NeuroMolecular Medicine

, Volume 12, Issue 1, pp 1–12 | Cite as

An Overview of APP Processing Enzymes and Products

  • Vivian W. Chow
  • Mark P. Mattson
  • Philip C. Wong
  • Marc Gleichmann
Review Paper

Abstract

The generation of amyloid β-peptide (Aβ) by enzymatic cleavages of the β-amyloid precursor protein (APP) has been at the center of Alzheimer’s disease (AD) research. While the basic process of β- and γ-secretase-mediated generation of Aβ is text book knowledge, new aspects of Aβ and other cleavage products have emerged in recent years. Also our understanding of the enzymes involved in APP proteolysis has increased dramatically. All of these discoveries contribute to a more complete understanding of APP processing and the physiologic and pathologic roles of its secreted and intracellular protein products. Understanding APP processing is important for any therapeutic strategy aimed at reducing Aβ levels in AD. In this review, we provide a concise description of the current state of understanding the enzymes involved in APP processing, the cleavage products generated by different processing patterns, and the potential functions of those cleavage products.

Keywords

Amyloid beta α-secretase β-secretase γ-secretase APP AICD 

References

  1. Abad-Rodriguez, J., Ledesma, M. D., Craessaerts, K., Perga, S., Medina, M., Delacourte, A., et al. (2004). Neuronal membrane cholesterol loss enhances amyloid peptide generation. Journal of Cell Biology, 167, 953–960.PubMedGoogle Scholar
  2. Asai, M., Hattori, C., Szabó, B., Sasagawa, N., Maruyama, K., Tanuma, S., et al. (2003). Putative function of ADAM9, ADAM10, and ADAM17 as APP alpha-secretase. Biochemical and Biophysical Research Communications, 301, 231–235.PubMedGoogle Scholar
  3. Baier, M., Apelt, J., Riemer, C., Gültner, S., Schwarz, A., Bamme, T., et al. (2008). Prion infection of mice transgenic for human APPSwe: Increased accumulation of cortical formic acid extractable Abeta(1–42) and rapid scrapie disease development. International Journal of Developmental Neuroscience, 26, 821–824.PubMedGoogle Scholar
  4. Beel, A. J., & Sanders, C. R. (2008). Substrate specificity of gamma-secretase and other intramembrane proteases. Cellular and Molecular Life Sciences, 65, 1134–1311.Google Scholar
  5. Böhme, L., Hoffmann, T., Manhart, S., Wolf, R., & Demuth, H. U. (2008). Isoaspartate-containing amyloid precursor protein-derived peptides alter efficacy and specificity of potential beta-secretases. Biological chemistry, 389, 1055–1066.PubMedGoogle Scholar
  6. Cai, H., Wang, Y., McCarthy, D., Wen, H., Borchelt, D. R., Price, D. L., et al. (2001). BACE1 is the major beta-secretase for generation of Abeta peptides by neurons. Nature Neuroscience, 4, 233–234.PubMedGoogle Scholar
  7. Caillé, I., Allinquant, B., Dupont, E., Bouillot, C., Langer, A., Müller, U., et al. (2004). Soluble form of amyloid precursor protein regulates proliferation of progenitors in the adult subventricular zone. Development, 131, 2173–2181.PubMedGoogle Scholar
  8. Chan, S. L., Mayne, M., Holden, C. P., Geiger, J. D., & Mattson, M. P. (2000). Presenilin-1 mutations increase levels of ryanodine receptors and calcium release in PC12 cells and cortical neurons. The Journal of Biological Chemistry, 275, 18195–18200.PubMedGoogle Scholar
  9. Cheng, H., Vetrivel, K. S., Gong, P., Meckler, X., Parent, A., & Thinakaran, G. (2007). Mechanisms of disease: new therapeutic strategies for Alzheimer’s disease–targeting APP processing in lipid rafts. Nature Clinical Practice. Neurology, 3, 374–382.PubMedGoogle Scholar
  10. Cheung, K. H., Shineman, D., Müller, M., Cárdenas, C., Mei, L., Yang, J., et al. (2008). Mechanism of Ca2+ disruption in Alzheimer’s disease by presenilin regulation of InsP3 receptor channel gating. Neuron, 58, 871–883.PubMedGoogle Scholar
