NeuroMolecular Medicine

, Volume 11, Issue 4, pp 311–321 | Cite as

From Manganism to Manganese-Induced Parkinsonism: A Conceptual Model Based on the Evolution of Exposure

  • Roberto G. Lucchini
  • Christopher J. Martin
  • Brent C. Doney
Review Paper

Abstract

Manganism is a distinct medical condition from Parkinson’s disease. Manganese exposure scenarios in the last century generally have changed from the acute, high-level exposure conditions responsible for the occurrence of manganism to chronic exposure to much lower levels. Such chronic exposures may progressively extend the site of manganese deposition and toxicity from the globus pallidus to the entire area of the basal ganglia, including the substantia nigra pars compacta involved in Parkinson’s disease. The mechanisms of manganese neurotoxicity from chronic exposure to very low levels are not well understood, but promising information is based on the concept of susceptibility that may place individuals exposed to manganese at a higher risk for developing Parkinsonian disturbances. These conditions include mutations of genes which play important pathogenetic roles in both Parkinsonism and in the regulation of manganese transport and metabolism. Liver function is also important in manganese-related neurotoxicity and sub-clinical impairment may increase the risk of Parkinsonism. The purpose and scope of this report are to explore the literature concerning manganese exposure and potential subclinical effects and biological pathways, impairment, and development of diseases such as Parkinsonism and manganism. Inhalation and ingestion of manganese will be the focus of this report.

Keywords

Manganism Manganese poisoning Parkinsonian disorders Occupational exposure Neurotoxicity 

Notes

Disclaimer

The findings and conclusions of this report are those of the authors and do not necessarily represent the views of the National Institute for Occupational Safety and Health.

