMedCrossRefGoogle Scholar
  300. Readnower, R. D., Chavko, M., Adeeb, S., Conroy, M. D., Pauly, J. R., McCarron, R. M., et al. (2010). Increase in blood–brain barrier permeability, oxidative stress, and activated microglia in a rat model of blast-induced traumatic brain injury. Journal of Neuroscience Research, 88, 3530–3539.PubMedCrossRefGoogle Scholar
  301. Reale, M., Iarlori, C., Gambi, F., Feliciani, C., Salone, A., Toma, L., et al. (2004). Treatment with an acetylcholinesterase inhibitor in Alzheimer patients modulates the expression and production of the pro-inflammatory and anti-inflammatory cytokines. Journal of Neuroimmunology, 148, 162–171.PubMedCrossRefGoogle Scholar
  302. Reed, T., Perluigi, M., Sultana, R., Pierce, W. M., Klein, J. B., Turner, D. M., et al. (2008). Redox proteomic identification of 4-hydroxy-2-nonenal-modified brain proteins in amnestic mild cognitive impairment: Insight into the role of lipid peroxidation in the progression and pathogenesis of Alzheimer’s disease. Neurobiology of Diseases, 30, 107–120.CrossRefGoogle Scholar
  303. Reiter, R. J. (1993). Interactions of the pineal hormone melatonin with oxygen-centered free radicals: A brief review. Brazilian Journal of Medical and Biological Research, 26, 1141–1155.PubMedGoogle Scholar
  304. Rogers, J. T., Bush, A. I., Cho, H. H., Smith, D. H., Thomson, A. M., Friedlich, A. L., et al. (2008). Iron and the translation of the amyloid precursor protein (APP) and ferritin mRNAs: Riboregulation against neural oxidative damage in Alzheimer’s disease. Biochemical Society Transactions, 36, 1282–1287.PubMedCrossRefGoogle Scholar
  305. Rogers, J. T., & Lahiri, D. K. (2004). Metal and inflammatory targets for Alzheimer’s disease. Current Drug Targets, 5, 535–551.PubMedCrossRefGoogle Scholar
  306. Roggo, S. (2002). Inhibition of BACE, a promising approach to Alzheimer’s disease therapy. Current Topics in Medicinal Chemistry, 2, 359–370.PubMedCrossRefGoogle Scholar
  307. Rohl, C., Armbrust, E., Herbst, E., Jess, A., Gulden, M., Maser, E., et al. (2010). Mechanisms involved in the modulation of astroglial resistance to oxidative stress induced by activated microglia: Antioxidative systems, peroxide elimination, radical generation, lipid peroxidation. Neurotoxicity Research, 17, 317–331.PubMedCrossRefGoogle Scholar
  308. Rong, L. L., Gooch, C., Szabolcs, M., Herold, K. C., Lalla, E., Hays, A. P., et al. (2005). RAGE: a journey from the complications of diabetes to disorders of the nervous system—Striking a fine balance between injury and repair. Restorative Neurology and Neuroscience, 23, 355–365.PubMedGoogle Scholar
  309. Rosenberg, G. A., Estrada, E. Y., & Dencoff, J. E. (1998). Matrix metalloproteinases and TIMPs are associated with blood–brain barrier opening after reperfusion in rat brain. Stroke, 29, 2189–2195.PubMedCrossRefGoogle Scholar
  310. Rosenberg, R. N., Richter, R. W., Risser, R. C., Taubman, K., Prado-Farmer, I., Ebalo, E., et al. (1996). Genetic factors for the development of Alzheimer disease in the Cherokee Indian. Archives of Neurology, 53, 997–1000.PubMedGoogle Scholar
  311. Rosi, S., Ramirez-Amaya, V., Hauss-Wegrzyniak, B., & Wenk, G. L. (2004). Chronic brain inflammation leads to a decline in hippocampal NMDA-R1 receptors. Journal of Neuroinflammation, 1, 12.PubMedCrossRefGoogle Scholar