  11. Clement, A. B., Hanstein, R., Schröder, A., Nagel, H., Endres, K., Fahrenholz, F., et al. (2008). Effects of neuron-specific ADAM10 modulation in an in vivo model of acute excitotoxic stress. Neuroscience, 152, 459–468.PubMedGoogle Scholar
  12. Cole, D. C., Stock, J. R., Kreft, A. F., Antane, M., Aschmies, S. H., Atchison, K. P., et al. (2009). (S)-N-(5-Chlorothiophene-2-sulfonyl)-beta, beta-diethylalaninol a Notch-1-sparing gamma-secretase inhibitor. Bioorganic and Medicinal Chemistry Letters, 19, 926–929.PubMedGoogle Scholar
  13. Cole, S. L., & Vassar, R. (2008). The role of amyloid precursor protein processing by BACE1, the beta-secretase, in Alzheimer disease pathophysiology. The Journal of Biological Chemistry, 283, 29621–29625.PubMedGoogle Scholar
  14. De Strooper, B., & Annaert, W. (2000). Proteolytic processing and cell biological functions of the amyloid precursor protein. Journal of Cell Science, 113, 1857–1870.PubMedGoogle Scholar
  15. Edwards, D. R., Handsley, M. M., & Pennington, C. J. (2008). The ADAM metalloproteinases. Molecular Aspects of Medicine, 29, 258–289.PubMedGoogle Scholar
  16. Fahrenholz, F., Gilbert, S., Kojro, E., Lammich, S., & Postina, R. (2000). Alpha-secretase activity of the disintegrin metalloprotease ADAM 10. Influences of domain structure. Annals of the New York Academy of Sciences, 920, 215–222.PubMedGoogle Scholar
  17. Farzan, M., Schnitzler, C. E., Vasilieva, N., Leung, D., & Choe, H. (2000). BACE2, a β-secretase homolog, cleaves at the β site and within the amyloid-β region of the amyloid-β precursor protein. Proceedings of the National Academy of Sciences of the United States of America, 97, 9712–9717.PubMedGoogle Scholar
  18. Furukawa, K., Barger, S. W., Blalock, E. M., & Mattson, M. P. (1996). Activation of K+ channels and suppression of neuronal activity by secreted beta-amyloid-precursor protein. Nature, 379, 74–78.PubMedGoogle Scholar
  19. Gakhar-Koppole, N., Hundeshagen, P., Mandl, C., Weyer, S. W., Allinquant, B., Müller, U., et al. (2008). Activity requires soluble amyloid precursor protein alpha to promote neurite outgrowth in neural stem cell-derived neurons via activation of the MAPK pathway. European Journal of Neuroscience, 28, 871–882.PubMedGoogle Scholar
  20. Ghosal, K., Vogt, D. L., Liang, M., Shen, Y., Lamb, B. T. & Pimplikar, S. W. (2009). Alzheimer’s disease-like pathological features in transgenic mice expressing the APP intracellular domain. Proceedings of the National Academy of Sciences of the United States of America (in press). Google Scholar
  21. Gómez-Ramos, P., & Asunción Morán, M. (2007). Ultrastructural localization of intraneuronal Abeta-peptide in Alzheimer disease brains. Journal of Alzheimer’s Disease, 11, 53–59.PubMedGoogle Scholar
  22. Guglielmotto, M., Aragno, M., Autelli, R., Giliberto, L., Novo, E., Colombatto, S., et al. (2009). The up-regulation of BACE1 mediated by hypoxia and ischemic injury: Role of oxidative stress and HIF1alpha. Journal of Neurochemistry, 108, 1045–1056.PubMedGoogle Scholar
  23. Guo, Q., Sopher, B. L., Furukawa, K., Pham, D. G., Robinson, N., Martin, G. M., et al. (1997). Alzheimer’s presenilin mutation sensitizes neural cells to apoptosis induced by trophic factor withdrawal and amyloid beta-peptide: Involvement of calcium and oxyradicals. Journal of Neuroscience, 17, 4212–4222.PubMedGoogle Scholar
  24. Herzog, V., Kirfel, G., Siemes, C., & Schmitz, A. (2004). Biological roles of APP in the epidermis. European Journal of Cell Biology, 83, 613–624.PubMedGoogle Scholar
  25. Hirata-Fukae, C., Sidahmed, E. H., Gooskens, T. P., Aisen, P. S., Dewachter, I., Devijver, H., et al. (2008). Beta-site amyloid precursor protein-cleaving enzyme-1 (BACE1)-mediated changes of endogenous amyloid beta in wild-type and transgenic mice in vivo. Neuroscience Letters, 435, 186–189.PubMedGoogle Scholar