References

  1. ACGIH®. (2009). TLVs® and BEIs®, ACGIH®. Cincinnati, OH.Google Scholar
  2. Agarwal, G. S., Sharma, R., & Bhatnagar, V. (2008). Assessment of latent manganese toxicity as a prognostic factor following surgery for biliary atresia. European Journal of Pediatric Surgery, 18(1), 22–25.CrossRefPubMedGoogle Scholar
  3. Alves, G., Müller, B., Herlofson, K., Hogenesch, I., Telstad, W., Aarsland, D., et al. (2009). Incidence of Parkinson’s disease in Norway. The Norwegian ParkWest study. Journal of Neurology, Neurosurgery, and Psychiatry [Epub ahead of print].Google Scholar
  4. Anderson, J. G., Cooney, P. T., & Erikson, K. M. (2007). Inhibition of DAT function attenuates manganese accumulation in the globus pallidus. Environmental Toxicology and Pharmacology, 23(2), 179–184.CrossRefPubMedGoogle Scholar
  5. Antunes, M. B., Bowler, R., & Doty, R. L. (2007). San Francisco/Oakland Bay Bridge Welder Study: Olfactory function. Neurology, 69(12), 1278–1284.CrossRefPubMedGoogle Scholar
  6. Aschner, J. L., & Aschner, M. (2005). Nutritional aspects of manganese homeostasis. Molecular Aspects of Medicine, 26(4–5), 353–362.CrossRefPubMedGoogle Scholar
  7. Bouchard, M., Laforest, F., Vandelac, L., Bellinger, D., & Mergler, D. (2007). Hair manganese and hyperactive behaviors: Pilot study of school-age children exposed through tap water. Environmental Health Perspectives, 115, 122–127.PubMedGoogle Scholar
  8. Calne, D. B., Chu, N. S., Huang, C. C., Lu, C. S., & Olanow, W. (1994). Manganism and idiopathic Parkinsonism: Similarities and differences. Neurology, 44(9), 1583–1586.PubMedGoogle Scholar
  9. Canossa, E., Angiuli, G., Garasto, G., Buzzoni, A., & De Rosa, E. (1993). Dosage indicators in farm workers exposed to mancozeb. La Medicina del lavoro, 84(1), 42–50.PubMedGoogle Scholar
  10. Cory-Slechta, D. A. (2005). Studying toxicants as single chemicals: Does this strategy adequately identify neurotoxic risk? Neurotoxicology, 26(4), 491–510.CrossRefPubMedGoogle Scholar
  11. Costello, S., Cockburn, M., Bronstein, J., Zhang, X., & Ritz, B. (2009). Parkinson’s disease and residential exposure to maneb and paraquat from agricultural applications in the central valley of California. American Journal of Epidemiology, 169(8), 919–926.CrossRefPubMedGoogle Scholar
  12. Cotzias, G. C. (1958). Manganese in health and disease. Physiological Reviews, 38, 503–532.PubMedGoogle Scholar
  13. Couper, J. (1837). On the effects of black oxide of manganese when inhaled into the lungs. British Annals of Medicine and Pharmacology, 1, 41–42.Google Scholar
  14. Cowan, D. M., Fan, Q., Zou, Y., Shi, X., Chen, J., Aschner, M., et al. (2009). Manganese exposure among smelting workers: Blood manganese-iron ratio as a novel tool for manganese exposure assessment. Biomarkers, 14(1), 3–16.CrossRefPubMedGoogle Scholar
  15. Curran, C. P., Park, R. M., Ho, S.-m., & Haynes, E. N. (2008). Incorporating genetics and genomics in risk assessment for inhaled manganese: From data to policy. Neurotoxicology, 30(5), 754–760.CrossRefGoogle Scholar
  16. da Silva, C. J., da Rocha, A. J., Jeronymo, S., Mendes, M. F., Milani, F. T., Maia, A. C., Jr., et al. (2007). A preliminary study revealing a new association in patients undergoing maintenance hemodialysis: manganism symptoms and T1 hyperintense changes in the basal ganglia. American Journal of Neuroradiology, 28(8), 1474–1479.CrossRefPubMedGoogle Scholar
  17. Dorman, D. C., Brenneman, K. A., McElveen, A. M., Lynch, S. E., Roberts, K. C., & Wong, B. A. (2002). Olfactory transport: a direct route of delivery of inhaled manganese phosphate to the rate brain. Journal of Toxicology and Environmental Health. Part A, 65(20), 1493–1511.CrossRefPubMedGoogle Scholar
