Advertisement

NeuroMolecular Medicine

, Volume 12, Issue 4, pp 362–382 | Cite as

Pathology and Current Treatment of Neurodegenerative Sphingolipidoses

  • Matthias EckhardtEmail author
Review Paper

Abstract

Sphingolipidoses constitute a large subgroup of lysosomal storage disorders (LSDs). Many of them are associated with a progressive neurodegeneration. As is the case for LSDs in general, most sphingolipidoses are caused by deficiencies in lysosomal hydrolases. However, accumulation of sphingolipids can also result from deficiencies in proteins involved in the transport or posttranslational modification of lysosomal enzymes, transport of lipids, or lysosomal membrane proteins required for transport of lysosomal degradation end products. The accumulation of sphingolipids in the lysosome together with secondary changes in the concentration and localization of other lipids may cause trafficking defects of membrane lipids and proteins, affect calcium homeostasis, induce the unfolded protein response, activate apoptotic cascades, and affect various signal transduction pathways. To what extent, however, these changes contribute to the pathogenesis of the diseases is not fully understood. Currently, there is no cure for sphingolipidoses. Therapies like enzyme replacement, pharmacological chaperone, and substrate reduction therapy, which have been shown to be efficient in non-neuronopathic LSDs, are currently evaluated in clinical trials of neuronopathic sphingolipidoses. In the future, neural stem cell therapy and gene therapy may become an option for these disorders.

Keywords

Enzyme replacement therapy Lysosome Lysosomal storage disorder Pharmacological chaperone Sphingolipid Sphingolipidosis Substrate reduction therapy 

References

  1. Achord, D. T., Brot, F. E., Bell, C. E., & Sly, W. S. (1978). Human beta-glucuronidase: In vivo clearance and in vitro uptake by a glycoprotein recognition system on reticuloendothelial cells. Cell, 15, 269–278.PubMedCrossRefGoogle Scholar
  2. Aerts, J. M., Groener, J. E., Kuiper, S., Donker-Koopman, W. E., Strijland, A., Ottenhoff, R., et al. (2008). Elevated globotriaosylsphingosine is a hallmark of Fabry disease. Proceedings of the National Academy of Sciences of the United States of America, 105, 2812–2817.PubMedCrossRefGoogle Scholar
  3. Ahmad, I., Hunter, R. E., Flax, J. D., Snyder, E. Y., & Erickson, R. P. (2007). Neural stem cell implantation extends life in Niemann-Pick C1 mice. Journal of Applied Genetics, 48, 269–272.PubMedCrossRefGoogle Scholar
  4. Andersson, U., Smith, D., Jeyakumar, M., Butters, T. D., Borja, M. C., Dwek, R. A., et al. (2004). Improved outcome of N-butyldeoxygalactonojirimycin-mediated substrate reduction therapy in a mouse model of Sandhoff disease. Neurobiology of Diseases, 16, 506–515.CrossRefGoogle Scholar
  5. Asheuer, M., Pflumio, F., Benhamida, S., Dubart-Kupperschmitt, A., Fouquet, F., Imai, Y., et al. (2004). Human CD34+ cells differentiate into microglia and express recombinant therapeutic protein. Proceedings of the National Academy of Sciences of the United States of America, 101, 3557–3562.PubMedCrossRefGoogle Scholar
  6. Austin, J. H. (1965). Metachromatic leukodystrophy. In C. C. Carter (Ed.), Medical aspects of mental retardation (p. 768). Springfield, IL: Charles C Thomas.Google Scholar
  7. Baudry, M., Yao, Y., Simmons, D., Liu, J., & Bi, X. (2003). Postnatal development of inflammation in a murine model of Niemann-Pick type C disease: Immunohistochemical observations of microglia and astroglia. Experimental Neurology, 184, 887–903.PubMedCrossRefGoogle Scholar
  8. Beutler, E., & Grabowski, G. A. (2001). Gaucher disease. In C. R. Scriver, C. R. Beaudet, W. S. Sly, & D. Valle (Eds.), The metabolic, molecular basis of inherited diseases (8th ed., pp. 3635–3668). New York, NY: McGraw-Hill.Google Scholar
  9. Biswas, S., Biesiada, H., Williams, T. D., & LeVine, S. M. (2003). Substrate reduction intervention by l-cycloserine in twitcher mice (globoid cell leukodystrophy) on a B6;CAST/Ei background. Neuroscience Letters, 347, 33–36.PubMedCrossRefGoogle Scholar
  10. Blanz, J., Stroobants, S., Lullmann-Rauch, R., Morelle, W., Ludemann, M., D’Hooge, R., et al. (2008). Reversal of peripheral and central neural storage and ataxia after recombinant enzyme replacement therapy in alpha-mannosidosis mice. Human Molecular Genetics, 17, 3437–3445.PubMedCrossRefGoogle Scholar
  11. Boelens, J. J. (2006). Trends in haematopoietic cell transplantation for inborn errors of metabolism. Journal of Inherited Metabolic Disease, 29, 413–420.PubMedCrossRefGoogle Scholar
  12. Bradová, V., Smíd, F., Ulrich-Bott, B., Roggendorf, W., Paton, B. C., & Harzer, K. (1993). Prosaposin deficiency: further characterization of the sphingolipid activator protein-deficient sibs. Multiple glycolipid elevations (including lactosylceramidosis), partial enzyme deficiencies and ultrastructure of the skin in this generalized sphingolipid storage disease. Human Genetics, 92, 143–152.PubMedCrossRefGoogle Scholar
  13. Brady, R. O. (2006). Enzyme replacement for lysosomal diseases. Annual Review of Medicine, 57, 283–296.PubMedCrossRefGoogle Scholar
  14. Brady, R. O., Pentchev, P. G., Gal, A. E., Hibbert, S. R., & Dekaban, A. S. (1974). Replacement therapy for inherited enzyme deficiency. Use of purified glucocerebrosidase in Gaucher’s disease. New England Journal of Medicine, 291, 989–993.PubMedCrossRefGoogle Scholar
  15. Broekman, M. L., Baek, R. C., Comer, L. A., Fernandez, J. L., Seyfried, T. N., & Sena-Esteves, M. (2007). Complete correction of enzymatic deficiency and neurochemistry in the GM1-gangliosidosis mouse brain by neonatal adeno-associated virus-mediated gene delivery. Molecular Therapy, 15, 30–37.PubMedCrossRefGoogle Scholar
  16. Buser, A. M., Schmid, D., Kern, F., Erne, B., Lazzati, T., & Schaeren-Wiemers, N. (2009). The myelin protein MAL affects peripheral nerve myelination: A new player influencing p75 neurotrophin receptor expression. European Journal of Neuroscience, 29, 2276–2290.PubMedCrossRefGoogle Scholar
  17. Butters, T. D., Dwek, R. A., & Platt, F. M. (2003). Therapeutic applications of imino sugars in lysosomal storage disorders. Current Topics in Medicinal Chemistry, 3, 561–574.PubMedCrossRefGoogle Scholar
  18. Cachon-Gonzalez, M. B., Wang, S. Z., Lynch, A., Ziegler, R., Cheng, S. H., & Cox, T. M. (2006). Effective gene therapy in an authentic model of Tay-Sachs-related diseases. Proceedings of the National Academy of Sciences of the United States of America, 103, 10373–10378.PubMedCrossRefGoogle Scholar
  19. Canuel, M., Korkidakis, A., Konnyu, K., & Morales, C. R. (2008). Sortilin mediates the lysosomal targeting of cathepsins D and H. Biochemical and Biophysical Research Communications, 373, 292–297.PubMedCrossRefGoogle Scholar
  20. Capablo, J. L., Saenz de Cabezon, A., Fraile, J., Alfonso, P., Pocovi, M., & Giraldo, P. (2008). Neurological evaluation of patients with Gaucher disease diagnosed as type 1. Journal of Neurology, Neurosurgery and Psychiatry, 79, 219–222.CrossRefGoogle Scholar
  21. Chen, C. S., Patterson, M. C., Wheatley, C. L., O’Brien, J. F., & Pagano, R. E. (1999). Broad screening test for sphingolipid-storage diseases. Lancet, 354, 901–905.PubMedCrossRefGoogle Scholar