  26. Hoey, S. E., Williams, R. J., & Perkinton, M. S. (2009). Synaptic NMDA receptor activation stimulates alpha-secretase amyloid precursor protein processing and inhibits amyloid-beta production. Journal of Neuroscience, 29, 4442–4460.PubMedGoogle Scholar
  27. Hoffmann, J., Twiesselmann, C., Kummer, M. P., Romagnoli, P., & Herzog, V. (2000). A possible role for the Alzheimer amyloid precursor protein in the regulation of epidermal basal cell proliferation. European Journal of Cell Biology, 79, 905–914.PubMedGoogle Scholar
  28. Holsinger, R. M., McLean, C. A., Beyreuther, K., Masters, C. L., & Evin, G. (2002). Increased expression of the amyloid precursor beta-secretase in Alzheimer’s disease. Annals of Neurology, 51, 783–786.PubMedGoogle Scholar
  29. Hook, G., Hook, V. Y., & Kindy, M. (2007a). Cysteine protease inhibitors reduce brain beta-amyloid and beta-secretase activity in vivo and are potential Alzheimer’s disease therapeutics. Biological Chemistry, 388, 979–983.PubMedGoogle Scholar
  30. Hook, V., Kindy, M., & Hook, G. (2007b). Cysteine protease inhibitors effectively reduce in vivo levels of brain beta-amyloid related to Alzheimer’s disease. Biological Chemistry, 388, 247–252.PubMedGoogle Scholar
  31. Hook, V. Y., Kindy, M., & Hook, G. (2008). Inhibitors of cathepsin B improve memory and reduce beta-amyloid in transgenic Alzheimer disease mice expressing the wild-type, but not the Swedish mutant, beta-secretase site of the amyloid precursor protein. The Journal of Biological Chemistry, 283, 7745–7753.PubMedGoogle Scholar
  32. Hook, V. Y., Kindy, M., Reinheckel, T., Peters, C., & Hook, G. (2009). Genetic cathepsin B deficiency reduces beta-amyloid in transgenic mice expressing human wild-type amyloid precursor protein. Biochemical and Biophysical Research Communications, 386, 284–288.PubMedGoogle Scholar
  33. Hook, V., Toneff, T., Bogyo, M., Greenbaum, D., Medzihradszky, K. F., Neveu, J., et al. (2005). Inhibition of cathepsin B reduces beta-amyloid production in regulated secretory vesicles of neuronal chromaffin cells: evidence for cathepsin B as a candidate beta-secretase of Alzheimer’s disease. Biological Chemistry, 386, 931–940.PubMedGoogle Scholar
  34. Hu, X., Hicks, C. W., He, W., Wong, P., Macklin, W. B., Trapp, B. D., et al. (2006). Bace1 modulates myelination in the central and peripheral nervous system. Nature Neuroscience, 9, 1520–1525.PubMedGoogle Scholar
  35. Hunt, C. E., & Turner, A. J. (2009). Cell biology, regulation and inhibition of beta-secretase (BACE-1). FEBS Journal, 276, 1845–1859.PubMedGoogle Scholar
  36. Huse, J. T., Liu, K., Pijak, D. S., Carlin, D., Lee, V. M., & Doms, R. W. (2002). Beta-secretase processing in the trans-Golgi network preferentially generates truncated amyloid species that accumulate in Alzheimer’s disease brain. The Journal of Biological Chemistry, 277, 16278–16284.PubMedGoogle Scholar
  37. Hussain, I., Powell, D. J., Howlett, D. R., Chapman, G. A., Gilmour, L., Murdock, P. R., et al. (2000). ASP1 (BACE2) cleaves the amyloid precursor protein at the β-secretase site. Molecular and Cellular Neurosciences, 16, 609–619.PubMedGoogle Scholar
  38. Iacono, D., Markesbery, W. R., Gross, M., Pletnikova, O., Rudow, G., Zandi, P., et al. (2009). The nun study. Clinically silent AD, neuronal hypertrophy, and linguistic skills in early life. Neurology (in press).Google Scholar
  39. Iacono, D., O’Brien, R., Resnick, S. M., Zonderman, A. B., Pletnikova, O., Rudow, G., et al. (2008). Neuronal hypertrophy in asymptomatic Alzheimer disease. Journal of Neuropathology and Experimental Neurology, 67, 578–589.PubMedGoogle Scholar
  40. Ishida, A., Furukawa, K., Keller, J. N., & Mattson, M. P. (1997). Secreted form of beta-amyloid precursor protein shifts the frequency dependency for induction of LTD, and enhances LTP in hippocampal slices. Neuroreport, 8, 2133–2137.PubMedGoogle Scholar