  18. Dörner, K., Dziadzka, S., Höhn, A., Sievers, E., Oldigs, H. D., Schulz-Lell, G., et al. (1989). Longitudinal manganese and copper balances in young infants and preterm infants fed on breastmilk and adapted cow’s milk formulas. British Journal of Nutrition, 61, 559–572.CrossRefPubMedGoogle Scholar
  19. Edsall, D. L., Wilbur, F. P., & Drinker, C. K. (1919). The occurrence, course and prevention of chronic manganese poisoning. Journal of Industrial Hygiene, 1, 183–193.Google Scholar
  20. Elder, A., Glein, R., Silva, V., Feikert, T., Opanashuk, L., Carter, J., et al. (2006). Translocation of inhaled ultrafine manganese oxide particles to the central nervous system. Environmental Health Perspectives, 114(8), 1172–1178.PubMedGoogle Scholar
  21. EPA. (2003). Health effects support document for manganese. EPA822R03003, U.S. Environmental Protection Agency, Washington DC. http://www.epa.gov/safewater/ccl/pdfs/reg_determine1/support_cc1_magnese_healtheffects.pdf. Accessed 10 July 2009.
  22. Fell, J. M., Reynolds, A. P., Meadows, N., Khan, K., Long, S. G., Quaghebeur, G., et al. (1996). Manganese toxicity in children receiving long-term parenteral nutrition. Lancet, 347(9010), 1218–1221.CrossRefPubMedGoogle Scholar
  23. Finkelstein, M. M., & Jerrett, M. (2007). A study of the relationships between Parkinson’s disease and markers of traffic-derived and environmental manganese air pollution in two Canadian cities. Environmental Research, 104, 420–432.CrossRefPubMedGoogle Scholar
  24. Gitler, A. D., Chesi, A., Geddie, M. L., Strathearn, K. E., Hamamichi, S., Hill, K. J., et al. (2009). Alpha-synuclein is part of a diverse and highly conserved interaction network that includes PARK9 and manganese toxicity. Nature Genetics, 41, 308–315.CrossRefPubMedGoogle Scholar
  25. Golub, M. S., Hogrefe, C. E., Germann, S. L., Tran, T. T., Beard, J. L., Crinella, F. M., et al. (2005). Neurobehavioral evaluation of rhesus monkey infants fed cow’s milk formula, soy formula, or soy formula with added manganese. Neurotoxicology and Teratology, 27(4), 615–627.CrossRefPubMedGoogle Scholar
  26. Gorell, J. M., Johnson, C. C., Rybicki, B. A., Peterson, E. L., Kortsha, G. X., Brown, G. G., et al. (1999). Occupational exposure to manganese, copper, lead, iron, mercury and zinc and the risk of Parkinson’s disease. Neurotoxicology, 20, 239–248.PubMedGoogle Scholar
  27. Grandjean, P., Bellinger, D., Bergman, A., Cordier, S., Davey-Smith, G., Eskenazi, B., et al. (2007). The Faroes Statement: Human health effects of developmental exposure to chemicals in our environment. Basic & Clinical Pharmacology & Toxicology, 102(2), 73–75.Google Scholar
  28. Grandjean, P., & Landrigan, P. (2006). Developmental neurotoxicity of industrial chemicals. Lancet, 368(9553), 2167–2178.CrossRefPubMedGoogle Scholar
  29. Guilarte, T. R., & Chen, M. K. (2007). Manganese inhibits NMDA receptor channel function: Implications to psychiatric and cognitive effects. Neurotoxicology, 28(6), 1147–1152.CrossRefPubMedGoogle Scholar
  30. Gwiazda, R., Lucchini, R., & Smith, D. (2007). Adequacy and consistency of animal studies to evaluate the neurotoxicity of chronic low-level manganese exposure in humans. Journal of Toxicology and Environmental Health. Part A, 70(7), 594–605.CrossRefPubMedGoogle Scholar
  31. Harper, P. S. (2002). Huntington’s disease: A historical background. In G. Bates, P. S. Harper, & L. Jones (Eds.), Huntington’s disease (3rd edn., pp. 3–24). Oxford: Oxford University Press. ISBN 0-19-851060-8.Google Scholar
  32. Higashi, Y., Asanuma, M., Miyazaki, I., Hattori, N., Mizuno, Y., & Ogawa, N. (2004). Parkin attenuates manganese-induced dopaminergic cell death. Journal of Neurochemistry, 89, 1490–1497.CrossRefPubMedGoogle Scholar
  33. Huang, C. C., Chu, N. S., Lu, C. S., Chen, R. S., Schulzer, M., & Calne, D. B. (2007). The natural history of neurological manganism over 18 years. Parkinsonism & Related Disorders, 13(3), 143–145.CrossRefGoogle Scholar
