NeuroMolecular Medicine

, Volume 13, Issue 1, pp 37–43 | Cite as

Increased Cerebrospinal Fluid F2-Isoprostanes are Associated with Aging and Latent Alzheimer’s Disease as Identified by Biomarkers

  • Thomas J. Montine
  • Elaine R. Peskind
  • Joseph F. Quinn
  • Angela M. Wilson
  • Kathleen S. Montine
  • Douglas Galasko
Original Paper

Abstract

Alzheimer’s disease (AD) is a common age-related chronic illness with latent, prodrome, and fully symptomatic dementia stages. Increased free radical injury to regions of brain is one feature of prodrome and dementia stages of AD; however, it also is associated with advancing age. This raises the possibility that age-related free radical injury to brain might be caused in part or in full by latent AD. We quantified free radical injury in the central nervous system with cerebrospinal fluid (CSF) F2-isoprostanes (IsoPs) in 421 clinically normal individuals and observed a significant increase over the adult human lifespan (P < 0.001). Using CSF amyloid (A) β42 and tau, we defined normality using results from 28 clinically normal individuals <50 years old, and then stratified 74 clinically normal subjects ≥60 years into those with CSF that had normal CSF Aβ42 and tau (n = 37); abnormal CSF Aβ42 and tau, the biomarker signature of AD (n = 24); decreased Aβ42 only (n = 4); or increased tau only (n = 9). Increased CSF F2-IsoPs were present in clinically normal subjects with the biomarker signature of AD (P < 0.05) and those subjects with increased CSF tau (P < 0.001). Finally, we analyzed the relationship between age and CSF F2-IsoPs for those clinically normal adults with normal CSF (n = 37) and those with abnormal CSF Aβ42 and/or tau (n = 37); only those with normal CSF demonstrated a significant increase with age (P < 0.01). These results show that CSF F2-IsoPs increased across the human lifespan and that this age-related increase in free radical injury to brain persisted after culling those with laboratory evidence of latent AD.

Keywords

Alzheimer’s disease Cerebrospinal fluid Biomarkers 42 Tau F2-isoprostanes 

Notes

Acknowledgments

This work was supported by grants from the NIH (AG05131 and AG05136), the Fidelity Foundation, and the Nancy and Buster Alvord Endowment.