  41. Iwata, N., Tsubuki, S., Takaki, Y., Watanabe, K., Sekiguchi, M., Hosoki, E., et al. (2000). Identification of the major Abeta1-42-degrading catabolic pathway in brain parenchyma: Suppression leads to biochemical and pathological deposition. Nature Medicine, 6, 143–150.PubMedGoogle Scholar
  42. Jo, D. G., Arumugam, T. V., Woo, H. N., Park, J. S., Tang, S. C., Mughal, M., et al. (2008). Evidence that gamma-secretase mediates oxidative stress-induced beta-secretase expression in Alzheimer’s disease. Neurobiology of Aging (in press).Google Scholar
  43. Kamenetz, F., Tomita, T., Hsieh, H., Seabrook, G., Borchelt, D., Iwatsubo, T., et al. (2003). APP processing and synaptic function. Neuron, 37, 925–937.PubMedGoogle Scholar
  44. Kirfel, G., Borm, B., Rigort, A., & Herzog, V. (2002). The secretory beta-amyloid precursor protein is a motogen for human epidermal keratinocytes. European Journal of Cell Biology, 81, 664–676.PubMedGoogle Scholar
  45. Klein, D. M., Felsenstein, K. M., & Brenneman, D. E. (2009). Cathepsins B and L differentially regulate amyloid precursor protein processing. Journal of Pharmacology and Experimental Therapeutics, 328, 813–821.PubMedGoogle Scholar
  46. Kobayashi, D., Zeller, M., Cole, T., Buttini, M., McConlogue, L., Sinha, S., et al. (2008). BACE1 gene deletion: impact on behavioral function in a model of Alzheimer’s disease. Neurobiology of Aging, 29, 861–873.PubMedGoogle Scholar
  47. Kohutek, Z. A., di Pierro, C. G., Redpath, G. T., & Hussaini, I. M. (2009). ADAM-10-mediated N-cadherin cleavage is protein kinase C-alpha dependent and promotes glioblastoma cell migration. The Journal of Neuroscience, 29, 4605–4615.PubMedGoogle Scholar
  48. Kurochkin, I. V., & Goto, S. (1994). Alzheimer’s beta-amyloid peptide specifically interacts with and is degraded by insulin degrading enzyme. FEBS Letter, 345, 33–37.Google Scholar
  49. Kwak, Y. D., Brannen, C. L., Qu, T., Kim, H. M., Dong, X., Soba, P., et al. (2006). Amyloid precursor protein regulates differentiation of human neural stem cells. Stem Cells and Development, 15, 381–389.PubMedGoogle Scholar
  50. Laird, F. M., Cai, H., Savonenko, A. V., Farah, M. H., He, K., Melnikova, T., et al. (2005). BACE1, a major determinant of selective vulnerability of the brain to amyloid-beta amyloidogenesis, is essential for cognitive, emotional, and synaptic functions. Journal of Neuroscience, 25, 11693–11709.PubMedGoogle Scholar
  51. Lannfelt, L., Basun, H., Wahlund, L. O., Rowe, B. A., & Wagner, S. L. (1995). Decreased alpha-secretase-cleaved amyloid precursor protein as a diagnostic marker for Alzheimer’s disease. Nature Medicine, 1, 829–832.PubMedGoogle Scholar
  52. Laurén, J., Gimbel, D. A., Nygaard, H. B., Gilbert, J. W., & Strittmatter, S. M. (2009). Cellular prion protein mediates impairment of synaptic plasticity by amyloid-beta oligomers. Nature, 457, 1128–1132.PubMedGoogle Scholar
  53. Le Gall, S. M., Bobé, P., Reiss, K., Horiuchi, K., Niu, X. D., Lundell, D., et al. (2009). ADAMs 10 and 17 represent differentially regulated components of a general shedding machinery for membrane proteins such as transforming growth factor alpha, L-selectin, and tumor necrosis factor alpha. Molecular Biology of the Cell, 20, 1785–1794.PubMedGoogle Scholar
  54. Lesné, S., Ali, C., Gabriel, C., Croci, N., MacKenzie, E. T., Glabe, C. G., et al. (2005). NMDA receptor activation inhibits alpha-secretase and promotes neuronal amyloid-beta production. Journal of Neuroscience, 25, 9367–9377.PubMedGoogle Scholar
  55. Lewczuk, P., Kornhuber, J., Vanderstichele, H., Vanmechelen, E., Esselmann, H., Bibl, M., et al. (2008). Multiplexed quantification of dementia biomarkers in the CSF of patients with early dementias and MCI: A multicenter study. Neurobiology of Aging, 29, 812–818.PubMedGoogle Scholar