  34. IEH/IOM. (2004). Institute for Environment and Health/Institute of Occupational Medicine Occupational exposure limits: Criteria document for manganese and inorganic manganese compounds (Web Report W17), Leicester, UK, MRC Institute for Environment and Health. http://www.le.ac.uk/ieh. Accessed 10 July 2009.
  35. IUPAC. (1993). International Union of Pure and Applied Chemistry, Clinical Chemistry Division, Commission on Toxicology, Glossary for Chemists of Terms Used in Toxicology (IUPAC Recommendations 1993). Pure and Applied Chemistry, 65(9), 2003–2122.Google Scholar
  36. Jursa, T., & Smith, D. R. (2009). Ceruloplasmin alters the tissue disposition and neurotoxicity of manganese, but not its loading onto transferrin. Toxicological Sciences, 107(1), 182–193.CrossRefPubMedGoogle Scholar
  37. Kenangil, G., Ertan, S., Sayilir, I., & Ozekmekçi, S. (2006). Progressive motor syndrome in a welder with pallidal T1 hyperintensity on MRI: A two-year follow-up. Movement Disorders, 21(12), 2197–2200.CrossRefPubMedGoogle Scholar
  38. Kim, Y., Kim, J. W., Ito, K., Lim, H. S., Cheong, H. K., Kim, J. Y., et al. (1999a). Idiopathic Parkinsonism with superimposed manganese exposure: Utility of positron emission tomography. Neurotoxicology, 20(2–3), 249–252.PubMedGoogle Scholar
  39. Kim, Y., Kim, K. S., Yang, J. S., Park, I. J., Kim, E., Jin, Y., et al. (1999b). Increase in signal intensities on T1-weighted magnetic resonance images in asymptomatic manganese-exposed workers. Neurotoxicology, 20(6), 901–907.PubMedGoogle Scholar
  40. Kim, Y., Kim, J. M., Kim, J. W., Yoo, C. I., Lee, C. R., Lee, J. H., et al. (2002). Dopamine transporter density is decreased in Parkinsonian patients with a history of manganese exposure: What does it mean? Movement Disorders, 17, 568–575.CrossRefPubMedGoogle Scholar
  41. Klos, K. J., Ahlskog, J. E., Josephs, K. A., Fealey, R. D., Cowl, C. T., & Kumar, N. (2005). Neurologic spectrum of chronic liver failure and basal ganglia T1 hyperintensity on magnetic resonance imaging: Probable manganese neurotoxicity. Archives of Neurology, 62(9), 1385–1390.CrossRefPubMedGoogle Scholar
  42. Konstantinova, T. N., Lakhman, O. L., Katamanova, E. V., Kartapol’tseva, N. V., Meshcheriagin, V. A., Rusanova, D. V., et al. (2009). Clinical cases of occupational chronic manganese intoxication. Meditsina truda i promyshlennaia ekologiia, 1, 27–31 (in Russian).PubMedGoogle Scholar
  43. Lesage, S., & Brice, A. (2009). Parkinson’s disease: From monogenic forms to genetic susceptibility factors. Human Molecular Genetics, 18, R48–R59.CrossRefPubMedGoogle Scholar
  44. Li, G. J., Zhang, L., Lu, L., Wu, P., & Zheng, W. (2004). Occupational exposure to welding fume among welders: Alterations of manganese, iron, zinc, copper, and lead in body fluids and the oxidative stress status. Journal of Occupational and Environmental Medicine, 46, 241–248.CrossRefPubMedGoogle Scholar
  45. Ljung, K. S., Kippler, M. J., Goessler, W., Grandér, G. M., Nermell, B. M., & Vahter, M. E. (2009). Maternal and early life exposure to manganese in rural Bangladesh. Environmental Science and Technology, 43(7), 2595–2601.CrossRefPubMedGoogle Scholar
  46. Ljung, K., & Vahter, M. (2007). Time to re-evaluate the guideline value for manganese in drinking water? Environmental Health Perspectives, 115, 1533–1538.PubMedCrossRefGoogle Scholar
  47. Lönnerdal, B. (1994). Manganese nutrition of infants. In D. J. Klimis-Tavantzis (Ed.), Manganese in health and disease (pp. 176–191). Boca Raton, FL: CRC Press.Google Scholar
  48. Lu, L., Zhang, L. L., Li, G. J., Guo, W., Liang, W., & Zheng, W. (2005). Serum concentrations of manganese and iron as the potential biomarkers for manganese exposure in welders. Neurotoxicology, 26, 257–265.CrossRefPubMedGoogle Scholar