  312. Rossner, S., Lange-Dohna, C., Zeitschel, U., & Perez-Polo, J. R. (2005). Alzheimer’s disease beta-secretase BACE1 is not a neuron-specific enzyme. Journal of Neurochemistry, 92, 226–234.PubMedCrossRefGoogle Scholar
  313. Roth, K. A. (2001). Caspases, apoptosis, and Alzheimer disease: causation, correlation, and confusion. Journal of Neuropathology and Experimental Neurology, 60, 829–838.PubMedGoogle Scholar
  314. Roth, A. D., Ramirez, G., Alarcon, R., & Von Bernhardi, R. (2005). Oligodendrocytes damage in Alzheimer’s disease: Beta amyloid toxicity and inflammation. Biological Research, 38, 381–387.PubMedCrossRefGoogle Scholar
  315. Rowlands, D. J., Chapple, S., Siow, R. C., & Mann, G. E. (2011). Equol-stimulated mitochondrial reactive oxygen species activate endothelial nitric oxide synthase and redox signaling in endothelial cells: Roles for F-actin and GPR30. Hypertension, 57, 833–840.PubMedCrossRefGoogle Scholar
  316. Saarela, M. S., Lehtimaki, T., Rinne, J. O., Hervonen, A., Jylha, M., Roytta, M., et al. (2004). Interaction between matrix metalloproteinase 3 and the epsilon4 allele of apolipoprotein E increases the risk of Alzheimer’s disease in Finns. Neuroscience Letters, 367, 336–339.PubMedCrossRefGoogle Scholar
  317. Saiz, P. A., Garcia-Portilla, M. P., Florez, G., Corcoran, P., Arango, C., Morales, B., et al. (2009). Polymorphisms of the IL-1 gene complex are associated with alcohol dependence in Spanish Caucasians: Data from an association study. Alcoholism, Clinical and Experimental Research, 33, 2147–2153.PubMedCrossRefGoogle Scholar
  318. Sazontova, T. G., Anchishkina, N. A., Zhukova, A. G., Bedareva, I. V., Pylaeva, E. A., Kriventsova, N. A., et al. (2008). Reactive oxygen species and redox-signaling during adaptation to changes of oxygen level. Fiziolohichnyĭ Zhurnal, 54, 18–32.PubMedGoogle Scholar
  319. Schmidt, J., Barthel, K., Wrede, A., Salajegheh, M., Bahr, M., & Dalakas, M. C. (2008). Interrelation of inflammation and APP in sIBM: IL-1 beta induces accumulation of beta-amyloid in skeletal muscle. Brain, 131, 1228–1240.PubMedCrossRefGoogle Scholar
  320. Schmidt, A. M., Hori, O., Cao, R., Yan, S. D., Brett, J., Wautier, J. L., et al. (1996). RAGE: A novel cellular receptor for advanced glycation end products. Diabetes, 45(Suppl 3), S77–S80.PubMedGoogle Scholar
  321. Schroder, R., & Linke, R. P. (1999). Cerebrovascular involvement in systemic AA and AL amyloidosis: A clear haematogenic pattern. Virchows Archiv, 434, 551–560.PubMedCrossRefGoogle Scholar
  322. Schubert, P., Ogata, T., Marchini, C., & Ferroni, S. (2001). Glia-related pathomechanisms in Alzheimer’s disease: A therapeutic target? Mechanisms of Ageing and Development, 123, 47–57.PubMedCrossRefGoogle Scholar
  323. Schubert, P., & Rudolphi, K. (1998). Interfering with the pathologic activation of microglial cells and astrocytes in dementia. Alzheimer Disease and Associated Disorders, 12(Suppl 2), S21–S28.PubMedGoogle Scholar
  324. Schulz, T. J., Westermann, D., Isken, F., Voigt, A., Laube, B., Thierbach, R., et al. (2010). Activation of mitochondrial energy metabolism protects against cardiac failure. Aging (Albany NY), 2, 843–853.Google Scholar
  325. Sekut, L., & Connolly, K. (1998). AntiTNF-alpha agents in the treatment of inflammation. Expert Opinion on Investigational Drugs, 7, 1825–1839.PubMedCrossRefGoogle Scholar