  56. Li, H., Wolfe, M. S., & Selkoe, D. J. (2009). Toward structural elucidation of the γ-secretase complex. Structure, 17, 326–334.PubMedGoogle Scholar
  57. Luo, Y., Bolon, B., Kahn, S., Bennett, B. D., Babu-Khan, S., Denis, P., et al. (2001). Mice deficient in BACE1, the Alzheimer’s beta-secretase, have normal phenotype and abolished beta-amyloid generation. Nature Neuroscience, 4, 231–232.PubMedGoogle Scholar
  58. Ma, Q. H., Futagawa, T., Yang, W. L., Jiang, X. D., Zeng, L., Takeda, Y., et al. (2008). A TAG1-APP signalling pathway through Fe65 negatively modulates neurogenesis. Nature Cell Biology, 10, 283–294.PubMedGoogle Scholar
  59. Mattson, M. P. (1997). Cellular actions of beta-amyloid precursor protein and its soluble and fibrillogenic derivatives. Physiological Reviews, 77, 1081–1132.PubMedGoogle Scholar
  60. Mattson, M. P., Cheng, B., Culwell, A. R., Esch, F. S., Lieberburg, I., & Rydel, R. E. (1993). Evidence for excitoprotective and intraneuronal calcium-regulating roles for secreted forms of the beta-amyloid precursor protein. Neuron, 10, 243–254.PubMedGoogle Scholar
  61. Mattson, M. P., Cheng, B., Davis, D., Bryant, K., Lieberburg, I., & Rydel, R. E. (1992). beta-Amyloid peptides destabilize calcium homeostasis and render human cortical neurons vulnerable to excitotoxicity. Journal of Neuroscience, 12, 376–389.PubMedGoogle Scholar
  62. Meziane, H., Dodart, J. C., Mathis, C., Little, S., Clemens, J., Paul, S. M., et al. (1998). Memory-enhancing effects of secreted forms of the beta-amyloid precursor protein in normal and amnestic mice. Proceedings of the National Academy of Sciences of the United States of America, 95, 12683–12688.PubMedGoogle Scholar
  63. Mueller-Steiner, S., Zhou, Y., Arai, H., Roberson, E. D., Sun, B., Chen, J., et al. (2006). Antiamyloidogenic and neuroprotective functions of cathepsin B: Implications for Alzheimer’s disease. Neuron, 51, 703–714.PubMedGoogle Scholar
  64. Müller, T., Meyer, H. E., Egensperger, R., & Marcus, K. (2008). The amyloid precursor protein intracellular domain (AICD) as modulator of gene expression, apoptosis, and cytoskeletal dynamics-relevance for Alzheimer’s disease. Progress in Neurobiology, 85, 393–406.PubMedGoogle Scholar
  65. Nelson, O., Tu, H., Lei, T., Bentahir, M., de Strooper, B., & Bezprozvanny, I. (2007). Familial Alzheimer disease-linked mutations specifically disrupt Ca2+ leak function of presenilin 1. Journal of Clinical Investigation, 117, 1230–1239.PubMedGoogle Scholar
  66. Nikolaev, A., McLaughlin, T., O’Leary, D. D., & Tessier-Lavigne, M. (2009). APP binds DR6 to trigger axon pruning and neuron death via distinct caspases. Nature, 457, 981–989.PubMedGoogle Scholar
  67. O’Connor, T., Sadleir, K. R., Maus, E., Velliquette, R. A., Zhao, J., Cole, S. L., et al. (2008). Phosphorylation of the translation initiation factor eIF2alpha increases BACE1 levels and promotes amyloidogenesis. Neuron, 60, 988–1009.PubMedGoogle Scholar
  68. Oh, E. S., Savonenko, A. V., King, J. F., Fangmark Tucker, S. M., Rudow, G. L., Xu, G., et al. (2009). Amyloid precursor protein increases cortical neuron size in transgenic mice. Neurobiology of Aging, 30, 1238–1244.PubMedGoogle Scholar
  69. Ohno, M., Sametsky, E. A., Younkin, L. H., Oakley, H., Younkin, S. G., Citron, M., et al. (2004). BACE1 deficiency rescues memory deficits and cholinergic dysfunction in a mouse model of Alzheimer’s disease. Neuron, 41, 27–33.PubMedGoogle Scholar
  70. Ohsawa, I., Takamura, C., Morimoto, T., Ishiguro, M., & Kohsaka, S. (1999). Amino-terminal region of secreted form of amyloid precursor protein stimulates proliferation of neural stem cells. European Journal of Neuroscience, 11, 1907–1913.PubMedGoogle Scholar
  71. Olsson, A., Höglund, K., Sjögren, M., Andreasen, N., Minthon, L., Lannfelt, L., et al. (2003). Measurement of alpha- and beta-secretase cleaved amyloid precursor protein in cerebrospinal fluid from Alzheimer patients. Experimental Neurology, 183, 74–80.PubMedGoogle Scholar