  49. Lucchini, R., Albini, E., Benedetti, L., Borghesi, S., Coccaglio, R., Malara, E. C., et al. (2007a). High prevalence of Parkinsonian disorders associated to manganese exposure in the vicinities of ferroalloy industries. American Journal of Industrial Medicine, 50, 788–800.CrossRefPubMedGoogle Scholar
  50. Lucchini, R., Albini, E., Benedetti, L., Zoni, S., Caruso, A., Nan, E., et al. (2007b). Neurological and neuropsychological features in Parkinsonian patients exposed to neurotoxic metals. Giornale Italiano di Medicina del Lavoro ed Ergonomia, 29, 280–281.PubMedGoogle Scholar
  51. Lucchini, R., Bergamaschi, E., Smargiassi, A., Festa, D., & Apostoli, P. (1997). Motor function, olfactory threshold, and hematological indices in manganese-exposed ferroalloy workers. Environmental Research, 73(1–2), 175–180.CrossRefPubMedGoogle Scholar
  52. Lucchini, R., Squitti, R., Albini, E., Benedetti, L., Borghesi, S., Nan, E., et al. (2008). Manganese exposure as a determinant of Parkinsonian damage. Cell Biology and Toxicology, 24, 423–470.CrossRefGoogle Scholar
  53. Lucchini, R., & Zimmerman, N. (2009). Lifetime cumulative exposure as a threat for neurodegeneration: Need for prevention strategies on a global scale. Neurotoxicology. doi: 10.1016/j.neuro.2009.10.003.
  54. Martin, C. (2006). Manganese neurotoxicity: Connecting the dots along the continuum of dysfunction. Neurotoxicology, 27, 347–349.CrossRefPubMedGoogle Scholar
  55. Meco, G., Bonifati, V., Vanacore, N., & Fabrizio, E. (1994). Parkinsonism after chronic exposure to the fungicide maneb (manganese ethylene-bis-dithiocarbamate). Scandinavian Journal of Work, Environment and Health, 20(4), 301–305.PubMedGoogle Scholar
  56. Nelson, K., Golnick, J., Korn, T., & Angle, C. (1993). Manganese encephalopathy: utility of early magnetic resonance imaging. British Journal of Industrial Medicine, 50(6), 510–513.PubMedGoogle Scholar
  57. Newland, M. C., & Weiss, B. (1992). Persistent effects of manganese on effortful responding and their relationship to manganese accumulation in the primate globus pallidus. Toxicology and Applied Pharmacology, 113, 87–97.CrossRefPubMedGoogle Scholar
  58. Øygard, K., Riise, T., Moen, B., & Engelsen, B. A. (1992). Occurrence of Parkinson’s disease (PD) and Parkinsonism (P) in Sauda community. Proceedings of the symposium on manganese toxicity (pp. 179–182). International Manganese Institute, Paris, France.Google Scholar
  59. Park, J. D., Chung, Y. H., Kim, C. Y., Ha, C. S., Yang, S. O., Khang, H. S., et al. (2007). Comparison of high MRI T1 signals with manganese concentration in brains of cynomolgus monkeys after 8 months of stainless steel welding-fume exposure. Inhalation Toxicology, 19, 965–971.CrossRefPubMedGoogle Scholar
  60. Parkinson, J. (2002). Neuropsychiatric classics: James Parkinson: an essay on the shaking palsy. Journal of Neuropsychiatry and Clinical Neurosciences, 14, 223–236.PubMedGoogle Scholar
  61. Perl, D. P., & Olanow, C. W. (2007). The neuropathology of manganese-induced Parkinsonism. Journal of Neuropathology and Experimental Neurology, 66(8), 675–682.CrossRefPubMedGoogle Scholar
  62. Ponsen, M. M., Stoffers, D., Twisk, J. W., Wolters, E. Ch., & Berendse, H. W. (2009). Hyposmia and executive dysfunction as predictors of future Parkinson’s disease: A prospective study. Movement Disorders, 24(7), 1060–1065.CrossRefPubMedGoogle Scholar
  63. Pratesi, A., Vella, A., Pasini, E., Salvi, F., & Mascalchi, M. (2008). Parkinsonism in polycythaemia vera probably due to manganism. Movement Disorders, 23(16), 2420–2421.CrossRefPubMedGoogle Scholar
  64. Racette, B. A., McGee-Minnich, L., Moerlein, S. M., Mink, J. W., Videen, T. O., & Perlmutter, J. S. (2001). Welding-related Parkinsonism: Clinical features, treatment, and pathophysiology. Neurology, 56, 8–13.PubMedGoogle Scholar