  22. Cho, K. H., Kim, M. W., & Kim, S. U. (1997). Tissue culture model of Krabbe’s disease: Psychosine cytotoxicity in rat oligodendrocyte culture. Developmental Neuroscience, 19, 321–327.PubMedCrossRefGoogle Scholar
  23. Choudhury, A., Dominguez, M., Puri, V., Sharma, D. K., Narita, K., Wheatley, C. L., et al. (2002). Rab proteins mediate Golgi transport of caveola-internalized glycosphingolipids and correct lipid trafficking in Niemann-Pick C cells. Journal of Clinical Investigation, 109, 1541–1550.PubMedGoogle Scholar
  24. Choudhury, A., Sharma, D. K., Marks, D. L., & Pagano, R. E. (2004). Elevated endosomal cholesterol levels in Niemann-Pick cells inhibit rab4 and perturb membrane recycling. Molecular Biology of the Cell, 15, 4500–4511.PubMedCrossRefGoogle Scholar
  25. Ciron, C., Cressant, A., Roux, F., Raoul, S., Cherel, Y., Hantraye, P., et al. (2009). Human alpha-iduronidase gene transfer mediated by adeno-associated virus types 1, 2, and 5 in the brain of nonhuman primates: Vector diffusion and biodistribution. Human Gene Therapy, 20, 350–360.PubMedCrossRefGoogle Scholar
  26. Clarke, J. T., Skomorowski, M. A., & Chang, P. L. (1989). Marked clinical difference between two sibs affected with juvenile metachromatic leukodystrophy. American Journal of Medical Genetics, 33, 10–13.PubMedCrossRefGoogle Scholar
  27. Colle, M. A., Piguet, F., Bertrand, L., Raoul, S., Bieche, I., Dubreil, L., et al. (2010). Efficient intracerebral delivery of AAV5 vector encoding human ARSA in non-human primate. Human Molecular Genetics, 19, 147–158.PubMedCrossRefGoogle Scholar
  28. Consiglio, A., Quattrini, A., Martino, S., Bensadoun, J. C., Dolcetta, D., Trojani, A., et al. (2001). In vivo gene therapy of metachromatic leukodystrophy by lentiviral vectors: Correction of neuropathology and protection against learning impairments in affected mice. Nature Medicine, 7, 310–316.PubMedCrossRefGoogle Scholar
  29. Cosma, M. P., Pepe, S., Annunziata, I., Newbold, R. F., Grompe, M., Parenti, G., et al. (2003). The multiple sulfatase deficiency gene encodes an essential and limiting factor for the activity of sulfatases. Cell, 113, 445–456.PubMedCrossRefGoogle Scholar
  30. Cosma, M. P., Pepe, S., Parenti, G., Settembre, C., Annunziata, I., Wade-Martins, R., et al. (2004). Molecular and functional analysis of SUMF1 mutations in multiple sulfatase deficiency. Human Mutation, 23, 576–581.PubMedCrossRefGoogle Scholar
  31. Cutler, R. G., Kelly, J., Storie, K., Pedersen, W. A., Tammara, A., Hatanpaa, K., et al. (2004). Involvement of oxidative stress-induced abnormalities in ceramide and cholesterol metabolism in brain aging and Alzheimer’s disease. Proceedings of the National Academy of Sciences of the United States of America, 101, 2070–2075.PubMedCrossRefGoogle Scholar
  32. Desnick, R., Ioannou, Y. A., & Eng, C. M. (2001). α-Galactosidase A deficiency: Fabry disease. In C. R. Scriver, A. L. Beaudet, W. S. Sly, & D. Valle (Eds.), The metabolic, molecular basis of inherited diseases (8th ed., pp. 3733–3774). New York, NY: McGraw-Hill.Google Scholar
  33. Dierks, T., Schlotawa, L., Frese, M. A., Radhakrishnan, K., von Figura, K., & Schmidt, B. (2009). Molecular basis of multiple sulfatase deficiency, mucolipidosis II/III and Niemann-Pick C1 disease—Lysosomal storage disorders caused by defects of non-lysosomal proteins. Biochimica et Biophysica Acta, 1793, 710–725.PubMedGoogle Scholar
  34. Dierks, T., Schmidt, B., Borissenko, L. V., Peng, J., Preusser, A., Mariappan, M., et al. (2003). Multiple sulfatase deficiency is caused by mutations in the gene encoding the human C(alpha)-formylglycine generating enzyme. Cell, 113, 435–444.PubMedCrossRefGoogle Scholar
  35. Duchen, L. W., Eicher, E. M., Jacobs, J. M., Scaravilli, F., & Teixeira, F. (1980). Hereditary leucodystrophy in the mouse: The new mutant twitcher. Brain, 103, 695–710.PubMedCrossRefGoogle Scholar
  36. Eckhardt, M., Hedayati, K. K., Pitsch, J., Lullmann-Rauch, R., Beck, H., Fewou, S. N., et al. (2007). Sulfatide storage in neurons causes hyperexcitability and axonal degeneration in a mouse model of metachromatic leukodystrophy. Journal of Neuroscience, 27, 9009–9021.PubMedCrossRefGoogle Scholar
  37. Elliot-Smith, E., Speak, A. O., Lloyd-Evans, E., Smith, D. A., van der Spoel, A. C., Jeyakumar, M., et al. (2008). Beneficial effects of substrate reduction therapy in a mouse model of GM1 gangliosidosis. Molecular Genetics and Metabolism, 94, 204–211.PubMedCrossRefGoogle Scholar
  38. Elstein, D., Hollak, C., Aerts, J. M., van Weely, S., Maas, M., Cox, T. M., et al. (2004). Sustained therapeutic effects of oral miglustat (Zavesca, N-butyldeoxynojirimycin, OGT 918) in type I Gaucher disease. Journal of Inherited Metabolic Disease, 27, 757–766.PubMedCrossRefGoogle Scholar
  39. Enquist, I. B., Lo Bianco, C., Ooka, A., Nilsson, E., Månsson, J. E., Ehinger, M., et al. (2007). Murine models of acute neuronopathic Gaucher disease. Proceedings of the National Academy of Sciences of the United States of America, 104, 17483–17488.PubMedCrossRefGoogle Scholar
  40. Escolar, M. L., Poe, M. D., Provenzale, J. M., Richards, K. C., Allison, J., Wood, S., et al. (2005). Transplantation of umbilical-cord blood in babies with infantile Krabbe’s disease. New England Journal of Medicine, 352, 2069–2081.PubMedCrossRefGoogle Scholar
  41. Eskelinen, E. L., & Saftig, P. (2009). Autophagy: A lysosomal degradation pathway with a central role in health and disease. Biochimica et Biophysica Acta, 1793, 664–673.PubMedGoogle Scholar
  42. Fan, J. Q. (2008). A counterintuitive approach to treat enzyme deficiencies: Use of enzyme inhibitors for restoring mutant enzyme activity. Biological Chemistry, 389, 1–11.PubMedCrossRefGoogle Scholar
  43. Fan, J. Q., & Ishii, S. (2003). Cell-based screening of active-site specific chaperone for the treatment of Fabry disease. Methods in Enzymology, 363, 412–420.PubMedCrossRefGoogle Scholar
  44. Fan, J. Q., Ishii, S., Asano, N., & Suzuki, Y. (1999). Accelerated transport and maturation of lysosomal alpha-galactosidase A in Fabry lymphoblasts by an enzyme inhibitor. Nature Medicine, 5, 112–115.PubMedCrossRefGoogle Scholar
  45. Farfel-Becker, T., Vitner, E., Dekel, H., Leshem, N., Enquist, I. B., Karlsson, S., et al. (2009). No evidence for activation of the unfolded protein response in neuronopathic models of Gaucher disease. Human Molecular Genetics, 18, 1482–1488.PubMedCrossRefGoogle Scholar
  46. Ficicioglu, C. (2008). Review of miglustat for clinical management in Gaucher disease type 1. Therapeutics and Clinical Risk Management, 4, 425–431.PubMedGoogle Scholar
  47. Fletcher, J. M. (2006). Screening for lysosomal storage disorders—a clinical perspective. Journal of Inherited Metabolic Disease, 29, 405–408.PubMedCrossRefGoogle Scholar
  48. Frank, M., van der Haar, M. E., Schaeren-Wiemers, N., & Schwab, M. E. (1998). rMAL is a glycosphingolipid-associated protein of myelin and apical membranes of epithelial cells in kidney and stomach. Journal of Neuroscience, 18, 4901–4913.PubMedGoogle Scholar
  49. Fredman, P. (1998). Sphingolipids and cell signalling. Journal of Inherited Metabolic Disease, 21, 472–480.PubMedCrossRefGoogle Scholar