References

  1. Aizenstein, H. J., Nebes, R. D., Saxton, J. A., Price, J. C., Mathis, C. A., Tsopelas, N. D., et al. (2008). Frequent amyloid deposition without significant cognitive impairment among the elderly. Archives of Neurology, 65, 1509–1517.PubMedCrossRefGoogle Scholar
  2. Buckner, R. L., Snyder, A. Z., Shannon, B. J., LaRossa, G., Sachs, R., Fotenos, A. F., et al. (2005). Molecular, structural, and functional characterization of Alzheimer’s disease: Evidence for a relationship between default activity, amyloid, and memory. Journal of Neuroscience, 25, 7709–7717.PubMedCrossRefGoogle Scholar
  3. Craft, S., Newcomer, J., Kanne, S., Dagogo-Jack, S., Cryer, P., Sheline, Y., et al. (1996). Memory improvement following induced hyperinsulinemia in Alzheimer’s disease. Neurobiology of Aging, 17, 123–130.PubMedCrossRefGoogle Scholar
  4. Fagan, A. M., Mintun, M. A., Mach, R. H., Lee, S. Y., Dence, C. S., Shah, A. R., et al. (2006). Inverse relation between in vivo amyloid imaging load and cerebrospinal fluid Aβ42 in humans. Annals of Neurology, 59, 512–519.PubMedCrossRefGoogle Scholar
  5. Fagan, A. M., Roe, C. M., Xiong, C., Mintun, M. A., Morris, J. C., & Holtzman, D. M. (2007). Cerebrospinal fluid tau/beta-amyloid (42) ratio as a prediction of cognitive decline in non demented older adults. Archives of Neurology, 64, 343–349.PubMedCrossRefGoogle Scholar
  6. Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12, 189–198.PubMedCrossRefGoogle Scholar
  7. Hesse, C., Rosengren, L., Andreasen, N., Davidsson, P., Vanderstichele, H., Vanmechelen, E., et al. (2001). Transient increase in total tau but not phospho-tau in human cerebrospinal fluid after acute stroke. Neuroscience Letters, 297, 187–190.PubMedCrossRefGoogle Scholar
  8. Iacono, D., Markesbery, W. R., Gross, M., Pletnikova, O., Rudow, G., Zandi, P., et al. (2009). The Nun study: Clinically silent AD, neuronal hypertrophy, and linguistic skills in early life. Neurology, 73, 665–673.PubMedCrossRefGoogle Scholar
  9. Irizarry, M. C., Yao, Y., Hyman, B. T., Growdon, J. H., & Pratico, D. (2007). Plasma F2A isoprostane levels in Alzheimer’s and Parkinson’s disease. Neuro-degenerative Diseases, 4, 403–405.PubMedGoogle Scholar
  10. Li, G., Sokal, I., Quinn, J. F., Leverenz, J. B., Brodey, M., Schellenberg, G. D., et al. (2007). CSF tau/Aβ42 ratio for increased risk of mild cognitive impairment: A follow-up study. Neurology, 69, 631–639.PubMedCrossRefGoogle Scholar
  11. Lovell, M. A., & Markesbery, W. R. (2007). Oxidative damage in mild cognitive impairment and early Alzheimer’s disease. Journal of Neuroscience Research, 85, 3036–3040.PubMedCrossRefGoogle Scholar
  12. Markesbery, W. R., Jicha, G. A., Liu, H., & Schmitt, F. A. (2009). Lewy body pathology in normal elderly subjects. Journal of Neuropathology and Experimental Neurology, 68, 816–822.PubMedCrossRefGoogle Scholar
  13. Milatovic, D., VanRollins, M., Li, K., Montine, K. S., & Montine, T. J. (2005). Suppression of murine cerebral F2-isoprostanes and F4-neuroprostanes from excitotoxicity and innate immune response in vivo by alpha- or gamma-tocopherol. Journal of chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 827, 88–93.PubMedCrossRefGoogle Scholar
  14. Mintun, M. A., Larossa, G. N., Sheline, Y. I., Dence, C. S., Lee, S. Y., Mach, R. H., et al. (2006). [11C]PIB in a non demented population: Potential antecedent marker of Alzheimer disease. Neurology, 67, 446–452.PubMedCrossRefGoogle Scholar
  15. Montine, T. J., Markesbery, W. R., Morrow, J. D., & Roberts, L. J., II. (1998). Cerebrospinal fluid F2-isoprostane levels are increased in Alzheimer’s disease. Annals of Neurology, 44, 410–413.PubMedCrossRefGoogle Scholar