  72. Parkin, E. T., Watt, N. T., Hussain, I., Eckman, E. A., Eckman, C. B., Manson, J. C., et al. (2007). Cellular prion protein regulates beta-secretase cleavage of the Alzheimer’s amyloid precursor protein. Proceedings of the National Academy of Sciences of the United States of America, 104, 11062–11067.PubMedGoogle Scholar
  73. Postina, R., Schroeder, A., Dewachter, I., Bohl, J., Schmitt, U., Kojro, E., et al. (2004). A disintegrin-metalloproteinase prevents amyloid plaque formation and hippocampal defects in an Alzheimer disease mouse model. Journal of Clinical Investigation, 113, 1456–1464.PubMedGoogle Scholar
  74. Ring, S., Weyer, S. W., Kilian, S. B., Waldron, E., Pietrzik, C. U., Filippov, M. A., et al. (2007). The secreted beta-amyloid precursor protein ectodomain APPs alpha is sufficient to rescue the anatomical, behavioral, and electrophysiological abnormalities of APP-deficient mice. Journal of Neuroscience, 27, 7817–7826.PubMedGoogle Scholar
  75. Riudavets, M. A., Iacono, D., Resnick, S. M., O’Brien, R., Zonderman, A. B., Martin, L. J., et al. (2007). Resistance to Alzheimer’s pathology is associated with nuclear hypertrophy in neurons. Neurobiology of Aging, 28, 1484–1492.PubMedGoogle Scholar
  76. Roberds, S. L., Anderson, J., Basi, G., Bienkowski, M. J., Branstetter, D. G., Chen, K. S., et al. (2001). BACE knockout mice are healthy despite lacking the primary beta-secretase activity in brain: Implications for Alzheimer’s disease therapeutics. Human Molecular Genetics, 10, 1317–1324.PubMedGoogle Scholar
  77. Saito, Y., Sano, Y., Vassar, R., Gandy, S., Nakaya, T., Yamamoto, T., et al. (2008). X11 proteins regulate the translocation of amyloid beta-protein precursor (APP) into detergent-resistant membrane and suppress the amyloidogenic cleavage of APP by beta-site-cleaving enzyme in brain. The Journal of Biological Chemistry, 283, 35763–35771.PubMedGoogle Scholar
  78. Sakurai, T., Kaneko, K., Okuno, M., Wada, K., Kashiyama, T., Shimizu, H., et al. (2008). Membrane microdomain switching: A regulatory mechanism of amyloid precursor protein processing. Journal of Cell Biology, 183, 339–352.PubMedGoogle Scholar
  79. Saura, C. A., Chen, G., Malkani, S., Choi, S. Y., Takahashi, R. H., Zhang, D., et al. (2005). Conditional inactivation of presenilin 1 prevents amyloid accumulation and temporarily rescues contextual and spatial working memory impairments in amyloid precursor protein transgenic mice. Journal of Neuroscience, 25, 6755–6764.PubMedGoogle Scholar
  80. Savonenko, A. V., Melnikova, T., Laird, F. M., Stewart, K. A., Price, D. L., & Wong, P. C. (2008). Alteration of BACE1-dependent NRG1/ErbB4 signaling and schizophrenia-like phenotypes in BACE1-null mice. Proceedings of the National Academy of Sciences of the United States of America, 105, 5585–5590.PubMedGoogle Scholar
  81. Schechter, I., & Ziv, E. (2008). Kinetic properties of cathepsin D and BACE 1 indicate the need to search for additional beta-secretase candidate(s). Biological Chemistry, 389, 313–320.PubMedGoogle Scholar
  82. Schilling, S., Zeitschel, U., Hoffmann, T., Heiser, U., Francke, M., Kehlen, A., et al. (2008). Glutaminyl cyclase inhibition attenuates pyroglutamate Abeta and Alzheimer’s disease-like pathology. Nature Medicine, 14, 1106–1111.PubMedGoogle Scholar
  83. Selkoe, D. J. (2000). Toward a comprehensive theory for Alzheimer’s disease. Hypothesis: Alzheimer’s disease is caused by the cerebral accumulation and cytotoxicity of amyloid beta-protein. Annals of the New York Academy of Sciences, 924, 17–25.PubMedCrossRefGoogle Scholar
  84. Sennvik, K., Fastbom, J., Blomberg, M., Wahlund, L. O., Winblad, B., & Benedikz, E. (2000). Levels of alpha- and beta-secretase cleaved amyloid precursor protein in the cerebrospinal fluid of Alzheimer’s disease patients. Neuroscience Letters, 278, 169–172.PubMedGoogle Scholar