  50. Fressinaud, C., & Vallat, J. M. (1994). Basic fibroblast growth factor improves recovery after chemically induced breakdown of myelin-like membranes in pure oligodendrocyte cultures. Journal of Neuroscience Research, 38, 202–213.PubMedCrossRefGoogle Scholar
  51. Fukuda, T., Ewan, L., Bauer, M., Mattaliano, R. J., Zaal, K., Ralston, E., et al. (2006). Dysfunction of endocytic and autophagic pathways in a lysosomal storage disease. Annals of Neurology, 59, 700–708.PubMedCrossRefGoogle Scholar
  52. Fuller, M., Rozaklis, T., Lovejoy, M., Zarrinkalam, K., Hopwood, J. J., & Meikle, P. J. (2008). Glucosylceramide accumulation is not confined to the lysosome in fibroblasts from patients with Gaucher disease. Molecular Genetics and Metabolism, 93, 437–443.PubMedCrossRefGoogle Scholar
  53. Gieselmann, V. (2008). Metachromatic leukodystrophy: Genetics, pathogenesis and therapeutic options. Acta Paediatrica. Supplement, 97, 15–21.PubMedCrossRefGoogle Scholar
  54. Gillard, B. K., Clement, R. G., & Marcus, D. M. (1998). Variations among cell lines in the synthesis of sphingolipids in de novo and recycling pathways. Glycobiology, 8, 885–890.PubMedCrossRefGoogle Scholar
  55. Giri, S., Jatana, M., Rattan, R., Won, J. S., Singh, I., & Singh, A. K. (2002). Galactosylsphingosine (psychosine)-induced expression of cytokine-mediated inducible nitric oxide synthases via AP-1 and C/EBP: Implications for Krabbe disease. The FASEB Journal, 16, 661–672.PubMedCrossRefGoogle Scholar
  56. Giri, S., Khan, M., Rattan, R., Singh, I., & Singh, A. K. (2006). Krabbe disease: Psychosine-mediated activation of phospholipase A2 in oligodendrocyte cell death. Journal of Lipid Research, 47, 1478–1492.PubMedCrossRefGoogle Scholar
  57. Givogri, M. I., Galbiati, F., Fasano, S., Amadio, S., Perani, L., Superchi, D., et al. (2006). Oligodendroglial progenitor cell therapy limits central neurological deficits in mice with metachromatic leukodystrophy. Journal of Neuroscience, 26, 3109–3119.PubMedCrossRefGoogle Scholar
  58. Goker-Alpan, O., Schiffmann, R., LaMarca, M. E., Nussbaum, R. L., McInerney-Leo, A., & Sidransky, E. (2004). Parkinsonism among Gaucher disease carriers. Journal of Medical Genetics, 41, 937–940.PubMedCrossRefGoogle Scholar
  59. Grabowski, G. A., Kolodny, E. H., Weinreb, N. J., Rosenbloom, B. E., Prakash-Cheng, A., et al. (2006). Gaucher disease: Phenotypic and genetic variation. Chapter 146.1. In C. R. Scriver, W. S. Sly, A. Beaudet, D. Valle, & B. Childs (Eds.), The metabolic, molecular bases of inherited diseases. New York, NY: McGraw-Hill.Google Scholar
  60. Gravel, R. A., Kaback, M. M., Proia, R., Sandhoff, K., Suzuki, K., & Suzuki, K. (2001). The GM2 gangliosidosis. In C. R. Scriver, A. L. Beaudet, W. S. Sly, & D. Valle (Eds.), The metabolic, molecular basis of inherited diseases (8th ed., pp. 3827–3876). New York, NY: McGraw-Hill.Google Scholar
  61. Green, D. R., & Kroemer, G. (2004). The pathophysiology of mitochondrial cell death. Science, 305, 626–629.PubMedCrossRefGoogle Scholar
  62. Grubb, J. H., Vogler, C., Levy, B., Galvin, N., Tan, Y., & Sly, W. S. (2008). Chemically modified beta-glucuronidase crosses blood-brain barrier and clears neuronal storage in murine mucopolysaccharidosis VII. Proceedings of the National Academy of Sciences of the United States of America, 105, 2616–2621.PubMedCrossRefGoogle Scholar
  63. Hahn, C. N., del Pilar Martin, M., Schroder, M., Vanier, M. T., Hara, Y., Suzuki, M., et al. (1997). Generalized CNS disease and massive GM1-ganglioside accumulation in mice defective in lysosomal acid beta-galactosidase. Human Molecular Genetics, 6, 205–211.PubMedCrossRefGoogle Scholar
  64. Han, X., Holtzman, D. M., McKeel, D. W., Kelley, J., Jr, & Morris, J. C. (2002). Substantial sulfatide deficiency and ceramide elevation in very early Alzheimer’s disease: Potential role in disease pathogenesis. Journal of Neurochemistry, 82, 809–818.PubMedCrossRefGoogle Scholar
  65. Hannun, Y. A., & Bell, R. M. (1987). Lysosphingolipids inhibit protein kinase C: Implications for the sphingolipidoses. Science, 235, 670–674.PubMedCrossRefGoogle Scholar
  66. Hara, T., Nakamura, K., Matsui, M., Yamamoto, A., Nakahara, Y., Suzuki-Migishima, R., et al. (2006). Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature, 441, 885–889.PubMedCrossRefGoogle Scholar
  67. Harzer, K., Paton, B. C., Poulos, A., Kustermann-Kuhn, B., Roggendorf, W., Grisar, T., et al. (1989). Sphingolipid activator protein deficiency in a 16-week-old atypical Gaucher disease patient and his fetal sibling: biochemical signs of combined sphingolipidoses. European Journal of Pediatrics, 149, 31–39.PubMedCrossRefGoogle Scholar
  68. Haskins, M. (2009). Gene therapy for lysosomal storage diseases (LSDs) in large animal models. ILAR Journal, 50, 112–121.PubMedGoogle Scholar
  69. Hein, L. K., Meikle, P. J., Hopwood, J. J., & Fuller, M. (2007). Secondary sphingolipid accumulation in a macrophage model of Gaucher disease. Molecular Genetics and Metabolism, 92, 336–345.PubMedCrossRefGoogle Scholar
  70. Heitner, R., Elstein, D., Aerts, J., Weely, S., & Zimran, A. (2002). Low-dose N-butyldeoxynojirimycin (OGT 918) for type I Gaucher disease. Blood Cells, Molecules, and Diseases, 28, 127–133.PubMedCrossRefGoogle Scholar
  71. Holleran, W. M., Ginns, E. I., Menon, G. K., Grundmann, J. U., Fartasch, M., McKinney, C. E., et al. (1994). Consequences of beta-glucocerebrosidase deficiency in epidermis. Ultrastructure and permeability barrier alterations in Gaucher disease. Journal of Clinical Investigation, 93, 1756–1764.PubMedCrossRefGoogle Scholar
  72. Holleran, W. M., Takagi, Y., Menon, G. K., Legler, G., Feingold, K. R., & Elias, P. M. (1993). Processing of epidermal glucosylceramides is required for optimal mammalian cutaneous permeability barrier function. Journal of Clinical Investigation, 91, 1656–1664.PubMedCrossRefGoogle Scholar
  73. Im, D. S., Heise, C. E., Nguyen, T., O’Dowd, B. F., & Lynch, K. R. (2001). Identification of a molecular target of psychosine and its role in globoid cell formation. Journal of Cell Biology, 153, 429–434.PubMedCrossRefGoogle Scholar
  74. Jatana, M., Giri, S., & Singh, A. K. (2002). Apoptotic positive cells in Krabbe brain and induction of apoptosis in rat C6 glial cells by psychosine. Neuroscience Letters, 330, 183–187.PubMedCrossRefGoogle Scholar
  75. Jeyakumar, M., Lee, J. P., Sibson, N. R., Lowe, J. P., Stuckey, D. J., Tester, K., et al. (2009). Neural stem cell transplantation benefits a monogenic neurometabolic disorder during the symptomatic phase of disease. Stem Cells, 27, 2362–2370.PubMedCrossRefGoogle Scholar
  76. Jeyakumar, M., Smith, D. A., Williams, I. M., Borja, M. C., Neville, D. C., Butters, T. D., et al. (2004). NSAIDs increase survival in the Sandhoff disease mouse: Synergy with N-butyldeoxynojirimycin. Annals of Neurology, 56, 642–649.PubMedCrossRefGoogle Scholar
  77. Jeyakumar, M., Thomas, R., Elliot-Smith, E., Smith, D. A., van der Spoel, A. C., d’Azzo, A., et al. (2003). Central nervous system inflammation is a hallmark of pathogenesis in mouse models of GM1 and GM2 gangliosidosis. Brain, 126, 974–987.PubMedCrossRefGoogle Scholar