  326. Senthilkumar, K., Elumalai, P., Arunkumar, R., Banudevi, S., Gunadharini, N. D., Sharmila, G., et al. (2010). Quercetin regulates insulin like growth factor signaling and induces intrinsic and extrinsic pathway mediated apoptosis in androgen independent prostate cancer cells (PC-3). Molecular and Cellular Biochemistry, 344, 173–184.PubMedCrossRefGoogle Scholar
  327. Sergeant, N., Wattez, A., Galvan-valencia, M., Ghestem, A., David, J. P., Lemoine, J., et al. (2003). Association of ATP synthase alpha-chain with neurofibrillary degeneration in Alzheimer’s disease. Neuroscience, 117, 293–303.PubMedCrossRefGoogle Scholar
  328. Serretti, A., Olgiati, P., & De Ronchi, D. (2007). Genetics of Alzheimer’s disease. A rapidly evolving field. Journal of Alzheimer’s Disease, 12, 73–92.PubMedGoogle Scholar
  329. Shaftel, S. S., Griffin, W. S., & O’Banion, M. K. (2008). The role of interleukin-1 in neuroinflammation and Alzheimer disease: An evolving perspective. Journal of Neuroinflammation, 5, 7.PubMedCrossRefGoogle Scholar
  330. Shalit, F., Sredni, B., Stern, L., Kott, E., & Huberman, M. (1994). Elevated interleukin-6 secretion levels by mononuclear cells of Alzheimer’s patients. Neuroscience Letters, 174, 130–132.PubMedCrossRefGoogle Scholar
  331. Shao, Y., Gearing, M., & Mirra, S. S. (1997). Astrocyte-apolipoprotein E associations in senile plaques in Alzheimer disease and vascular lesions: A regional immunohistochemical study. Journal of Neuropathology and Experimental Neurology, 56, 376–381.PubMedCrossRefGoogle Scholar
  332. Shelat, P. B., Chalimoniuk, M., Wang, J. H., Strosznajder, J. B., Lee, J. C., Sun, A. Y., et al. (2008). Amyloid beta peptide and NMDA induce ROS from NADPH oxidase and AA release from cytosolic phospholipase A2 in cortical neurons. Journal of Neurochemistry, 106, 45–55.PubMedCrossRefGoogle Scholar
  333. Sheng, B., Gong, K., Niu, Y., Liu, L., Yan, Y., Lu, G., et al. (2009). Inhibition of gamma-secretase activity reduces Abeta production, reduces oxidative stress, increases mitochondrial activity and leads to reduced vulnerability to apoptosis: Implications for the treatment of Alzheimer’s disease. Free Radical Biology and Medicine, 46, 1362–1375.PubMedCrossRefGoogle Scholar
  334. Sheng, J. G., Mrak, R. E., & Griffin, W. S. (1997). Glial-neuronal interactions in Alzheimer disease: Progressive association of IL-1alpha+ microglia and S100beta+ astrocytes with neurofibrillary tangle stages. Journal of Neuropathology and Experimental Neurology, 56, 285–290.PubMedCrossRefGoogle Scholar
  335. Shi, Q., & Gibson, G. E. (2007). Oxidative stress and transcriptional regulation in Alzheimer disease. Alzheimer Disease and Associated Disorders, 21, 276–291.PubMedCrossRefGoogle Scholar
  336. Shibata, N., Ohnuma, T., Higashi, S., Usui, C., Ohkubo, T., Kitajima, A., et al. (2005). Genetic association between matrix metalloproteinase MMP-9 and MMP-3 polymorphisms and Japanese sporadic Alzheimer’s disease. Neurobiology of Aging, 26, 1011–1014.PubMedCrossRefGoogle Scholar
  337. Shimohama, S., Kamiya, S., Taniguchi, T., & Kimura, J. (1998). Intracellular receptors for activated C-kinase in the postmortem human brain: No alteration in Alzheimer disease. Alzheimer Disease and Associated Disorders, 12, 384–386.PubMedCrossRefGoogle Scholar
  338. Simakova, O., & Arispe, N. J. (2011). Fluorescent analysis of the cell-selective Alzheimer’s disease Abeta peptide surface membrane binding: Influence of membrane components. International Journal of Alzheimer’s Disease. doi: 10.4061/2011/917629.