  85. Serneels, L., Van Biervliet, J., Craessaerts, K., Dejaegere, T., Horré, K., Van Houtvin, T., et al. (2009). gamma-Secretase heterogeneity in the Aph-1 subunit: Relevance for Alzheimer’s disease. Science, 324, 639–642.PubMedGoogle Scholar
  86. Shankar, G. M., Li, S., Mehta, T. H., Garcia-Munoz, A., Shepardson, N. E., Smith, I., et al. (2008). Amyloid-beta protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory. Nature Medicine, 14, 837–842.PubMedGoogle Scholar
  87. Shaw, L. M., Vanderstichele, H., Knapik-Czajka, M., Clark, C. M., Aisen, P. S., Petersen, R. C., et al. (2009). Cerebrospinal fluid biomarker signature in Alzheimer’s disease neuroimaging initiative subjects. Annals of Neurology, 65, 403–413.PubMedGoogle Scholar
  88. Shimizu, T., Fukuda, H., Murayama, S., Izumiyama, N., & Shirasawa, T. (2002). Isoaspartate formation at position 23 of amyloid beta peptide enhanced fibril formation and deposited onto senile plaques and vascular amyloids in Alzheimer’s disease. Journal of Neuroscience Research, 70, 451–461.PubMedGoogle Scholar
  89. Siemes, C., Quast, T., Kummer, C., Wehner, S., Kirfel, G., Müller, U., et al. (2006). Keratinocytes from APP/APLP2-deficient mice are impaired in proliferation, adhesion and migration in vitro. Experimental Cell Research, 312, 1939–1949.PubMedGoogle Scholar
  90. Skovronsky, D. M., Moore, D. B., Milla, M. E., Doms, R. W., & Lee, V. M. (2000). Protein kinase C-dependent alpha-secretase competes with beta-secretase for cleavage of amyloid-beta precursor protein in the trans-golgi network. The Journal of Biological Chemistry, 275, 2568–2575.PubMedGoogle Scholar
  91. Sun, B., Zhou, Y., Halabisky, B., Lo, I., Cho, S. H., Mueller-Steiner, S., et al. (2008). Cystatin C-cathepsin B axis regulates amyloid beta levels and associated neuronal deficits in an animal model of Alzheimer’s disease. Neuron, 60, 247–257.PubMedGoogle Scholar
  92. Tabuchi, K., Chen, G., Südhof, T. C., & Shen, J. (2009). Conditional forebrain inactivation of nicastrin causes progressive memory impairment and age-related neurodegeneration. Journal of Neuroscience, 29, 7290–7301.PubMedGoogle Scholar
  93. Tamgüney, G., Giles, K., Glidden, D. V., Lessard, P., Wille, H., Tremblay, P., et al. (2008). Genes contributing to prion pathogenesis. Journal of General Virology, 89, 1777–1788.PubMedGoogle Scholar
  94. Tanabe, C., Hotoda, N., Sasagawa, N., Sehara-Fujisawa, A., Maruyama, K., & Ishiura, S. (2006). ADAM19 is tightly associated with constitutive Alzheimer’s disease APP alpha-secretase in A172 cells. Biochemical and Biophysical Research Communications, 352, 111–117.PubMedGoogle Scholar
  95. Taylor, C. J., Ireland, D. R., Ballagh, I., Bourne, K., Marechal, N. M., Turner, P. R., et al. (2008). Endogenous secreted amyloid precursor protein-alpha regulates hippocampal NMDA receptor function, long-term potentiation and spatial memory. Neurobiology of Diseases, 31, 250–260.Google Scholar
  96. Thathiah, A., Spittaels, K., Hoffmann, M., Staes, M., Cohen, A., Horré, K., et al. (2009). The orphan G protein-coupled receptor 3 modulates amyloid-beta peptide generation in neurons. Science, 323, 946–951.PubMedGoogle Scholar
  97. Thinakaran, G., Borchelt, D. R., Lee, M. K., Slunt, H. H., Spitzer, L., Kim, G., et al. (1996). Endoproteolysis of presenilin 1 and accumulation of processed derivatives in vivo. Neuron, 17, 181–190.PubMedGoogle Scholar
  98. Thinakaran, G., & Koo, E. H. (2008). Amyloid precursor protein trafficking, processing, and function. The Journal of Biological Chemistry, 283, 29615–29619.PubMedGoogle Scholar
  99. Tu, H., Nelson, O., Bezprozvanny, A., Wang, Z., Lee, S. F., Hao, Y. H., et al. (2006). Presenilins form ER Ca2+ leak channels, a function disrupted by familial Alzheimer’s disease-linked mutations. Cell, 126, 981–993.PubMedGoogle Scholar