  78. Jonas, S., van Loo, B., Hyvonen, M., & Hollfelder, F. (2008). A new member of the alkaline phosphatase superfamily with a formylglycine nucleophile: Structural and kinetic characterisation of a phosphonate monoester hydrolase/phosphodiesterase from Rhizobium leguminosarum. Journal of Molecular Biology, 384, 120–136.PubMedCrossRefGoogle Scholar
  79. Kanazawa, T., Nakamura, S., Momoi, M., Yamaji, T., Takematsu, H., Yano, H., et al. (2000). Inhibition of cytokinesis by a lipid metabolite, psychosine. Journal of Cell Biology, 149, 943–950.PubMedCrossRefGoogle Scholar
  80. Kaptzan, T., West, S. A., Holicky, E. L., Wheatley, C. L., Marks, D. L., Wang, T., et al. (2009). Development of a Rab9 transgenic mouse and its ability to increase the lifespan of a murine model of Niemann-Pick type C disease. American Journal of Pathology, 174, 14–20.PubMedCrossRefGoogle Scholar
  81. Kasperzyk, J. L., d’Azzo, A., Platt, F. M., Alroy, J., & Seyfried, T. N. (2005). Substrate reduction reduces gangliosides in postnatal cerebrum-brainstem and cerebellum in GM1 gangliosidosis mice. Journal of Lipid Research, 46, 744–751.PubMedCrossRefGoogle Scholar
  82. Kasperzyk, J. L., El-Abbadi, M. M., Hauser, E. C., D’Azzo, A., Platt, F. M., & Seyfried, T. N. (2004). N-Butyldeoxygalactonojirimycin reduces neonatal brain ganglioside content in a mouse model of GM1 gangliosidosis. Journal of Neurochemistry, 89, 645–653.PubMedCrossRefGoogle Scholar
  83. Kennedy, D. W., & Abkowitz, J. L. (1997). Kinetics of central nervous system microglial and macrophage engraftment: Analysis using a transgenic bone marrow transplantation model. Blood, 90, 986–993.PubMedGoogle Scholar
  84. Klein, D., Schmandt, T., Muth-Kohne, E., Perez-Bouza, A., Segschneider, M., Gieselmann, V., et al. (2006). Embryonic stem cell-based reduction of central nervous system sulfatide storage in an animal model of metachromatic leukodystrophy. Gene Therapy, 13, 1686–1695.PubMedCrossRefGoogle Scholar
  85. Klein, D., Yaghootfam, A., Matzner, U., Koch, B., Braulke, T., & Gieselmann, V. (2009). Mannose 6-phosphate receptor-dependent endocytosis of lysosomal enzymes is increased in sulfatide-storing kidney cells. Biological Chemistry, 390, 41–48.PubMedCrossRefGoogle Scholar
  86. Ko, D. C., Milenkovic, L., Beier, S. M., Manuel, H., Buchanan, J., & Scott, M. P. (2005). Cell-autonomous death of cerebellar purkinje neurons with autophagy in Niemann-Pick type C disease. PLoS Genetics, 1, 81–95.PubMedCrossRefGoogle Scholar
  87. Kobayashi, T., Beuchat, M. H., Lindsay, M., Frias, S., Palmiter, R. D., Sakuraba, H., et al. (1999). Late endosomal membranes rich in lysobisphosphatidic acid regulate cholesterol transport. Nature Cell Biology, 1, 113–118.PubMedCrossRefGoogle Scholar
  88. Kobayashi, T., Goto, I., Okada, S., Orii, T., Ohno, K., & Nakano, T. (1992). Accumulation of lysosphingolipids in tissues from patients with GM1 and GM2 gangliosidoses. Journal of Neurochemistry, 59, 1452–1458.PubMedCrossRefGoogle Scholar
  89. Koike, M., Shibata, M., Waguri, S., Yoshimura, K., Tanida, I., Kominami, E., et al. (2005). Participation of autophagy in storage of lysosomes in neurons from mouse models of neuronal ceroid-lipofuscinoses (Batten disease). American Journal of Pathology, 167, 1713–1728.PubMedGoogle Scholar
  90. Kollmann, K., Pohl, S., Marschner, K., Encarnação, M., Sakwa, I., Tiede, S., et al. (2010). Mannose phosphorylation in health and disease. European Journal of Cell Biology, 89, 117–123.PubMedCrossRefGoogle Scholar
  91. Kolter, T., & Sandhoff, K. (1999). Sphingolipids-their metabolic pathways and the pathobiochemistry of neurodegenerative diseases. Angewandte Chemie International Edition, 38, 1532–1568.CrossRefGoogle Scholar
  92. Korkotian, E., Schwarz, A., Pelled, D., Schwarzmann, G., Segal, M., & Futerman, A. H. (1999). Elevation of intracellular glucosylceramide levels results in an increase in endoplasmic reticulum density and in functional calcium stores in cultured neurons. The Journal of Biological Chemistry, 274, 21673–21678.PubMedCrossRefGoogle Scholar
  93. Kornfeld, S. (1986). Trafficking of lysosomal enzymes in normal and disease states. Journal of Clinical Investigation, 77, 1–6.PubMedCrossRefGoogle Scholar
  94. Kretz, K. A., Carson, G. S., Morimoto, S., Kishimoto, Y., Fluharty, A. L., & O’Brien, J. S. (1990). Characterization of a mutation in a family with saposin B deficiency: A glycosylation site defect. Proceedings of the National Academy of Sciences of the United States of America, 87, 2541–2544.PubMedCrossRefGoogle Scholar
  95. Krivit, W. (2004). Allogeneic stem cell transplantation for the treatment of lysosomal and peroxisomal metabolic diseases. Springer Seminars in Immunopathology, 26, 119–132.PubMedCrossRefGoogle Scholar
  96. Krivit, W., Peters, C., & Shapiro, E. G. (1999). Bone marrow transplantation as effective treatment of central nervous system disease in globoid cell leukodystrophy, metachromatic leukodystrophy, adrenoleukodystrophy, mannosidosis, fucosidosis, aspartylglucosaminuria, Hurler, Maroteaux-Lamy, and Sly syndromes, and Gaucher disease type III. Current Opinion in Neurology, 12, 167–176.PubMedCrossRefGoogle Scholar
  97. Kwon, H. J., Abi-Mosleh, L., Wang, M. L., Deisenhofer, J., Goldstein, J. L., Brown, M. S., et al. (2009). Structure of N-terminal domain of NPC1 reveals distinct subdomains for binding and transfer of cholesterol. Cell, 137, 1213–1224.PubMedCrossRefGoogle Scholar
  98. Lamark, T., Kirkin, V., Dikic, I., & Johansen, T. (2009). NBR1 and p62 as cargo receptors for selective autophagy of ubiquitinated targets. Cell Cycle, 8, 1986–1990.PubMedGoogle Scholar
  99. Lebrand, C., Corti, M., Goodson, H., Cosson, P., Cavalli, V., Mayran, N., et al. (2002). Late endosome motility depends on lipids via the small GTPase Rab7. EMBO Journal, 21, 1289–1300.PubMedCrossRefGoogle Scholar
  100. Lee, W. C., Courtenay, A., Troendle, F. J., Stallings-Mann, M. L., Dickey, C. A., DeLucia, M. W., et al. (2005). Enzyme replacement therapy results in substantial improvements in early clinical phenotype in a mouse model of globoid cell leukodystrophy. The FASEB Journal, 19, 1549–1551.PubMedCrossRefGoogle Scholar
  101. Lee, J. P., Jeyakumar, M., Gonzalez, R., Takahashi, H., Lee, P. J., Baek, R. C., et al. (2007). Stem cells act through multiple mechanisms to benefit mice with neurodegenerative metabolic disease. Nature Medicine, 13, 439–447.PubMedCrossRefGoogle Scholar
  102. Lefrancois, S., Zeng, J., Hassan, A. J., Canuel, M., & Morales, C. R. (2003). The lysosomal trafficking of sphingolipid activator proteins (SAPs) is mediated by sortilin. EMBO Journal, 22, 6430–6437.PubMedCrossRefGoogle Scholar
  103. Leventhal, A. R., Chen, W., Tall, A. R., & Tabas, I. (2001). Acid sphingomyelinase-deficient macrophages have defective cholesterol trafficking and efflux. The Journal of Biological Chemistry, 276, 44976–44983.PubMedCrossRefGoogle Scholar
  104. Li, S. C., Li, Y. T., Moriya, S., & Miyagi, T. (2001). Degradation of G(M1) and G(M2) by mammalian sialidases. Biochemical Journal, 360, 233–237.PubMedCrossRefGoogle Scholar
  105. Lieberman, R. L., Wustman, B. A., Huertas, P., Powe, A. C., Jr, Pine, C. W., Khanna, R., et al. (2007). Structure of acid beta-glucosidase with pharmacological chaperone provides insight into Gaucher disease. Nature Chemical Biology, 3, 101–107.PubMedCrossRefGoogle Scholar