  16. Montine, T. J., Sidell, K. R., Crews, B. C., Markesbery, W. R., Marnett, L. J., Roberts, L. J., II et al. (1999). Elevated CSF prostaglandin E2 levels in patients with probable AD. Neurology, 53, 1495–1498.PubMedGoogle Scholar
  17. Montine, T. J., Kaye, J. A., Montine, K. S., McFarland, L., Morrow, J. D., & Quinn, J. F. (2001). Cerebrospinal fluid Aβ42, tau, and f2-isoprostane concentrations in patients with Alzheimer disease, other dementias, and in age-matched controls. Archives of Pathology and Laboratory Medicine, 125, 510–512.PubMedGoogle Scholar
  18. Montine, T. J., Quinn, J. F., Milatovic, D., Silbert, L. C., Dang, T., Sanchez, S., et al. (2002). Peripheral F2-isoprostanes and F4-neuroprostanes are not increased in Alzheimer’s disease. Annals of Neurology, 52, 175–179.PubMedCrossRefGoogle Scholar
  19. Montine, T. J., Montine, K. S., McMahan, W., Markesbery, W. R., Quinn, J. F., & Morrow, J. D. (2005). F2-isoprostanes in Alzheimer and other neurodegenerative diseases. Antioxidants & Redox Signaling, 7, 269–275.CrossRefGoogle Scholar
  20. Montine, T. J., Quinn, J., Kaye, J., & Morrow, J. D. (2007). F(2)-isoprostanes as biomarkers of late-onset Alzheimer’s disease. Journal of Molecular Neuroscience, 33, 114–119.PubMedCrossRefGoogle Scholar
  21. Montine, T. J., Shi, M., Quinn, J. F., Peskind, E. R., Craft, S., Ginghina C., Chung K. A., Kim, H., Galasko, D. R., Jankovic, J., Zabetian, C. P., Leverenz, J. B., Zhang, J. (2010). CSF Aβ42 and tau in Parkinson’s disease with cognitive impairment. Movement disorders in press.Google Scholar
  22. Mufson, E. J., & Leurgans, S. (2010). Inability of plasma and urine F2A-isoprostane levels to differentiate mild cognitive impairment from Alzheimer’s disease. Neuro-degenerative Diseases, 7, 139–142.PubMedGoogle Scholar
  23. Peskind, E. R., Riekse, R., Quinn, J. F., Kaye, J., Clark, C. M., Farlow, M. R., et al. (2005). Safety and acceptability of the research lumbar puncture. Alzheimer Disease and Associated Disorders, 19, 220–225.PubMedCrossRefGoogle Scholar
  24. Petersen, R. C., & Negash, S. (2008). Mild cognitive impairment: An overview. CNS spectrums, 13, 45–53.PubMedGoogle Scholar
  25. Petrovitch, H., Ross, G. W., Steinhorn, S. C., Abbott, R. D., Markesbery, W., Davis, D., et al. (2005). AD lesions and infarcts in demented and non-demented Japanese-American men. Annals of Neurology, 57, 98–103.PubMedCrossRefGoogle Scholar
  26. Pratico, D., Clark, C. M., Lee, V. M., Trojanowski, J. Q., Rokach, J., & FitzGerald, G. A. (2000). Increased 8, 12-iso-iPF2alpha-VI in Alzheimer’s disease: Correlation of a noninvasive index of lipid peroxidation with disease severity. Annals of Neurology, 48, 809–812.PubMedCrossRefGoogle Scholar
  27. Pratico, D., Clark, C. M., Liun, F., Rokach, J., Lee, V. Y., & Trojanowski, J. Q. (2002). Increase of brain oxidative stress in mild cognitive impairment: A possible predictor of Alzheimer disease. Archives of Neurology, 59, 972–976.PubMedCrossRefGoogle Scholar
  28. Price, J. L., McKeel, D. W. Jr., Buckles, V. D., Roe, C. M., Xiong, C., Grundman, M., et al. (2009). Neuropathology of non demented aging: Presumptive evidence for preclinical Alzheimer disease. Neurobiology of Aging, 30, 1026–1036.PubMedCrossRefGoogle Scholar
  29. Quinn, J. F., Montine, K. S., Moore, M., Morrow, J. D., Kaye, J. A., & Montine, T. J. (2004). Suppression of longitudinal increase in CSF F2-isoprostanes in Alzheimer’s disease. Journal of Alzheimer’s Disease, 6, 93–97.PubMedGoogle Scholar
