NeuroMolecular Medicine

, Volume 13, Issue 2, pp 160–166 | Cite as

No Association of LOXL1 Gene Polymorphisms with Alzheimer’s Disease

  • Alexandra AbramssonEmail author
  • Sara Landgren
  • Madeleine Zetterberg
  • Mona Seibt Palmer
  • Lennart Minthon
  • Deborah R. Gustafson
  • Ingmar Skoog
  • Kaj Blennow
  • Henrik Zetterberg
Original Paper


Aggregation of amyloid-beta is one of the major characteristics in brains of patients with Alzheimer’s disease (AD). Although several mechanisms behind the formation of such aggregates have been suggested the regulatory factors are still unknown. The present study aimed at investigating the association of lysyl oxidase-like 1 (LOXL1) polymorphisms with AD diagnosis and cerebrospinal fluid biomarkers (CSF) for the disease. Proteins of the lysyl oxidase (LOX) family are involved in cross-linking extracellular matrix proteins to insoluble fibers and have been associated with neurodegenerative diseases including AD. Genetic polymorphisms in LOXL1 (rs1048661, rs3825942, and rs2165241) have been linked to exfoliation syndrome and exfoliation glaucoma, conditions that have shown association with AD. The polymorphisms were genotyped by Taqman allelic discrimination in a study sample including AD patients (n = 318) and controls (n = 575). In a subgroup of the population, the polymorphisms were analyzed in relation to APOE ε4 genotype and to CSF (T-tau, P-tau, and Aβ1–42). No evidence for associations of these polymorphisms with risk for AD or any of the studied CSF biomarkers measured was found. These results do not support LOXL1 as being a major risk gene for AD.


Lysyl oxidase-like 1 LOXL1 Alzheimer’s disease SNP Haplotype 



This work was supported by grants from the Swedish Research Council, the Swedish Society for Medical Research, the Sahlgrenska University Hospital, the Göteborg Medical Society, the Torsten and Ragnar Söderberg Foundation, Swedish Brain Power, Hjalmar Svenssons forskningsfond, Stiftelsen för Gamla Tjänarinnor and Alzheimerfonden.


  1. Altman, D. G. (1991). Practical statistics for medical research (1st ed.). London: Chapman & Hall.Google Scholar
  2. Aragon-Martin, J. A., Ritch, R., Liebmann, J., O’Brien, C., Blaaow, K., Mercieca, F., et al. (2008). Evaluation of LOXL1 gene polymorphisms in exfoliation syndrome and exfoliation glaucoma. Molecular vision, 14, 533–541.PubMedGoogle Scholar
  3. Bayer, A. U., Ferrari, F., & Erb, C. (2002a). High occurrence rate of glaucoma among patients with Alzheimer’s disease. European Neurology, 47, 165–168.PubMedCrossRefGoogle Scholar
  4. Bayer, A. U., Keller, O. N., Ferrari, F., & Maag, K. P. (2002b). Association of glaucoma with neurodegenerative diseases with apoptotic cell death: Alzheimer’s disease and Parkinson’s disease. American Journal of Ophthalmology, 133, 135–137.PubMedCrossRefGoogle Scholar
  5. Berisha, F., Feke, G. T., Trempe, C. L., McMeel, J. W., & Schepens, C. L. (2007). Retinal abnormalities in early Alzheimer’s disease. Investigative ophthalmology and visual science, 48, 2285–2289.PubMedCrossRefGoogle Scholar
  6. Blennow, K., Wallin, A., Agren, H., Spenger, C., Siegfried, J., & Vanmechelen, E. (1995). Tau protein in cerebrospinal fluid: A biochemical marker for axonal degeneration in Alzheimer disease? Molecular and Chemical Neuropathology, 26, 231–245.PubMedCrossRefGoogle Scholar