  106. Liu, Y., Wada, R., Kawai, H., Sango, K., Deng, C., Tai, T., et al. (1999). A genetic model of substrate deprivation therapy for a glycosphingolipid storage disorder. Journal of Clinical Investigation, 103, 497–505.PubMedCrossRefGoogle Scholar
  107. Lloyd-Evans, E., Morgan, A. J., He, X., Smith, D. A., Elliot-Smith, E., Sillence, D. J., et al. (2008). Niemann-Pick disease type C1 is a sphingosine storage disease that causes deregulation of lysosomal calcium. Nature Medicine, 14, 1247–1255.PubMedCrossRefGoogle Scholar
  108. Lloyd-Evans, E., Pelled, D., Riebeling, C., Bodennec, J., de-Morgan, A., Waller, H., et al. (2003). Glucosylceramide and glucosylsphingosine modulate calcium mobilization from brain microsomes via different mechanisms. The Journal of Biological Chemistry, 278, 23594–23599.PubMedCrossRefGoogle Scholar
  109. Lui, K., Commens, C., Choong, R., & Jaworski, R. (1988). Collodion babies with Gaucher’s disease. Archives of Disease in Childhood, 63, 854–886.PubMedCrossRefGoogle Scholar
  110. Maegawa, G. H., van Giersbergen, P. L., Yang, S., Banwell, B., Morgan, C. P., Dingemanse, J., et al. (2009). Pharmacokinetics, safety and tolerability of miglustat in the treatment of pediatric patients with GM2 gangliosidosis. Molecular Genetics and Metabolism, 97, 284–291.PubMedCrossRefGoogle Scholar
  111. Malhotra, J. D., & Kaufman, R. J. (2007). The endoplasmic reticulum and the unfolded protein response. Seminars in Cell & Developmental Biology, 18, 716–731.CrossRefGoogle Scholar
  112. Martino, S., Marconi, P., Tancini, B., Dolcetta, D., De Angelis, M. G., Montanucci, P., et al. (2005). A direct gene transfer strategy via brain internal capsule reverses the biochemical defect in Tay-Sachs disease. Human Molecular Genetics, 14, 2113–2123.PubMedCrossRefGoogle Scholar
  113. Matsuda, J., Kido, M., Tadano-Aritomi, K., Ishizuka, I., Tominaga, K., Toida, K., et al. (2004). Mutation in saposin D domain of sphingolipid activator protein gene causes urinary system defects and cerebellar Purkinje cell degeneration with accumulation of hydroxy fatty acid-containing ceramide in mouse. Human Molecular Genetics, 13, 2709–2723.PubMedCrossRefGoogle Scholar
  114. Matsuda, J., Suzuki, O., Oshima, A., Yamamoto, Y., Noguchi, A., Takimoto, K., et al. (2003). Chemical chaperone therapy for brain pathology in G(M1)-gangliosidosis. Proceedings of the National Academy of Sciences of the United States of America, 100, 15912–15917.PubMedCrossRefGoogle Scholar
  115. Matsushima, G. K., Taniike, M., Glimcher, L. H., Grusby, M. J., Frelinger, J. A., Suzuki, K., et al. (1994). Absence of MHC class II molecules reduces CNS demyelination, microglial/macrophage infiltration, and twitching in murine globoid cell leukodystrophy. Cell, 78, 645–656.PubMedCrossRefGoogle Scholar
  116. Matzner, U., Herbst, E., Hedayati, K. K., Lullmann-Rauch, R., Wessig, C., Schroder, S., et al. (2005). Enzyme replacement improves nervous system pathology and function in a mouse model for metachromatic leukodystrophy. Human Molecular Genetics, 14, 1139–1152.PubMedCrossRefGoogle Scholar
  117. Matzner, U., Lullmann-Rauch, R., Stroobants, S., Andersson, C., Weigelt, C., Eistrup, C., et al. (2009). Enzyme replacement improves ataxic gait and central nervous system histopathology in a mouse model of metachromatic leukodystrophy. Molecular Therapy, 17, 600–606.PubMedCrossRefGoogle Scholar
  118. McInnes, B., Potier, M., Wakamatsu, N., Melancon, S. B., Klavins, M. H., Tsuji, S., et al. (1992). An unusual splicing mutation in the HEXB gene is associated with dramatically different phenotypes in patients from different racial backgrounds. Journal of Clinical Investigation, 90, 306–314.PubMedCrossRefGoogle Scholar
  119. Meikle, P. J., Hopwood, J. J., Clague, A. E., & Carey, W. F. (1999). Prevalence of lysosomal storage disorders. JAMA, 281, 249–254.PubMedCrossRefGoogle Scholar
  120. Molander-Melin, M., Pernber, Z., Franken, S., Gieselmann, V., Mansson, J. E., & Fredman, P. (2004). Accumulation of sulfatide in neuronal and glial cells of arylsulfatase A deficient mice. Journal of Neurocytology, 33, 417–427.PubMedCrossRefGoogle Scholar
  121. Moser, H. W., Linke, T., Fensom, A. H., Levade, T., & Sandhoff, K. (2001). Acid ceramidase deficiency: Farber lipogranulomatosis. In C. R. Scriver, A. L. Beaudet, W. S. Sly, & D. Valle (Eds.), The metabolic, molecular basis of inherited diseases (8th ed., pp. 3573–3585). New York, NY: McGraw-Hill.Google Scholar
  122. Myerowitz, R., Lawson, D., Mizukami, H., Mi, Y., Tifft, C. J., & Proia, R. L. (2002). Molecular pathophysiology in Tay-Sachs and Sandhoff diseases as revealed by gene expression profiling. Human Molecular Genetics, 11, 1343–1350.PubMedCrossRefGoogle Scholar
  123. Narita, K., Choudhury, A., Dobrenis, K., Sharma, D. K., Holicky, E. L., Marks, D. L., et al. (2005). Protein transduction of Rab9 in Niemann-Pick C cells reduces cholesterol storage. The FASEB Journal, 19, 1558–1560.PubMedGoogle Scholar
  124. Neuenhofer, S., Conzelmann, E., Schwarzmann, G., Egge, H., & Sandhoff, K. (1986). Occurrence of lysoganglioside lyso-GM2 (II3-Neu5Ac-gangliotriaosylsphingosine) in GM2 gangliosidosis brain. Biological Chemistry Hoppe-Seyler, 367, 241–244.PubMedGoogle Scholar
  125. Ni, X., & Morales, C. R. (2006). The lysosomal trafficking of acid sphingomyelinase is mediated by sortilin and mannose 6-phosphate receptor. Traffic, 7, 889–902.PubMedCrossRefGoogle Scholar
  126. O’Brien, J. S., Carson, G. S., Seo, H. C., Hiraiwa, M., & Kishimoto, Y. (1994). Identification of prosaposin as a neurotrophic factor. Proceedings of the National Academy of Sciences of the United States of America, 91, 9593–9596.PubMedCrossRefGoogle Scholar
  127. O’Brien, J. S., & Kishimoto, Y. (1991). Saposin proteins: structure, function, and role in human lysosomal storage disorders. The FASEB Journal, 5, 301–308.PubMedGoogle Scholar
  128. Opitz, J. M., Stiles, F. C., Wise, D., Race, R. R., Sanger, R., von Gemmingen, G. R., et al. (1965). The genetics of angiokeratoma corporis diffusum (Fabry’s Disease) and its linkage relations with the Xg locus. American Journal of Human Genetics, 17, 325–342.PubMedGoogle Scholar
  129. Ozkara, H. A., & Topcu, M. (2004). Sphingolipidoses in Turkey. Brain and Development, 26, 363–366.PubMedCrossRefGoogle Scholar
  130. Pacheco, C. D., Kunkel, R., & Lieberman, A. P. (2007). Autophagy in Niemann-Pick C disease is dependent upon Beclin-1 and responsive to lipid trafficking defects. Human Molecular Genetics, 16, 1495–1503.PubMedCrossRefGoogle Scholar
  131. Pagano, R. E. (2003). Endocytic trafficking of glycosphingolipids in sphingolipid storage diseases. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 358, 885–891.PubMedCrossRefGoogle Scholar
  132. Parenti, G. (2009). Treating lysosomal storage diseases with pharmacological chaperones: From concept to clinics. EMBO Molecular Medicine, 1, 268–279.PubMedCrossRefGoogle Scholar
  133. Parenti, G., Zuppaldi, A., Gabriela Pittis, M., Rosaria Tuzzi, M., Annunziata, I., Meroni, G., et al. (2007). Pharmacological enhancement of mutated alpha-glucosidase activity in fibroblasts from patients with Pompe disease. Molecular Therapy, 15, 508–514.PubMedCrossRefGoogle Scholar