  30. Reitan, R. M., & Wolfson, D. (1986). The Halstead-Reitan neuropsychological test battery. The neuropsychology handbook behavioral and clinical perspectives (pp. 134–160). New York: Springer Publishing Co.Google Scholar
  31. Rentz, D. M., Locascio, J. J., Becker, J. A., Moran, E. K., Eng, E., Buckner, R. L., et al. (2010). Cognition, reserve, and amyloid deposition in normal aging. Annals of Neurology, 67, 353–364.PubMedCrossRefGoogle Scholar
  32. Roberts, L. J., & Morrow, J. D. (2000). Measurement of F(2)-isoprostanes as an index of oxidative stress in vivo. Free Radical Biology and Medicine, 28, 505–513.PubMedCrossRefGoogle Scholar
  33. Schmitt, F. A., Davis, D. G., Wekstein, D. R., Smith, C. D., Ashford, J. W., & Markesbery, W. R. (2000). “Preclinical” AD revisited: neuropathology of cognitively normal older adults. Neurology, 55, 370–376.PubMedGoogle Scholar
  34. Smith, C. D., Carney, J. M., Starke-Reed, P. E., Oliver, C. N., Stadtman, E. R., Floyd, R. A., et al. (1991). Excess brain protein oxidation and enzyme dysfunction in normal aging and in Alzheimer disease. Proceedings of the National Academy of Sciences of the United States of America, 88, 10540–10543.PubMedCrossRefGoogle Scholar
  35. Sonnen, J. A., Larson, E. B., Crane, P. K., Haneuse, S., Li, G., Schellenberg, G. D., et al. (2007). Pathological correlates of dementia in a longitudinal, population-based sample of aging. Annals of Neurology, 62, 406–413.PubMedCrossRefGoogle Scholar
  36. Sonnen, J. A., Breitner, J. C., Lovell, M. A., Markesbery, W. R., Quinn, J. F., & Montine, T. J. (2008a). Free radical-mediated damage to brain in Alzheimer’s disease and its transgenic mouse models. Free Radical Biology and Medicine, 45, 219–230.PubMedCrossRefGoogle Scholar
  37. Sonnen, J. A., Montine, K. S., Quinn, J. F., Kaye, J. A., Breitner, J. C., & Montine, T. J. (2008b). Biomarkers for cognitive impairment and dementia in elderly people. Lancet Neurol, 7, 704–714.PubMedCrossRefGoogle Scholar
  38. Sonnen, J. A., Larson, E. B., Gray, S. L., Wilson, A., Kohama, S. G., Crane, P. K., et al. (2009). Free radical damage to cerebral cortex in Alzheimer’s disease, microvascular brain injury, and smoking. Annals of Neurology, 65, 226–229.PubMedCrossRefGoogle Scholar
  39. Tuppo, E. E., Forman, L. J., Spur, B. W., Chan-Ting, R. E., Chopra, A., & Cavalieri, T. A. (2001). Sign of lipid peroxidation as measured in the urine of patients with probable Alzheimer’s disease. Brain Research Bulletin, 54, 565–568.PubMedCrossRefGoogle Scholar
  40. Tyas, S. L., Snowdon, D. A., Desrosiers, M. F., Riley, K. P., & Markesbery, W. R. (2007). Healthy ageing in the Nun study: Definition and neuropathologic correlates. Age and Ageing, 36, 650–655.PubMedCrossRefGoogle Scholar
  41. Wechsler, W. (1987). Paragraph recall as well as category fluency and letter fluency Weschler memory scale. San Antonio, TX: The Psychological Corporation.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Thomas J. Montine
    • 1
  • Elaine R. Peskind
    • 2
    • 3
  • Joseph F. Quinn
    • 4
  • Angela M. Wilson
    • 1
  • Kathleen S. Montine
    • 1
  • Douglas Galasko
    • 5
  1. 1.Department of PathologyUniversity of WashingtonSeattleUSA
  2. 2.Department of Psychiatry and Behavioral SciencesUniversity of WashingtonSeattleUSA
  3. 3.Mental Illness Research, Education, and Clinical CenterVA Puget Sound Health Care SystemSeattleUSA
  4. 4.Department of NeurologyOregon Health and Science University and Portland VA Medical CenterPortlandUSA
  5. 5.Department of NeurosciencesUniversity of California at San DiegoLa JollaUSA

Personalised recommendations