  7. Blennow, K., Hampel, H., Weiner, M., & Zetterberg, H. (2010). Cerebrospinal fluid and plasma biomarkers in Alzheimer disease. Natural Reviews Neurology, 6, 131–144.CrossRefGoogle Scholar
  8. Boros, S., Kamps, B., Wunderink, L., de Bruijn, W., de Jong, W. W., & Boelens, W. C. (2004). Transglutaminase catalyzes differential crosslinking of small heat shock proteins and amyloid-beta. FEBS Letters, 576, 57–62.PubMedCrossRefGoogle Scholar
  9. Calabrese, M. F., & Miranker, A. D. (2009). Metal binding sheds light on mechanisms of amyloid assembly. Prion, 3, 1–4.PubMedCrossRefGoogle Scholar
  10. Challa, P., Schmidt, S., Liu, Y., Qin, X., Vann, R. R., Gonzalez, P., et al. (2008). Analysis of LOXL1 polymorphisms in a United States population with pseudoexfoliation glaucoma. Molecular vision, 14, 146–149.PubMedGoogle Scholar
  11. Chen, L., Jia, L., Wang, N., Tang, G., Zhang, C., Fan, S., et al. (2009). Evaluation of LOXL1 polymorphisms in exfoliation syndrome in a Chinese population. Molecular vision, 15, 2349–2357.PubMedGoogle Scholar
  12. Chen, H., Chen, L. J., Zhang, M., Gong, W., Tam, P. O., Lam, D. S., et al. (2010). Ethnicity-based subgroup meta-analysis of the association of LOXL1 polymorphisms with glaucoma. Molecular vision, 16, 167–177.PubMedGoogle Scholar
  13. Come, J. H., Fraser, P. E,. & Lansbury, P. T., Jr. (1993). A kinetic model for amyloid formation in the prion diseases: Importance of seeding. In Proceedings of the National Academy of Sciences of the United States of America (Vol. 90, pp. 5959–5963).Google Scholar
  14. Corder, E. H., Saunders, A. M., Strittmatter, W. J., Schmechel, D. E., Gaskell, P. C., Small, G. W., et al. (1993). Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science (New York, N.Y), 261, 921–923.CrossRefGoogle Scholar
  15. Estermann, S., Daepp, G. C., Cattapan-Ludewig, K., Berkhoff, M., Frueh, B. E., & Goldblum, D. (2006). Effect of oral donepezil on Intraocular pressure in normotensive Alzheimer patients. Journal of ocular pharmacology Therapeutics, 22, 62–67.CrossRefGoogle Scholar
  16. Excoffier, L., & Slatkin, M. (1995). Maximum-likelihood estimation of molecular haplotype frequencies in a diploid population. Molecular Biology and Evolution, 12, 921–927.PubMedGoogle Scholar
  17. Fan, B. J., Pasquale, L., Grosskreutz, C. L., Rhee, D., Chen, T., DeAngelis, M. M., et al. (2008). DNA sequence variants in the LOXL1 gene are associated with pseudoexfoliation glaucoma in a US clinic-based population with broad ethnic diversity. BMC medical genetics, 9, 5.PubMedCrossRefGoogle Scholar
  18. Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). Mini-mental state. A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12, 189–198.PubMedCrossRefGoogle Scholar
  19. Fuse, N., Miyazawa, A., Nakazawa, T., Mengkegale, M., Otomo, T., & Nishida, K. (2008). Evaluation of LOXL1 polymorphisms in eyes with exfoliation glaucoma in Japanese. Molecular vision, 14, 1338–1343.PubMedGoogle Scholar
  20. Hansson, O., Zetterberg, H., Buchhave, P., Londos, E., Blennow, K., & Minthon, L. (2006). Association between CSF biomarkers and incipient Alzheimer’s disease in patients with mild cognitive impairment: A follow-up study. Lancet Neurology, 5, 228–234.PubMedCrossRefGoogle Scholar
  21. Hayashi, K., Fong, K. S., Mercier, F., Boyd, C. D., Csiszar, K., & Hayashi, M. (2004). Comparative immunocytochemical localization of lysyl oxidase (LOX) and the lysyl oxidase-like (LOXL) proteins: Changes in the expression of LOXL during development and growth of mouse tissues. Journal of Molecular Histology, 35, 845–855.PubMedCrossRefGoogle Scholar