  134. Pelled, D., Lloyd-Evans, E., Riebeling, C., Jeyakumar, M., Platt, F. M., & Futerman, A. H. (2003). Inhibition of calcium uptake via the sarco/endoplasmic reticulum Ca2+-ATPase in a mouse model of Sandhoff disease and prevention by treatment with N-butyldeoxynojirimycin. The Journal of Biological Chemistry, 278, 29496–29501.PubMedCrossRefGoogle Scholar
  135. Pelled, D., Trajkovic-Bodennec, S., Lloyd-Evans, E., Sidransky, E., Schiffmann, R., & Futerman, A. H. (2005). Enhanced calcium release in the acute neuronopathic form of Gaucher disease. Neurobiology of Diseases, 18, 83–88.CrossRefGoogle Scholar
  136. Phaneuf, D., Wakamatsu, N., Huang, J. Q., Borowski, A., Peterson, A. C., Fortunato, S. R., et al. (1996). Dramatically different phenotypes in mouse models of human Tay-Sachs and Sandhoff diseases. Human Molecular Genetics, 5, 1–14.PubMedCrossRefGoogle Scholar
  137. Pineda, M., Perez-Poyato, M. S., O’Callaghan, M., Vilaseca, M. A., Pocovi, M., Domingo, R., et al. (2010). Clinical experience with miglustat therapy in pediatric patients with Niemann-Pick disease type C: A case series. Molecular Genetics and Metabolism, 99, 358–366.PubMedCrossRefGoogle Scholar
  138. Platt, F. M., Neises, G. R., Dwek, R. A., & Butters, T. D. (1994a). N-Butyldeoxynojirimycin is a novel inhibitor of glycolipid biosynthesis. The Journal of Biological Chemistry, 269, 8362–8365.PubMedGoogle Scholar
  139. Platt, F. M., Neises, G. R., Karlsson, G. B., Dwek, R. A., & Butters, T. D. (1994b). N-Butyldeoxygalactonojirimycin inhibits glycolipid biosynthesis but does not affect N-linked oligosaccharide processing. The Journal of Biological Chemistry, 269, 27108–27114.PubMedGoogle Scholar
  140. Platt, F. M., Neises, G. R., Reinkensmeier, G., Townsend, M. J., Perry, V. H., Proia, R. L., et al. (1997). Prevention of lysosomal storage in Tay-Sachs mice treated with N-butyldeoxynojirimycin. Science, 276, 428–431.PubMedCrossRefGoogle Scholar
  141. Puri, V., Watanabe, R., Dominguez, M., Sun, X., Wheatley, C. L., Marks, D. L., et al. (1999). Cholesterol modulates membrane traffic along the endocytic pathway in sphingolipid-storage diseases. Nature Cell Biology, 1, 386–388.PubMedCrossRefGoogle Scholar
  142. Radu, C. G., Cheng, D., Nijagal, A., Riedinger, M., McLaughlin, J., Yang, L. V., et al. (2006). Normal immune development and glucocorticoid-induced thymocyte apoptosis in mice deficient for the T-cell death-associated gene 8 receptor. Molecular and Cellular Biology, 26, 668–677.PubMedCrossRefGoogle Scholar
  143. Ramakrishnan, H., Hedayati, K. K., Lullmann-Rauch, R., Wessig, C., Fewou, S. N., Maier, H., et al. (2007). Increasing sulfatide synthesis in myelin-forming cells of arylsulfatase A-deficient mice causes demyelination and neurological symptoms reminiscent of human metachromatic leukodystrophy. Journal of Neuroscience, 27, 9482–9490.PubMedCrossRefGoogle Scholar
  144. Reczek, D., Schwake, M., Schroder, J., Hughes, H., Blanz, J., Jin, X., et al. (2007). LIMP-2 is a receptor for lysosomal mannose-6-phosphate-independent targeting of beta-glucocerebrosidase. Cell, 131, 770–783.PubMedCrossRefGoogle Scholar
  145. Rommerskirch, W., & von Figura, K. (1992). Multiple sulfatase deficiency: Catalytically inactive sulfatases are expressed from retrovirally introduced sulfatase cDNAs. Proceedings of the National Academy of Sciences of the United States of America, 89, 2561–2565.PubMedCrossRefGoogle Scholar
  146. Ron, I., & Horowitz, M. (2005). ER retention and degradation as the molecular basis underlying Gaucher disease heterogeneity. Human Molecular Genetics, 14, 2387–2398.PubMedCrossRefGoogle Scholar
  147. Rosengren, B., Fredman, P., Mansson, J. E., & Svennerholm, L. (1989). Lysosulfatide (galactosylsphingosine-3-O-sulfate) from metachromatic leukodystrophy and normal human brain. Journal of Neurochemistry, 52, 1035–1041.PubMedCrossRefGoogle Scholar
  148. Sango, K., Yamanaka, S., Hoffmann, A., Okuda, Y., Grinberg, A., Westphal, H., et al. (1995). Mouse models of Tay-Sachs and Sandhoff diseases differ in neurologic phenotype and ganglioside metabolism. Nature Genetics, 11, 170–176.PubMedCrossRefGoogle Scholar
  149. Sano, R., Annunziata, I., Patterson, A., Moshiach, S., Gomero, E., Opferman, J., et al. (2009). GM1-ganglioside accumulation at the mitochondria-associated ER membranes links ER stress to Ca(2+)-dependent mitochondrial apoptosis. Molecular Cell, 36, 500–511.PubMedCrossRefGoogle Scholar
  150. Saravanan, K., Schaeren-Wiemers, N., Klein, D., Sandhoff, R., Schwarz, A., Yaghootfam, A., et al. (2004). Specific downregulation and mistargeting of the lipid raft-associated protein MAL in a glycolipid storage disorder. Neurobiology of Diseases, 16, 396–406.CrossRefGoogle Scholar
  151. Sawkar, A. R., Adamski-Werner, S. L., Cheng, W. C., Wong, C. H., Beutler, E., Zimmer, K. P., et al. (2005). Gaucher disease-associated glucocerebrosidases show mutation-dependent chemical chaperoning profiles. Chemistry & Biology, 12, 1235–1244.CrossRefGoogle Scholar
  152. Sawkar, A. R., Cheng, W. C., Beutler, E., Wong, C. H., Balch, W. E., & Kelly, J. W. (2002). Chemical chaperones increase the cellular activity of N370S beta-glucosidase: A therapeutic strategy for Gaucher disease. Proceedings of the National Academy of Sciences of the United States of America, 99, 15428–15433.PubMedCrossRefGoogle Scholar
  153. Schaeren-Wiemers, N., Bonnet, A., Erb, M., Erne, B., Bartsch, U., Kern, F., et al. (2004). The raft-associated protein MAL is required for maintenance of proper axon–glia interactions in the central nervous system. Journal of Cell Biology, 166, 731–742.PubMedCrossRefGoogle Scholar
  154. Schiffmann, R., Fitzgibbon, E. J., Harris, C., DeVile, C., Davies, E. H., Abel, L., et al. (2008). Randomized, controlled trial of miglustat in Gaucher’s disease type 3. Annals of Neurology, 64, 514–522.PubMedCrossRefGoogle Scholar
  155. Schmidt, B., Selmer, T., Ingendoh, A., & von Figura, K. (1995). A novel amino acid modification in sulfatases that is defective in multiple sulfatase deficiency. Cell, 82, 271–278.PubMedCrossRefGoogle Scholar
  156. Schnabel, D., Schröder, M., Fürst, W., Klein, A., Hurwitz, R., Zenk, T., et al. (1992). Simultaneous deficiency of sphingolipid activator proteins 1 and 2 is caused by a mutation in the initiation codon of their common gene. The Journal of Biological Chemistry, 267, 3312–3315.PubMedGoogle Scholar
  157. Schott, I., Hartmann, D., Gieselmann, V., & Lullmann-Rauch, R. (2001). Sulfatide storage in visceral organs of arylsulfatase A-deficient mice. Virchows Archiv, 439, 90–96.PubMedCrossRefGoogle Scholar
  158. Schueler, U. H., Kolter, T., Kaneski, C. R., Blusztajn, J. K., Herkenham, M., Sandhoff, K., et al. (2003). Toxicity of glucosylsphingosine (glucopsychosine) to cultured neuronal cells: A model system for assessing neuronal damage in Gaucher disease type 2 and 3. Neurobiology of Diseases, 14, 595–601.CrossRefGoogle Scholar
  159. Settembre, C., Annunziata, I., Spampanato, C., Zarcone, D., Cobellis, G., Nusco, E., et al. (2007). Systemic inflammation and neurodegeneration in a mouse model of multiple sulfatase deficiency. Proceedings of the National Academy of Sciences of the United States of America, 104, 4506–4511.PubMedCrossRefGoogle Scholar