  339. Simpson, I. A., Carruthers, A., & Vannucci, S. J. (2007). Supply and demand in cerebral energy metabolism: The role of nutrient transporters. Journal of Cerebral Blood Flow and Metabolism, 27, 1766–1791.PubMedCrossRefGoogle Scholar
  340. Simpson, J. E., Ince, P. G., Haynes, L. J., Theaker, R., Gelsthorpe, C., Baxter, L., et al. (2010a). Population variation in oxidative stress and astrocyte DNA damage in relation to Alzheimer-type pathology in the ageing brain. Neuropathology and Applied Neurobiology, 36, 25–40.PubMedCrossRefGoogle Scholar
  341. Simpson, J. E., Ince, P. G., Lace, G., Forster, G., Shaw, P. J., Matthews, F., et al. (2010b). Astrocyte phenotype in relation to Alzheimer-type pathology in the ageing brain. Neurobiology of Aging, 31, 578–590.PubMedCrossRefGoogle Scholar
  342. Singh, M., Nam, D. T., Arseneault, M., & Ramassamy, C. (2010). Role of by-products of lipid oxidation in Alzheimer’s disease brain: A focus on acrolein. Journal of Alzheimer’s Disease, 21, 741–756.PubMedGoogle Scholar
  343. Sisodia, S. S., & Price, D. L. (1995). Role of the beta-amyloid protein in Alzheimer’s disease. FASEB J, 9, 366–370.PubMedGoogle Scholar
  344. Sklavounou-Andrikopoulou, A., Chrysomali, E., Iakovou, M., Garinis, G. A., & Karameris, A. (2004). Elevated serum levels of the apoptosis related molecules TNF-alpha, Fas/Apo-1 and Bcl-2 in oral lichen planus. Journal of Oral Pathology and Medicine, 33, 386–390.PubMedCrossRefGoogle Scholar
  345. Slater, A. F., Stefan, C., Nobel, I., van den Dobbelsteen, D. J., & Orrenius, S. (1995). Signalling mechanisms and oxidative stress in apoptosis. Toxicology Letters, 82–83, 149–153.PubMedCrossRefGoogle Scholar
  346. Smith, D. G., Cappai, R., & Barnham, K. J. (2007). The redox chemistry of the Alzheimer’s disease amyloid beta peptide. Biochimica et Biophysica Acta, 1768, 1976–1990.PubMedCrossRefGoogle Scholar
  347. Smith, M. A., Hirai, K., Hsiao, K., Pappolla, M. A., Harris, P. L., Siedlak, S. L., et al. (1998). Amyloid-beta deposition in Alzheimer transgenic mice is associated with oxidative stress. Journal of Neurochemistry, 70, 2212–2215.PubMedCrossRefGoogle Scholar
  348. Smith-Swintosky, V. L., & Mattson, M. P. (1994). Glutamate, beta-amyloid precursor proteins, and calcium mediated neurofibrillary degeneration. Journal of Neural Transmission. Supplementum, 44, 29–45.PubMedGoogle Scholar
  349. Sokolova, A., Hill, M. D., Rahimi, F., Warden, L. A., Halliday, G. M., & Shepherd, C. E. (2009). Monocyte chemoattractant protein-1 plays a dominant role in the chronic inflammation observed in Alzheimer’s disease. Brain Pathology, 19, 392–398.PubMedCrossRefGoogle Scholar
  350. Spalletta, G., Bernardini, S., Bellincampi, L., Federici, G., Trequattrini, A., Ciappi, F., et al. (2007). Glutathione S-transferase P1 and T1 gene polymorphisms predict longitudinal course and age at onset of Alzheimer disease. The American Journal of Geriatric Psychiatry, 15, 879–887.PubMedCrossRefGoogle Scholar
  351. Squier, T. C. (2001). Oxidative stress and protein aggregation during biological aging. Experimental Gerontology, 36, 1539–1550.PubMedCrossRefGoogle Scholar
  352. Srikanth, V., Maczurek, A., Phan, T., Steele, M., Westcott, B., Juskiw, D., et al. (2011). Advanced glycation endproducts and their receptor RAGE in Alzheimer’s disease. Neurobiology of Aging, 32, 763–777.PubMedCrossRefGoogle Scholar
  353. Standridge, J. B. (2006). Vicious cycles within the neuropathophysiologic mechanisms of Alzheimer’s disease. Current Alzheimer Research, 3, 95–108.PubMedCrossRefGoogle Scholar