  22. Hayashi, H., Gotoh, N., Ueda, Y., Nakanishi, H., & Yoshimura, N. (2008). Lysyl oxidase-like 1 polymorphisms and exfoliation syndrome in the Japanese population. American Journal of Ophthalmology, 145, 582–585.PubMedCrossRefGoogle Scholar
  23. Hulstaert, F., Blennow, K., Ivanoiu, A., Schoonderwaldt, H. C., Riemenschneider, M., De Deyn, P. P., et al. (1999). Improved discrimination of AD patients using beta-amyloid(1–42) and tau levels in CSF. Neurology, 52, 1555–1562.PubMedGoogle Scholar
  24. Kagan, H. M. (1994). Lysyl oxidase: Mechanism, regulation and relationship to liver fibrosis. Pathology, Research and Practice, 190, 910–919.PubMedGoogle Scholar
  25. Kessing, L. V., Lopez, A. G., Andersen, P. K., & Kessing, S. V. (2007). No increased risk of developing Alzheimer disease in patients with glaucoma. Journal of Glaucoma, 16, 47–51.PubMedCrossRefGoogle Scholar
  26. Kirby, E., Bandelow, S., & Hogervorst, E. (2010). Visual Impairment in Alzheimer’s Disease: A critical review. Journal of Alzheimers Disease, 21, 15–34.Google Scholar
  27. Kitamura, A., & Kubota, H. (2010). Amyloid oligomers: Dynamics and toxicity in the cytosol and nucleus. FEBS Journals, 277, 1369–1379.CrossRefGoogle Scholar
  28. Lee, K. Y., Ho, S. L., Thalamuthu, A., Venkatraman, A., Venkataraman, D., Pek, D. C., et al. (2009). Association of LOXL1 polymorphisms with pseudoexfoliation in the Chinese. Molecular vision, 15, 1120–1126.PubMedGoogle Scholar
  29. Lemmela, S., Forsman, E., Onkamo, P., Nurmi, H., Laivuori, H., Kivela, T., et al. (2009). Association of LOXL1 gene with Finnish exfoliation syndrome patients. Journal of Human Genetics, 54, 289–297.PubMedCrossRefGoogle Scholar
  30. Linner, E., Popovic, V., Gottfries, C. G., Jonsson, M., Sjogren, M., & Wallin, A. (2001). The exfoliation syndrome in cognitive impairment of cerebrovascular or Alzheimer’s type. Acta Ophthalmologica Scandinavica, 79, 283–285.PubMedCrossRefGoogle Scholar
  31. Liu, X., Zhao, Y., Pawlyk, B., Damaser, M., & Li, T. (2006). Failure of elastic fiber homeostasis leads to pelvic floor disorders. The American journal of pathology, 168, 519–528.PubMedCrossRefGoogle Scholar
  32. Livak, K. J. (1999). Allelic discrimination using fluorogenic probes and the 5′ nuclease assay. Genetic Analysis, 14, 143–149.PubMedGoogle Scholar
  33. Mabuchi, F., Tang, S., Ando, D., Yamakita, M., Wang, J., Kashiwagi, K., et al. (2005). The apolipoprotein E gene polymorphism is associated with open angle glaucoma in the Japanese population. Molecular vision, 11, 609–612.PubMedGoogle Scholar
  34. McKhann, G., Drachman, D., Folstein, M., Katzman, R., Price, D., & Stadlan, E. M. (1984). Clinical diagnosis of Alzheimer’s disease: Report of the NINCDS-ADRDA work group under the auspices of department of health and human services task force on Alzheimer’s Disease. Neurology, 34, 939–944.PubMedGoogle Scholar
  35. Mitchell, P., Wang, J. J., & Smith, W. (1997). Association of pseudoexfoliation syndrome with increased vascular risk. American Journal of Ophthalmology, 124, 685–687.PubMedGoogle Scholar
  36. Mori, K., Imai, K., Matsuda, A., Ikeda, Y., Naruse, S., Hitora-Takeshita, H., et al. (2008). LOXL1 genetic polymorphisms are associated with exfoliation glaucoma in the Japanese population. Molecular vision, 14, 1037–1040.PubMedGoogle Scholar