  160. Settembre, C., Fraldi, A., Jahreiss, L., Spampanato, C., Venturi, C., Medina, D., et al. (2008). A block of autophagy in lysosomal storage disorders. Human Molecular Genetics, 17, 119–129.PubMedCrossRefGoogle Scholar
  161. Sevin, C., Benraiss, A., Van Dam, D., Bonnin, D., Nagels, G., Verot, L., et al. (2006). Intracerebral adeno-associated virus-mediated gene transfer in rapidly progressive forms of metachromatic leukodystrophy. Human Molecular Genetics, 15, 53–64.PubMedCrossRefGoogle Scholar
  162. Sevin, C., Verot, L., Benraiss, A., Van Dam, D., Bonnin, D., Nagels, G., et al. (2007). Partial cure of established disease in an animal model of metachromatic leukodystrophy after intracerebral adeno-associated virus-mediated gene transfer. Gene Therapy, 14, 405–414.PubMedCrossRefGoogle Scholar
  163. Shapiro, B. E., Pastores, G. M., Gianutsos, J., Luzy, C., & Kolodny, E. H. (2009). Miglustat in late-onset Tay-Sachs disease: A 12-month, randomized, controlled clinical study with 24 months of extended treatment. Genetics in Medicine, 11, 425–433.PubMedCrossRefGoogle Scholar
  164. Sharma, D. K., Brown, J. C., Choudhury, A., Peterson, T. E., Holicky, E., Marks, D. L., et al. (2004). Selective stimulation of caveolar endocytosis by glycosphingolipids and cholesterol. Molecular Biology of the Cell, 15, 3114–3122.PubMedCrossRefGoogle Scholar
  165. Sidman, R. L., Li, J., Stewart, G. R., Clarke, J., Yang, W., Snyder, E. Y., et al. (2007). Injection of mouse and human neural stem cells into neonatal Niemann-Pick A model mice. Brain Research, 1140, 195–204.PubMedCrossRefGoogle Scholar
  166. Sikora, J., Harzer, K., & Elleder, M. (2007). Neurolysosomal pathology in human prosaposin deficiency suggests essential neurotrophic function of prosaposin. Acta Neuropathologica, 113, 163–175.PubMedCrossRefGoogle Scholar
  167. Sillence, D. J., Puri, V., Marks, D. L., Butters, T. D., Dwek, R. A., Pagano, R. E., et al. (2002). Glucosylceramide modulates membrane traffic along the endocytic pathway. Journal of Lipid Research, 43, 1837–1845.PubMedCrossRefGoogle Scholar
  168. Sinha, S., & Levine, B. (2008). The autophagy effector Beclin 1: A novel BH3-only protein. Oncogene, 27(Suppl 1), S137–S148.PubMedCrossRefGoogle Scholar
  169. Smith, D., Wallom, K. L., Williams, I. M., Jeyakumar, M., & Platt, F. M. (2009). Beneficial effects of anti-inflammatory therapy in a mouse model of Niemann-Pick disease type C1. Neurobiology of Diseases, 36, 242–251.CrossRefGoogle Scholar
  170. Snyder, E. Y., Taylor, R. M., & Wolfe, J. H. (1995). Neural progenitor cell engraftment corrects lysosomal storage throughout the MPS VII mouse brain. Nature, 374, 367–370.PubMedCrossRefGoogle Scholar
  171. Sorkin, A., & von Zastrow, M. (2009). Endocytosis and signalling: Intertwining molecular networks. Nature Reviews. Molecular Cell Biology, 10, 609–622.PubMedCrossRefGoogle Scholar
  172. Spiegel, R., Bach, G., Sury, V., Mengistu, G., Meidan, B., Shalev, S., et al. (2005). A mutation in the saposin A coding region of the prosaposin gene in an infant presenting as Krabbe disease: First report of saposin A deficiency in humans. Molecular Genetics and Metabolism, 84, 160–166.PubMedCrossRefGoogle Scholar
  173. Stenmark, H. (2009). Rab GTPases as coordinators of vesicle traffic. Nature Reviews. Molecular Cell Biology, 10, 513–525.PubMedCrossRefGoogle Scholar
  174. Strazza, M., Luddi, A., Carbone, M., Rafi, M. A., Costantino-Ceccarini, E., & Wenger, D. A. (2009). Significant correction of pathology in brains of twitcher mice following injection of genetically modified mouse neural progenitor cells. Molecular Genetics and Metabolism, 97, 27–34.PubMedCrossRefGoogle Scholar
  175. Sueyoshi, N., Maehara, T., & Ito, M. (2001). Apoptosis of Neuro2a cells induced by lysosphingolipids with naturally occurring stereochemical configurations. Journal of Lipid Research, 42, 1197–1202.PubMedGoogle Scholar
  176. Sugiyama, E., Uemura, K., Hara, A., & Taketomi, T. (1990). Effects of various lysosphingolipids on cell growth, morphology and lipid composition in three neuroblastoma cell lines. Biochemical and Biophysical Research Communications, 169, 673–679.PubMedCrossRefGoogle Scholar
  177. Sun, Y., Liou, B., Ran, H., Skelton, M. R., Williams, M. T., Vorhees, C. V., et al. (2010). Neuronopathic Gaucher disease in the mouse: Viable combined selective saposin C deficiency and mutant glucocerebrosidase (V394L) mice with glucosylsphingosine and glucosylceramide accumulation and progressive neurological deficits. Human Molecular Genetics, 19, 1088–1097.PubMedCrossRefGoogle Scholar
  178. Sun, Y., Witte, D. P., Zamzow, M., Ran, H., Quinn, B., Matsuda, J., et al. (2007). Combined saposin C and D deficiencies in mice lead to a neuronopathic phenotype, glucosylceramide and alpha-hydroxy ceramide accumulation, and altered prosaposin trafficking. Human Molecular Genetics, 16, 957–971.PubMedCrossRefGoogle Scholar
  179. Suzuki, Y., Oshima, A., & Nanba, E. (2001). Beta-galactosidase deficiency (beta-galactosidosis): GM1 gangliosidosis and Morquio B disease. In C. R. Scriver, A. L. Beaudet, W. S. Sly, & D. Valle (Eds.), The metabolic, molecular basis of inherited diseases (8th ed., pp. 3775–3809). New York, NY: McGraw-Hill.Google Scholar
  180. Suzuki, M., Sugimoto, Y., Ohsaki, Y., Ueno, M., Kato, S., Kitamura, Y., et al. (2007). Endosomal accumulation of Toll-like receptor 4 causes constitutive secretion of cytokines and activation of signal transducers and activators of transcription in Niemann-Pick disease type C (NPC) fibroblasts: A potential basis for glial cell activation in the NPC brain. Journal of Neuroscience, 27, 1879–1891.PubMedCrossRefGoogle Scholar
  181. Svennerholm, L., Vanier, M. T., & Mansson, J. E. (1980). Krabbe disease: A galactosylsphingosine (psychosine) lipidosis. Journal of Lipid Research, 21, 53–64.PubMedGoogle Scholar
  182. Takamura, A., Higaki, K., Kajimaki, K., Otsuka, S., Ninomiya, H., Matsuda, J., et al. (2008). Enhanced autophagy and mitochondrial aberrations in murine G(M1)-gangliosidosis. Biochemical and Biophysical Research Communications, 367, 616–622.PubMedCrossRefGoogle Scholar
  183. Tanaka, K., & Webster, H. D. (1993). Effects of psychosine (galactosylsphingosine) on the survival and the fine structure of cultured Schwann cells. Journal of Neuropathology and Experimental Neurology, 52, 490–498.PubMedCrossRefGoogle Scholar
  184. te Vruchte, D., Lloyd-Evans, E., Veldman, R. J., Neville, D. C., Dwek, R. A., Platt, F. M., et al. (2004). Accumulation of glycosphingolipids in Niemann-Pick C disease disrupts endosomal transport. The Journal of Biological Chemistry, 279, 26167–26175.PubMedCrossRefGoogle Scholar
  185. Tessitore, A., del, P. M. M., Sano, R., Ma, Y., Mann, L., Ingrassia, A., et al. (2004). GM1-ganglioside-mediated activation of the unfolded protein response causes neuronal death in a neurodegenerative gangliosidosis. Molecular Cell, 15, 753–766.PubMedCrossRefGoogle Scholar
  186. Toda, K., Kobayashi, T., Goto, I., Kurokawa, T., & Ogomori, K. (1989). Accumulation of lysosulfatide (sulfogalactosylsphingosine) in tissues of a boy with metachromatic leukodystrophy. Biochemical and Biophysical Research Communications, 159, 605–611.PubMedCrossRefGoogle Scholar
  187. Toda, K., Kobayashi, T., Goto, I., Ohno, K., Eto, Y., Inui, K., et al. (1990). Lysosulfatide (sulfogalactosylsphingosine) accumulation in tissues from patients with metachromatic leukodystrophy. Journal of Neurochemistry, 55, 1585–1591.PubMedCrossRefGoogle Scholar