  100. Vassar, R., Bennett, B. D., Babu-Khan, S., Kahn, S., Mendiaz, E. A., Denis, P., et al. (1999). β-Secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science, 286, 735–741.PubMedGoogle Scholar
  101. Vetrivel, K. S., Meckler, X., Chen, Y., Nguyen, P. D., Seidah, N. G., Vassar, R., et al. (2009). Alzheimer disease Abeta production in the absence of S-palmitoylation-dependent targeting of BACE1 to lipid rafts. The Journal of Biological Chemistry, 284, 3793–3803.PubMedGoogle Scholar
  102. Vogt, D. L., Thomas, D., Galvan, V., Bredesen, D. E., Lamb, B. T. & Pimplikar, S. W. (2009). Abnormal neuronal networks and seizure susceptibility in mice overexpressing the APP intracellular domain. Neurobiology of Aging (in press).Google Scholar
  103. Wakabayashi, T., & De Strooper, B. (2008). Presenilins: Members of the gamma-secretase quartets, but part-time soloists too. Physiology, 23, 194–204.PubMedGoogle Scholar
  104. Waldron, E., Isbert, S., Kern, A., Jaeger, S., Martin, A. M., Hébert, S. S., et al. (2008). Increased AICD generation does not result in increased nuclear translocation or activation of target gene transcription. Experimental Cell Research, 314, 2419–2433.PubMedGoogle Scholar
  105. Wegiel, J., Kuchna, I., Nowicki, K., Frackowiak, J., Mazur-Kolecka, B., Imaki, H., et al. (2007). Intraneuronal Abeta immunoreactivity is not a predictor of brain amyloidosis-beta or neurofibrillary degeneration. Acta Neuropathologica, 113, 389–402.PubMedGoogle Scholar
  106. Westmeyer, G. G., Willem, M., Lichtenthaler, S. F., Lurman, G., Multhaup, G., Assfalg-Machleidt, I., et al. (2004). Dimerization of beta-site beta-amyloid precursor protein-cleaving enzyme. The Journal of Biological Chemistry, 279, 53205–53212.PubMedGoogle Scholar
  107. Willem, M., Garratt, A. N., Novak, B., Citron, M., Kaufmann, S., Rittger, A., et al. (2006). Control of peripheral nerve myelination by the beta-secretase BACE1. Science, 314, 664–666.PubMedGoogle Scholar
  108. Winkler, E., Hobson, S., Fukumori, A., Dümpelfeld, B., Luebbers, T., Baumann, K., et al. (2009). Purification, pharmacological modulation, and biochemical characterization of interactors of endogenous human gamma-secretase. Biochemistry, 48, 1183–1197.PubMedGoogle Scholar
  109. Wirths, O., Multhaup, G., Czech, C., Blanchard, V., Moussaoui, S., Tremp, G., et al. (2001). Intraneuronal Abeta accumulation precedes plaque formation in beta-amyloid precursor protein and presenilin-1 double-transgenic mice. Neuroscience Letters, 306, 116–120.PubMedGoogle Scholar
  110. Wolfe, M. S. (2008). Inhibition and modulation fo γ-secretase for Alzheimer’s disease. Neurotherapeutics, 5, 391–398.PubMedGoogle Scholar
  111. Yang, T., Arslanova, D., Gu, Y., Augelli-Szafran, C., & Xia, W. (2008). Quantification of gamma-secretase modulation differentiates inhibitor compound selectivity between two substrates Notch and amyloid precursor protein. Molecular Brain, 1, 1–15.Google Scholar
  112. Yang, L. B., Lindholm, K., Yan, R., Citron, M., Xia, W., Yang, X. L., et al. (2003). Elevated beta-secretase expression and enzymatic activity detected in sporadic Alzheimer disease. Nature Medicine, 9, 3–4.PubMedGoogle Scholar
  113. Yu, H., Saura, C. A., Choi, S. Y., Sun, L. D., Yang, X., Handler, M., et al. (2001). APP processing and synaptic plasticity in presenilin-1 conditional knockout mice. Neuron, 31, 713–726.PubMedGoogle Scholar

Copyright information

© US Government 2009

Authors and Affiliations

  • Vivian W. Chow
    • 1
  • Mark P. Mattson
    • 2
  • Philip C. Wong
    • 1
  • Marc Gleichmann
    • 2
  1. 1.Department of Pathology, Division of NeuropathologyThe Johns Hopkins University School of MedicineBaltimoreUSA
  2. 2.Laboratory of NeurosciencesNational Institute on AgingBaltimoreUSA

Personalised recommendations