  354. Stanley, L. C., Mrak, R. E., Woody, R. C., Perrot, L. J., Zhang, S., Marshak, D. R., et al. (1994). Glial cytokines as neuropathogenic factors in HIV infection: Pathogenic similarities to Alzheimer’s disease. Journal of Neuropathology and Experimental Neurology, 53, 231–238.PubMedCrossRefGoogle Scholar
  355. Streit, W. J., Conde, J. R., & Harrison, J. K. (2001). Chemokines and Alzheimer’s disease. Neurobiology of Aging, 22, 909–913.PubMedCrossRefGoogle Scholar
  356. Strongin, A. Y. (2010). Proteolytic and non-proteolytic roles of membrane type-1 matrix metalloproteinase in malignancy. Biochimica et Biophysica Acta, 1803, 133–141.PubMedCrossRefGoogle Scholar
  357. Sultana, R., & Butterfield, D. A. (2008). Alterations of some membrane transport proteins in Alzheimer’s disease: Role of amyloid beta-peptide. Molecular BioSystems, 4, 36–41.PubMedCrossRefGoogle Scholar
  358. Sultana, R., & Butterfield, D. A. (2009). Oxidatively modified, mitochondria-relevant brain proteins in subjects with Alzheimer disease and mild cognitive impairment. Journal of Bioenergetics and Biomembranes, 41, 441–446.PubMedCrossRefGoogle Scholar
  359. Sultana, R., Newman, S., Mohmmad-Abdul, H., Keller, J. N., & Butterfield, D. A. (2004). Protective effect of the xanthate, D609, on Alzheimer’s amyloid beta-peptide (1-42)-induced oxidative stress in primary neuronal cells. Free Radical Research, 38, 449–458.PubMedCrossRefGoogle Scholar
  360. Sultana, R., Poon, H. F., Cai, J., Pierce, W. M., Merchant, M., Klein, J. B., et al. (2006). Identification of nitrated proteins in Alzheimer’s disease brain using a redox proteomics approach. Neurobiology of Diseases, 22, 76–87.CrossRefGoogle Scholar
  361. Sun, Y. X., Minthon, L., Wallmark, A., Warkentin, S., Blennow, K., & Janciauskiene, S. (2003). Inflammatory markers in matched plasma and cerebrospinal fluid from patients with Alzheimer’s disease. Dementia and Geriatric Cognitive Disorders, 16, 136–144.PubMedCrossRefGoogle Scholar
  362. Sung, S., Yang, H., Uryu, K., Lee, E. B., Zhao, L., Shineman, D., et al. (2004). Modulation of nuclear factor-kappa B activity by indomethacin influences A beta levels but not A beta precursor protein metabolism in a model of Alzheimer’s disease. American Journal of Pathology, 165, 2197–2206.PubMedCrossRefGoogle Scholar
  363. Szczepanik, A. M., Funes, S., Petko, W., & Ringheim, G. E. (2001a). IL-4, IL-10 and IL-13 modulate A beta(1-42)-induced cytokine and chemokine production in primary murine microglia and a human monocyte cell line. Journal of Neuroimmunology, 113, 49–62.PubMedCrossRefGoogle Scholar
  364. Szczepanik, A. M., Rampe, D., & Ringheim, G. E. (2001b). Amyloid-beta peptide fragments p3 and p4 induce pro-inflammatory cytokine and chemokine production in vitro and in vivo. Journal of Neurochemistry, 77, 304–317.PubMedCrossRefGoogle Scholar
  365. Tamagno, E., Guglielmotto, M., Aragno, M., Borghi, R., Autelli, R., Giliberto, L., et al. (2008). Oxidative stress activates a positive feedback between the gamma- and beta-secretase cleavages of the beta-amyloid precursor protein. Journal of Neurochemistry, 104, 683–695.PubMedGoogle Scholar
  366. Tamagno, E., Parola, M., Guglielmotto, M., Santoro, G., Bardini, P., Marra, L., et al. (2003). Multiple signaling events in amyloid beta-induced, oxidative stress-dependent neuronal apoptosis. Free Radical Biology and Medicine, 35, 45–58.PubMedCrossRefGoogle Scholar
  367. Tang, B. L. (2009). Neuronal protein trafficking associated with Alzheimer disease: From APP and BACE1 to glutamate receptors. Cell Adhesion & Migration, 3, 118–128.CrossRefGoogle Scholar
  368. Tarkowski, E., Blennow, K., Wallin, A., & Tarkowski, A. (1999). Intracerebral production of tumor necrosis factor-alpha, a local neuroprotective agent, in Alzheimer disease and vascular dementia. Journal of Clinical Immunology, 19, 223–230.PubMedCrossRefGoogle Scholar