  37. Mossbock, G., Renner, W., Faschinger, C., Schmut, O., Wedrich, A., & Weger, M. (2008). Lysyl oxidase-like protein 1 (LOXL1) gene polymorphisms and exfoliation glaucoma in a Central European population. Molecular vision, 14, 857–861.PubMedGoogle Scholar
  38. Ovodenko, B., Rostagno, A., Neubert, T. A., Shetty, V., Thomas, S., Yang, A., et al. (2007). Proteomic analysis of exfoliation deposits. Investigative ophthalmology and visual science, 48, 1447–1457.PubMedCrossRefGoogle Scholar
  39. Ozaki, M., Lee, K. Y., Vithana, E. N., Yong, V. H., Thalamuthu, A., Mizoguchi, T., et al. (2008). Association of LOXL1 gene polymorphisms with pseudoexfoliation in the Japanese. Investigative ophthalmology and visual science, 49, 3976–3980.PubMedCrossRefGoogle Scholar
  40. Parisi, V., Miglior, S., Manni, G., Centofanti, M., & Bucci, M. G. (2006). Clinical ability of pattern electroretinograms and visual evoked potentials in detecting visual dysfunction in ocular hypertension and glaucoma. Ophthalmology, 113, 216–228.PubMedCrossRefGoogle Scholar
  41. Pasutto, F., Krumbiegel, M., Mardin, C. Y., Paoli, D., Lammer, R., Weber, B. H., et al. (2008). Association of LOXL1 common sequence variants in German and Italian patients with pseudoexfoliation syndrome and pseudoexfoliation glaucoma. Investigative ophthalmology and visual science, 49, 1459–1463.PubMedCrossRefGoogle Scholar
  42. Pinnell, S.R, & Martin, G.R. (1968). The cross-linking of collagen and elastin: Enzymatic conversion of lysine in peptide linkage to alpha-aminoadipic-delta-semialdehyde (allysine) by an extract from bone. In Proceedings of the National Academy of Sciences of the United States of America (Vol. 61 pp. 708–716).Google Scholar
  43. Ramprasad, V. L., George, R., Soumittra, N., Sharmila, F., Vijaya, L., & Kumaramanickavel, G. (2008). Association of non-synonymous single nucleotide polymorphisms in the LOXL1 gene with pseudoexfoliation syndrome in India. Molecular vision, 14, 318–322.PubMedGoogle Scholar
  44. Resnikoff, S., Pascolini, D., Etya’ale, D., Kocur, I., Pararajasegaram, R., Pokharel, G. P., et al. (2004). Global data on visual impairment in the year 2002. Bulletin of the World Health Organization, 82, 844–851.PubMedGoogle Scholar
  45. Ressiniotis, T., Griffiths, P. G., Birch, M., Keers, S. M., & Chinnery, P. F. (2004). Apolipoprotein E promoter polymorphisms do not have a major influence on the risk of developing primary open angle glaucoma. Molecular vision, 10, 805–807.PubMedGoogle Scholar
  46. Sakono, M., & Zako, T. (2010). Amyloid oligomers: Formation and toxicity of Abeta oligomers. FEBS Journal, 277, 1348–1358.PubMedCrossRefGoogle Scholar
  47. Sharma, S., Chataway, T., Burdon, K. P., Jonavicius, L., Klebe, S., Hewitt, A. W., et al. (2009). Identification of LOXL1 protein and Apolipoprotein E as components of surgically isolated pseudoexfoliation material by direct mass spectrometry. Experimental Eye Research, 89, 479–485.PubMedCrossRefGoogle Scholar
  48. Smith, D. G., Cappai, R., & Barnham, K. J. (2007). The redox chemistry of the Alzheimer’s disease amyloid beta peptide. Biochimica et Biophysica Acta, 1768, 1976–1990.PubMedCrossRefGoogle Scholar
  49. Tamura, H., Kawakami, H., Kanamoto, T., Kato, T., Yokoyama, T., Sasaki, K., et al. (2006). High frequency of open-angle glaucoma in Japanese patients with Alzheimer’s disease. Journal of the Neurological Sciences, 246, 79–83.PubMedCrossRefGoogle Scholar