  65. Racette, B. A., Tabbal, S. D., Jennings, D., Good, L., Perlmutter, J. S., & Evanoff, B. (2005). Prevalence of Parkinsonism and relationship to exposure in a large sample of Alabama welders. Neurology, 64(2), 230–235.PubMedGoogle Scholar
  66. Ritz, B. R., Manthripragada, A. D., Costello, S., Lincoln, S. J., Farrer, M. J., Cockburn, M., et al. (2009). Dopamine transporter genetic variants and pesticides in Parkinson’s disease. Environmental Health Perspectives, 117(6), 964–969.PubMedGoogle Scholar
  67. Rodier, J. (1955). Manganese poisoning in Moroccan miners. British Journal of Industrial Medicine, 12.Google Scholar
  68. Roth, J. A. (2006). Homeostatic and toxic mechanisms regulating manganese uptake, retention, and elimination. Biological Research, 39, 45–57.CrossRefPubMedGoogle Scholar
  69. Roth, J. A. (this issue). Are there common biochemical and molecular mechanisms controlling manganism and Parkinsonism? Neuromolecular Medicine. doi: 10.1007/s12017-009-8088-8.
  70. Roth, J. A., & Garrick, M. D. (2003). Iron interactions and other biological reactions medicating the physiological and toxic actions of manganese. Biochemical Pharmacology, 66, 1–13.CrossRefPubMedGoogle Scholar
  71. Rovira, A., Alonso, J., & Córdoba, J. (2008). MR imaging findings in hepatic encephalopathy. American Journal of Neuroradiology, 29(9), 1612–1621.CrossRefPubMedGoogle Scholar
  72. Sadek, A. H., Rauch, R., & Schulz, P. E. (2003). Parkinsonism due to manganism in a welder. International Journal of Toxicology, 22, 393–401.PubMedGoogle Scholar
  73. Schaumburg, H. H., Herskovitz, S., & Cassano, V. A. (2006). Occupational manganese neurotoxicity provoked by hepatitis C. Neurology, 67(2), 322–323.CrossRefPubMedGoogle Scholar
  74. Schuler, P., Oyanguren, H., Maturana, V., Valenzuela, A., Cruz, E., Plaza, V., et al. (1957). Manganese poisoning: Environmental and medical study at a Chilean mine. Industrial Medicine and Surgery, 26, 167–173.PubMedGoogle Scholar
  75. Shinotoh, H., Snow, B. J., Hewitt, K. A., Pate, B. D., Doudet, D., Nugent, R., et al. (1995). MRI and PET studies of manganese-intoxicated monkeys. Neurology, 45(6), 1199–1204.PubMedGoogle Scholar
  76. Smith, D., Gwiazda, R., Bowler, R., Roels, H., Park, R., Taicher, C., et al. (2007). Biomarkers of manganese exposure in humans. American Journal of Industrial Medicine, 50(11), 801–811.CrossRefPubMedGoogle Scholar
  77. Smyth, L. T., Ruhf, R. C., Whitman, N. E., & Dugan, T. (1973). Clinical manganism and exposure to manganese in the production and processing of ferromanganese alloy. Journal of Occupational Medicine, 15(2), 101–109.PubMedGoogle Scholar
  78. Squitti, R., Gorgone, G., Panetta, V., Lucchini, R., Bucossi, S., Albini, E., et al. (2009). Implications of metal exposure and liver function in Parkinsonian patients resident in the vicinities of ferroalloy plants. Journal of Neural Transmission, 116(10), 1281–1287.CrossRefPubMedGoogle Scholar
  79. Stampfer, M. J. (2009). Welding occupations and mortality from Parkinson’s disease and other neurodegenerative diseases among United States men, 1985–1999. Journal of Occupational and Environmental Hygiene, 6(5), 267–272.CrossRefPubMedGoogle Scholar
  80. Stepens, A., Logina, I., Liguts, V., Aldins, P., Eksteina, I., Platkājis, A., et al. (2008). A Parkinsonian syndrome in methcathinone users and the role of manganese. New England Journal of Medicine, 358(10), 1009–1017.CrossRefPubMedGoogle Scholar
  81. Thompson, K., Molina, R. M., Donaghey, T., Schwob, J. E., Brain, J. D., & Wessling-Resnick, M. (2007). Olfactory uptake of manganese requires DMT1 and is enhanced by anemia. FASEB Journal, 21(1), 223–230.CrossRefPubMedGoogle Scholar
  82. Verity, M. A. (1999). Manganese neurotoxicity: A mechanistic hypothesis. Neurotoxicology, 20, 489–497.PubMedGoogle Scholar