  369. Terai, K., Matsuo, A., & McGeer, P. L. (1996). Enhancement of immunoreactivity for NF-kappa B in the hippocampal formation and cerebral cortex of Alzheimer’s disease. Brain Research, 735, 159–168.PubMedCrossRefGoogle Scholar
  370. Thirumangalakudi, L., Samany, P. G., Owoso, A., Wiskar, B., & Grammas, P. (2006). Angiogenic proteins are expressed by brain blood vessels in Alzheimer’s disease. Journal of Alzheimer’s Disease, 10, 111–118.PubMedGoogle Scholar
  371. Tibolla, G., Norata, G. D., Meda, C., Arnaboldi, L., Uboldi, P., Piazza, F., et al. (2010). Increased atherosclerosis and vascular inflammation in APP transgenic mice with apolipoprotein E deficiency. Atherosclerosis, 210, 78–87.PubMedCrossRefGoogle Scholar
  372. Tilleux, S., & Hermans, E. (2007). Neuroinflammation and regulation of glial glutamate uptake in neurological disorders. Journal of Neuroscience Research, 85, 2059–2070.PubMedCrossRefGoogle Scholar
  373. Tombaccini, D., Mocali, A., & Paoletti, F. (1994). Characteristic transketolase alterations in dermal fibroblasts of Alzheimer patients are modulated by culture conditions. Experimental and Molecular Pathology, 60, 140–146.PubMedCrossRefGoogle Scholar
  374. Tripathy, D., Thirumangalakudi, L., & Grammas, P. (2007). Expression of macrophage inflammatory protein 1-alpha is elevated in Alzheimer’s vessels and is regulated by oxidative stress. Journal of Alzheimer’s Disease, 11, 447–455.PubMedGoogle Scholar
  375. Uematsu, Y., Hirano, A., Kawano, H., & Llena, J. F. (1989). The astrocyte-endothelial interface in cerebellar astrocytoma. No Shinkei Geka, 17, 999–1004.PubMedGoogle Scholar
  376. Vassar, R. (2002). Beta-secretase (BACE) as a drug target for Alzheimer’s disease. Advanced Drug Delivery Reviews, 54, 1589–1602.PubMedCrossRefGoogle Scholar
  377. Vassar, R. (2004). BACE1: The beta-secretase enzyme in Alzheimer’s disease. Journal of Molecular Neuroscience, 23, 105–114.PubMedCrossRefGoogle Scholar
  378. Vassar, R., Bennett, B. D., Babu-Khan, S., Kahn, S., Mendiaz, E. A., Denis, P., et al. (1999). Beta-secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science, 286, 735–741.PubMedCrossRefGoogle Scholar
  379. Velez-Pardo, C., Ospina, G. G., & Jimenez del Rio, M. (2002). Abeta[25-35] peptide and iron promote apoptosis in lymphocytes by an oxidative stress mechanism: Involvement of H2O2, caspase-3, NF-kappaB, p53 and c-Jun. Neurotoxicology, 23, 351–365.PubMedCrossRefGoogle Scholar
  380. Venugopal, C., Demos, C. M., Rao, K. S., Pappolla, M. A., & Sambamurti, K. (2008). Beta-secretase: Structure, function, and evolution. CNS & Neurological Disorders Drug Targets, 7, 278–294.CrossRefGoogle Scholar
  381. Volicer, L., & Crino, P. B. (1990). Involvement of free radicals in dementia of the Alzheimer type: A hypothesis. Neurobiology of Aging, 11, 567–571.PubMedCrossRefGoogle Scholar
  382. Wan, L., Nie, G., Zhang, J., Luo, Y., Zhang, P., Zhang, Z., et al. (2011). Beta-amyloid peptide increases levels of iron content and oxidative stress in human cell and Caenorhabditis elegans models of Alzheimer disease. Free Radical Biology and Medicine, 50, 122–129.PubMedCrossRefGoogle Scholar
  383. Wang, M., & Jia, J. (2010). The interleukin-6 gene-572C/G promoter polymorphism modifies Alzheimer’s risk in APOE epsilon 4 carriers. Neuroscience Letters, 482, 260–263.PubMedCrossRefGoogle Scholar
  384. White, A. R., Du, T., Laughton, K. M., Volitakis, I., Sharples, R. A., Xilinas, M. E., et al. (2006). Degradation of the Alzheimer disease amyloid beta-peptide by metal-dependent up-regulation of metalloprotease activity. The Journal of Biological Chemistry, 281, 17670–17680.PubMedCrossRefGoogle Scholar