  188. Tybulewicz, V. L., Tremblay, M. L., LaMarca, M. E., Willemsen, R., Stubblefield, B. K., Winfield, S., et al. (1992). Animal model of Gaucher’s disease from targeted disruption of the mouse glucocerebrosidase gene. Nature, 357, 407–410.PubMedCrossRefGoogle Scholar
  189. Urayama, A., Grubb, J. H., Banks, W. A., & Sly, W. S. (2007). Epinephrine enhances lysosomal enzyme delivery across the blood brain barrier by up-regulation of the mannose 6-phosphate receptor. Proceedings of the National Academy of Sciences of the United States of America, 104, 12873–12878.PubMedCrossRefGoogle Scholar
  190. Urayama, A., Grubb, J. H., Sly, W. S., & Banks, W. A. (2004). Developmentally regulated mannose 6-phosphate receptor-mediated transport of a lysosomal enzyme across the blood-brain barrier. Proceedings of the National Academy of Sciences of the United States of America, 101, 12658–12663.PubMedCrossRefGoogle Scholar
  191. van der Voorn, J. P., Kamphorst, W., van der Knaap, M. S., & Powers, J. M. (2004). The leukoencephalopathy of infantile GM1 gangliosidosis: Oligodendrocytic loss and axonal dysfunction. Acta Neuropathologica, 107, 539–545.PubMedCrossRefGoogle Scholar
  192. Vanier, M. T. (1999). Lipid changes in Niemann-Pick disease type C brain: Personal experience and review of the literature. Neurochemical Research, 24, 481–489.PubMedCrossRefGoogle Scholar
  193. Vergarajauregui, S., Connelly, P. S., Daniels, M. P., & Puertollano, R. (2008). Autophagic dysfunction in mucolipidosis type IV patients. Human Molecular Genetics, 17, 2723–2737.PubMedCrossRefGoogle Scholar
  194. Vogler, C., Levy, B., Grubb, J. H., Galvin, N., Tan, Y., Kakkis, E., et al. (2005). Overcoming the blood-brain barrier with high-dose enzyme replacement therapy in murine mucopolysaccharidosis VII. Proceedings of the National Academy of Sciences of the United States of America, 102, 14777–14782.PubMedCrossRefGoogle Scholar
  195. von Figura, K., Gieselmann, V., & Jaeken, J. (2001). Metachromatic leukodystrophy. In C. R. Scriver, A. L. Beaudet, W. S. Sly, & D. Valle (Eds.), The metabolic, molecular basis of inherited diseases (8th ed., pp. 3695–3724). New York, NY: McGraw-Hill.Google Scholar
  196. Wada, R., Tifft, C. J., & Proia, R. L. (2000). Microglial activation precedes acute neurodegeneration in Sandhoff disease and is suppressed by bone marrow transplantation. Proceedings of the National Academy of Sciences of the United States of America, 97, 10954–10959.PubMedCrossRefGoogle Scholar
  197. Walkley, S. U., & Vanier, M. T. (2009). Secondary lipid accumulation in lysosomal disease. Biochimica et Biophysica Acta, 1793, 726–736.PubMedGoogle Scholar
  198. Wei, H., Kim, S. J., Zhang, Z., Tsai, P. C., Wisniewski, K. E., & Mukherjee, A. B. (2008). ER and oxidative stresses are common mediators of apoptosis in both neurodegenerative and non-neurodegenerative lysosomal storage disorders and are alleviated by chemical chaperones. Human Molecular Genetics, 17, 469–477.PubMedCrossRefGoogle Scholar
  199. Weinreb, N. J., Charrow, J., Andersson, H. C., Kaplan, P., Kolodny, E. H., Mistry, P., et al. (2002). Effectiveness of enzyme replacement therapy in 1028 patients with type 1 Gaucher disease after 2 to 5 years of treatment: A report from the Gaucher Registry. American Journal of Medicine, 113, 112–119.PubMedCrossRefGoogle Scholar
  200. Wenger, D. A., Rafi, M. A., Luzi, P., Datto, J., & Costantino-Ceccarini, E. (2000). Krabbe disease: Genetic aspects and progress toward therapy. Molecular Genetics and Metabolism, 70, 1–9.PubMedCrossRefGoogle Scholar
  201. Wenger, D. A., Suzuki, K., Suzuki, Y., & Suzuki, K. (2001). Galactosylceramide lipidosis. Globoid cell leukodystrophy (Krabbe disease). In C. R. Scriver, A. L. Beaudet, W. S. Sly, & D. Valle (Eds.), The metabolic, molecular basis of inherited diseases (8th ed., pp. 3669–3694). New York, NY: McGraw-Hill.Google Scholar
  202. White, A. B., Givogri, M. I., Lopez-Rosas, A., Cao, H., van Breemen, R., Thinakaran, G., et al. (2009). Psychosine accumulates in membrane microdomains in the brain of krabbe patients, disrupting the raft architecture. Journal of Neuroscience, 29, 6068–6077.PubMedCrossRefGoogle Scholar
  203. Whitfield, P. D., Nelson, P., Sharp, P. C., Bindloss, C. A., Dean, C., Ravenscroft, E. M., et al. (2002). Correlation among genotype, phenotype, and biochemical markers in Gaucher disease: Implications for the prediction of disease severity. Molecular Genetics and Metabolism, 75, 46–55.PubMedCrossRefGoogle Scholar
  204. Wittke, D., Hartmann, D., Gieselmann, V., & Lullmann-Rauch, R. (2004). Lysosomal sulfatide storage in the brain of arylsulfatase A-deficient mice: Cellular alterations and topographic distribution. Acta Neuropathologica, 108, 261–271.PubMedCrossRefGoogle Scholar
  205. Wraith, J. E., & Imrie, J. (2009). New therapies in the management of Niemann-Pick type C disease: Clinical utility of miglustat. Therapeutics and Clinical Risk Management, 5, 877–887.PubMedCrossRefGoogle Scholar
  206. Wraith, J. E., Vecchio, D., Jacklin, E., Abel, L., Chadha-Boreham, H., Luzy, C., et al. (2010). Miglustat in adult and juvenile patients with Niemann-Pick disease type C: Long-term data from a clinical trial. Molecular Genetics and Metabolism, 99, 351–357.PubMedCrossRefGoogle Scholar
  207. Wu, Y. P., & Proia, R. L. (2004). Deletion of macrophage-inflammatory protein 1 alpha retards neurodegeneration in Sandhoff disease mice. Proceedings of the National Academy of Sciences of the United States of America, 101, 8425–8430.PubMedCrossRefGoogle Scholar
  208. Yamada, H., Martin, P., & Suzuki, K. (1996). Impairment of protein kinase C activity in twitcher Schwann cells in vitro. Brain Research, 718, 138–144.PubMedCrossRefGoogle Scholar
  209. Yue, Z., Friedman, L., Komatsu, M., & Tanaka, K. (2009). The cellular pathways of neuronal autophagy and their implication in neurodegenerative diseases. Biochimica et Biophysica Acta, 1793, 1496–1507.PubMedGoogle Scholar
  210. Zaka, M., Rafi, M. A., Rao, H. Z., Luzi, P., & Wenger, D. A. (2005). Insulin-like growth factor-1 provides protection against psychosine-induced apoptosis in cultured mouse oligodendrocyte progenitor cells using primarily the PI3K/Akt pathway. Molecular and Cellular Neurosciences, 30, 398–407.PubMedCrossRefGoogle Scholar
  211. Zaka, M., & Wenger, D. A. (2004). Psychosine-induced apoptosis in a mouse oligodendrocyte progenitor cell line is mediated by caspase activation. Neuroscience Letters, 358, 205–209.PubMedCrossRefGoogle Scholar
  212. Zeger, M., Popken, G., Zhang, J., Xuan, S., Lu, Q. R., Schwab, M. H., et al. (2007). Insulin-like growth factor type 1 receptor signaling in the cells of oligodendrocyte lineage is required for normal in vivo oligodendrocyte development and myelination. Glia, 55, 400–411.PubMedCrossRefGoogle Scholar
  213. Zhao, H., & Grabowski, G. A. (2002). Gaucher disease: Perspectives on a prototype lysosomal disease. Cellular and Molecular Life Sciences, 59, 694–707.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Institute of Biochemistry and Molecular BiologyUniversity of BonnBonnGermany

Personalised recommendations