  83. Verschoor, L., & Verschoor, A. H. (2009). Work-related disease. Nederlands tijdschrift voor geneeskunde, 153(20), 964–967 (in Dutch).PubMedGoogle Scholar
  84. Von Campenhausen, S., Bornschein, B., Wick, R., Botzel, K., Sampaio, C., Poewe, W., et al. (2005). Prevalence and High Prevalence of Parkinsonian Disorders incidence of Parkinson’s disease in Europe. Prevalence and high prevalence of Parkinsonian disorders incidence of Parkinson’s disease in Europe, 15, 473–490.CrossRefGoogle Scholar
  85. Von Jaksch, R. (1909). Ueber gehaufte diffuse Erkrankun- gen des Gehirns und Ruckenmarks, an den Typus der multiplen Sklerose mahnend, welche durch eine besondere Aetiologie gekennzeichnet sind. Klein Rundsch, 15, 729–733 (in German).Google Scholar
  86. Wang, J. D., Huang, C. C., Hwang, Y. H., Chiang, J. R., Lin, J. M., & Chen, J. S. (1989). Manganese induced Parkinsonism: an outbreak due to an unrepaired ventilation control system in a ferromanganese smelter. British Journal of Industrial Medicine, 46, 856–859.PubMedGoogle Scholar
  87. Wasserman, G. A., Liu, X., Parvez, F., Ahsan, H., Levy, D., Factor-Litvak, P., et al. (2006). Water manganese exposure and children’s intellectual function in Araihazar, Bangladesh. Environmental Health Perspectives, 114, 124–129.PubMedGoogle Scholar
  88. Weiss, B. (2006). Economic implications of manganese neurotoxicity. Neurotoxicology, 27(3), 362–368.CrossRefPubMedGoogle Scholar
  89. Wexler, A. (2008). The woman who walked Into the sea. Huntington’s and the making of a genetic disease (pp. 288). Yale University Press. ISBN 9780300105025.Google Scholar
  90. WHO. (1981). Manganese. Environmental health criteria 17. Geneva, Switzerland: World Health Organization.Google Scholar
  91. WHO. (2004). Manganese in drinking-water. Background document for development of WHO guidelines for drinking-water quality. World Health Organization. WHO/SDE/WSH/03.04/104. http://www.who.int/water_sanitation_health/dwq/chemicals/manganese.pdf. Accessed 10 July 2009.
  92. Wright, R. O., Amarasiriwardena, C., Woolf, A. D., Jim, R., & Bellinger, D. C. (2006). Neuropsychological correlates of hair arsenic, manganese, and cadmium levels in school-age children residing near a hazardous waste site. Neurotoxicology, 27(2), 210–216.CrossRefPubMedGoogle Scholar
  93. Wright, A. K., & Arbuthnott, G. W. (2007). The influence of the subthalamic nucleus upon the damage to the dopamine system following lesions of globus pallidus in rats. European Journal of Neuroscience, 26(3), 642–648.CrossRefPubMedGoogle Scholar
  94. Yamada, M., Ohno, S., Okayasu, I., Okeda, R., Hatakeyama, S., Watanabe, H., et al. (1986). Chronic manganese poisoning: A neuropathological study with determination of manganese distribution in the brain. Acta Neuropathologica, 70(3–4), 273–278.CrossRefPubMedGoogle Scholar
  95. Yokel, R. A. (this issue). Manganese flux across the blood–brain barrier. Neuromolecular Medicine. doi: 10.1007/s12017-009-8101-2.
  96. Zota, A. R., Ettinger, A. S., Bouchard, M., Amarasiriwardena, C. J., Schwartz, J., Hu, H., et al. (2009). Maternal blood manganese levels and infant birth weight. Epidemiology, 20(3), 367–373.CrossRefPubMedGoogle Scholar

Copyright information

© US Government 2009

Authors and Affiliations

  • Roberto G. Lucchini
    • 1
  • Christopher J. Martin
    • 2
  • Brent C. Doney
    • 3
  1. 1.Department of Experimental and Applied MedicineSection of Occupational Health and Industrial Hygiene, University of BresciaBresciaItaly
  2. 2.Institute of Occupational and Environmental Health, West Virginia University School of MedicineMorgantownUSA
  3. 3.Centers for Disease Control and Prevention, National Institute for Occupational Safety and HealthMorgantownUSA

Personalised recommendations