  385. Whitson, J. S., & Appel, S. H. (1995). Neurotoxicity of A beta amyloid protein in vitro is not altered by calcium channel blockade. Neurobiology of Aging, 16, 5–10.PubMedCrossRefGoogle Scholar
  386. Williams, K., Ulvestad, E., Waage, A., Antel, J. P., & McLaurin, J. (1994). Activation of adult human derived microglia by myelin phagocytosis in vitro. Journal of Neuroscience Research, 38, 433–443.PubMedCrossRefGoogle Scholar
  387. Wilson, R. S., Weir, D. R., Leurgans, S. E., Evans, D. A., Hebert, L. E., Langa, K. M., et al. (2011). Sources of variability in estimates of the prevalence of Alzheimer’s disease in the United States. Alzheimers Dementia, 7, 74–79.CrossRefGoogle Scholar
  388. Wong, A., Luth, H. J., Deuther-Conrad, W., Dukic-Stefanovic, S., Gasic-Milenkovic, J., Arendt, T., et al. (2001). Advanced glycation endproducts co-localize with inducible nitric oxide synthase in Alzheimer’s disease. Brain Research, 920, 32–40.PubMedCrossRefGoogle Scholar
  389. Woodle, E. S., & Kulkarni, S. (1998). Programmed cell death. Transplantation, 66, 681–691.PubMedCrossRefGoogle Scholar
  390. Wyss-Coray, T. (2006). Inflammation in Alzheimer disease: Driving force, bystander or beneficial response? Nature Medicine, 12, 1005–1015.PubMedGoogle Scholar
  391. Xia, M. Q., & Hyman, B. T. (1999). Chemokines/chemokine receptors in the central nervous system and Alzheimer’s disease. Journal of Neurovirology, 5, 32–41.PubMedCrossRefGoogle Scholar
  392. Xia, M. Q., Qin, S. X., Wu, L. J., Mackay, C. R., & Hyman, B. T. (1998). Immunohistochemical study of the beta-chemokine receptors CCR3 and CCR5 and their ligands in normal and Alzheimer’s disease brains. American Journal of Pathology, 153, 31–37.PubMedCrossRefGoogle Scholar
  393. Yamamoto, M., Kiyota, T., Horiba, M., Buescher, J. L., Walsh, S. M., Gendelman, H. E., et al. (2007). Interferon-gamma and tumor necrosis factor-alpha regulate amyloid-beta plaque deposition and beta-secretase expression in Swedish mutant APP transgenic mice. American Journal of Pathology, 170, 680–692.PubMedCrossRefGoogle Scholar
  394. Yan, S. D., Bierhaus, A., Nawroth, P. P., & Stern, D. M. (2009). RAGE and Alzheimer’s disease: A progression factor for amyloid-beta-induced cellular perturbation? Journal of Alzheimer’s Disease, 16, 833–843.PubMedGoogle Scholar
  395. Yan, J. J., Cho, J. Y., Kim, H. S., Kim, K. L., Jung, J. S., Huh, S. O., et al. (2001). Protection against beta-amyloid peptide toxicity in vivo with long-term administration of ferulic acid. British Journal of Pharmacology, 133, 89–96.PubMedCrossRefGoogle Scholar
  396. Yan, F. L., Zheng, Y., & Zhao, F. D. (2008). Effects of ginkgo biloba extract EGb761 on expression of RAGE and LRP-1 in cerebral microvascular endothelial cells under chronic hypoxia and hypoglycemia. Acta Neuropathologica, 116, 529–535.PubMedCrossRefGoogle Scholar
  397. Yang, Y., Quitschke, W. W., & Brewer, G. J. (1998a). Upregulation of amyloid precursor protein gene promoter in rat primary hippocampal neurons by phorbol ester, IL-1 and retinoic acid, but not by reactive oxygen species. Brain Research. Molecular Brain Research, 60, 40–49.PubMedCrossRefGoogle Scholar
  398. Yang, F., Sun, X., Beech, W., Teter, B., Wu, S., Sigel, J., et al. (1998b). Antibody to caspase-cleaved actin detects apoptosis in differentiated neuroblastoma and plaque-associated neurons and microglia in Alzheimer’s disease. American Journal of Pathology, 152, 379–389.PubMedGoogle Scholar
  399. Yao, Y., Chinnici, C., Tang, H., Trojanowski, J. Q., Lee, V. M., & Pratico, D. (2004). Brain inflammation and oxidative stress in a transgenic mouse model of Alzheimer-like brain amyloidosis. Journal of Neuroinflammation, 1, 21.PubMedCrossRefGoogle Scholar