  50. Tanito, M., Minami, M., Akahori, M., Kaidzu, S., Takai, Y., Ohira, A., et al. (2008). LOXL1 variants in elderly Japanese patients with exfoliation syndrome/glaucoma, primary open-angle glaucoma, normal tension glaucoma, and cataract. Molecular vision, 14, 1898–1905.PubMedGoogle Scholar
  51. Thorleifsson, G., Magnusson, K. P., Sulem, P., Walters, G. B., Gudbjartsson, D. F., Stefansson, H., et al. (2007). Common sequence variants in the LOXL1 gene confer susceptibility to exfoliation glaucoma. Science (New York, N.Y), 317, 1397–1400.CrossRefGoogle Scholar
  52. Vanmechelen, E., Vanderstichele, H., Davidsson, P., Van Kerschaver, E., Van Der Perre, B., Sjogren, M., et al. (2000). Quantification of tau phosphorylated at threonine 181 in human cerebrospinal fluid: A sandwich ELISA with a synthetic phosphopeptide for standardization. Neuroscience Letters, 285, 49–52.PubMedCrossRefGoogle Scholar
  53. Vickers, J. C., Craig, J. E., Stankovich, J., McCormack, G. H., West, A. K., Dickinson, J. L., et al. (2002). The apolipoprotein epsilon4 gene is associated with elevated risk of normal tension glaucoma. Molecular vision, 8, 389–393.PubMedGoogle Scholar
  54. von Otter, M., Landgren, S., Nilsson, S., Zetterberg, M., Celojevic, D., Bergstrom, P., et al. (2010). Nrf2-encoding NFE2L2 haplotypes influence disease progression but not risk in Alzheimer’s disease and age-related cataract. Mechanisms of Ageing and Development, 131, 105–110.CrossRefGoogle Scholar
  55. Williams, S. E., Whigham, B. T., Liu, Y., Carmichael, T. R., Qin, X., Schmidt, S., et al. (2010). Major LOXL1 risk allele is reversed in exfoliation glaucoma in a black South African population. Molecular vision, 16, 705–712.PubMedGoogle Scholar
  56. Yang, X., Zabriskie, N. A., Hau, V. S., Chen, H., Tong, Z., Gibbs, D., et al. (2008). Genetic association of LOXL1 gene variants and exfoliation glaucoma in a Utah cohort. Cell Cycle, 7, 521–524.PubMedCrossRefGoogle Scholar
  57. Zetterberg, H., Wahlund, L. O., & Blennow, K. (2003). Cerebrospinal fluid markers for prediction of Alzheimer’s disease. Neuroscience Letters, 352, 67–69.PubMedCrossRefGoogle Scholar
  58. Zetterberg, M., Tasa, G., Palmer, M. S., Juronen, E., Teesalu, P., Blennow, K., et al. (2007). Apolipoprotein E polymorphisms in patients with primary open-angle glaucoma. American Journal of Ophthalmology, 143, 1059–1060.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Alexandra Abramsson
    • 1
    Email author
  • Sara Landgren
    • 2
  • Madeleine Zetterberg
    • 3
  • Mona Seibt Palmer
    • 1
  • Lennart Minthon
    • 4
  • Deborah R. Gustafson
    • 5
  • Ingmar Skoog
    • 5
  • Kaj Blennow
    • 5
  • Henrik Zetterberg
    • 5
  1. 1.Department of Psychiatry and Neurochemistry, Institute of Neuroscience and PhysiologyThe Sahlgrenska Academy at the University of GothenburgGothenburgSweden
  2. 2.Department of Pharmacology, Institute of Neuroscience and PhysiologyThe Sahlgrenska Academy at the University of GothenburgGothenburgSweden
  3. 3.Department of Clinical Neuroscience and Rehabilitation, Section of Ophthalmology, Institute of Neuroscience and PhysiologyThe Sahlgrenska Academy at the University of GothenburgGothenburgSweden
  4. 4.Clinical Memory Research Unit, Department of Clinical Sciences in MalmöLund UniversityLundSweden
  5. 5.Department of Psychiatry and Neurochemistry, Institute of Neuroscience and PhysiologyThe Sahlgrenska Academy at the University of GothenburgMölndalSweden

Personalised recommendations