  400. Yatin, S. M., Varadarajan, S., Link, C. D., & Butterfield, D. A. (1999). In vitro and in vivo oxidative stress associated with Alzheimer’s amyloid beta-peptide (1–42). Neurobiology of Aging, 20, 325–330 (discussion 339–342).Google Scholar
  401. Yoshiyama, Y., Asahina, M., & Hattori, T. (2000). Selective distribution of matrix metalloproteinase-3 (MMP-3) in Alzheimer’s disease brain. Acta Neuropathologica, 99, 91–95.PubMedCrossRefGoogle Scholar
  402. Yu, W., Mechawar, N., Krantic, S., & Quirion, R. (2010). Evidence for the involvement of apoptosis-inducing factor-mediated caspase-independent neuronal death in Alzheimer disease. American Journal of Pathology, 176, 2209–2218.PubMedCrossRefGoogle Scholar
  403. Zhang, L., Bukulin, M., Kojro, E., Roth, A., Metz, V. V., Fahrenholz, F., et al. (2008). Receptor for advanced glycation end products is subjected to protein ectodomain shedding by metalloproteinases. The Journal of Biological Chemistry, 283, 35507–35516.PubMedCrossRefGoogle Scholar
  404. Zhang, X., Luhrs, K. J., Ryff, K. A., Malik, W. T., Driscoll, M. J., & Culver, B. (2009). Suppression of nuclear factor kappa B ameliorates astrogliosis but not amyloid burden in APPswe/PS1dE9 mice. Neuroscience, 161, 53–58.PubMedCrossRefGoogle Scholar
  405. Zhang, M., Mao, Y., Ramirez, S. H., Tuma, R. F., & Chabrashvili, T. (2010). Angiotensin II induced cerebral microvascular inflammation and increased blood–brain barrier permeability via oxidative stress. Neuroscience, 171, 852–858.PubMedCrossRefGoogle Scholar
  406. Zhang, Y., Xu, J., Levin, J., Hegen, M., Li, G., Robertshaw, H., et al. (2004). Identification and characterization of 4-[[4-(2-butynyloxy)phenyl]sulfonyl]-N-hydroxy-2,2-dimethyl-(3S)thiomorpho linecarboxamide (TMI-1), a novel dual tumor necrosis factor-alpha-converting enzyme/matrix metalloprotease inhibitor for the treatment of rheumatoid arthritis. Journal of Pharmacology and Experimental Therapeutics, 309, 348–355.PubMedCrossRefGoogle Scholar
  407. Zhao, M., Cribbs, D. H., Anderson, A. J., Cummings, B. J., Su, J. H., Wasserman, A. J., et al. (2003). The induction of the TNFalpha death domain signaling pathway in Alzheimer’s disease brain. Neurochemical Research, 28, 307–318.PubMedCrossRefGoogle Scholar
  408. Zhou, D., Lauderback, C. M., Yu, T., Brown, S. A., Butterfield, D. A., & Thompson, J. S. (2001). D609 inhibits ionizing radiation-induced oxidative damage by acting as a potent antioxidant. Journal of Pharmacology and Experimental Therapeutics, 298, 103–109.PubMedGoogle Scholar
  409. Zhu, W., Mix, E., & Zhu, J. (2003). Inflammation and proinflammatory cytokine production, but no demyelination of facial nerves, in experimental autoimmune neuritis in Lewis rats. Journal of Neuroimmunology, 140, 97–101.PubMedCrossRefGoogle Scholar
  410. Zlokovic, B. V., Deane, R., Sagare, A. P., Bell, R. D., & Winkler, E. A. (2010). Low-density lipoprotein receptor-related protein-1: A serial clearance homeostatic mechanism controlling Alzheimer’s amyloid beta-peptide elimination from the brain. Journal of Neurochemistry, 115, 1077–1089.PubMedCrossRefGoogle Scholar
  411. Zouambia, M., Fischer, D. F., Hobo, B., De Vos, R. A., Hol, E. M., Varndell, I. M., et al. (2008). Proteasome subunit proteins and neuropathology in tauopathies and synucleinopathies: Consequences for proteomic analyses. Proteomics, 8, 1221–1236.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Neurology, The Affiliated HospitalGuangdong Medical CollegeXiashan District, ZhanjiangPeople’s Republic of China
  2. 2.Department of Pharmaceutical Sciences, Irma Lerma Rangel College of PharmacyTexas A&M Health Science CenterKingsvilleUSA

Personalised recommendations