NeuroMolecular Medicine

, Volume 12, Issue 3, pp 229–236 | Cite as

Kinesin Light Chain 1 Gene Haplotypes in Three Conformational Diseases

  • Malin von Otter
  • Sara Landgren
  • Staffan Nilsson
  • Caroline Lundvall
  • Lennart Minthon
  • Nenad Bogdanovic
  • Niels Andreasen
  • Deborah R. Gustafson
  • Ingmar Skoog
  • Anders Wallin
  • Anna Håkansson
  • Hans Nissbrandt
  • Madeleine Zetterberg
  • Gunnar Tasa
  • Kaj Blennow
  • Henrik Zetterberg
Original Paper

Abstract

A functional intracellular transport system is essential to maintain cell shape and function especially in elongated cells, e.g. neurons and lens fibre cells. Impaired intracellular transport has been suggested as a common pathological mechanism for age-related diseases characterised by protein aggregation. Here, we hypothesise that common genetic variation in the transport protein kinesin may influence the risk of Parkinson’s disease (PD), Alzheimer’s disease (AD) and age-related cataract. This case–control study involves a PD material (165 cases and 190 controls), an AD material (653 cases and 845 controls) and a cataract material (495 cases and 183 controls). Genetic variation in the kinesin light chain 1-encoding gene (KLC1) was tagged by six tag single nucleotide polymorphisms (SNPs). Single SNPs and haplotypes were analysed for associations with disease risk, age parameters, mini-mental state examination scores and cerebrospinal fluid biomarkers for AD using logistic or linear regression. Genetic variation in KLC1 did not influence risk of PD. Weak associations with risk of AD were seen for rs8007903 and rs3212079 (P c = 0.04 and P c = 0.02, respectively). Two SNPs (rs8007903 and rs8702) influenced risk of cataract (P c = 0.0007 and P c = 0.04, respectively). However, the allele of rs8007903 that caused increased risk of AD caused reduced risk of cataract, speaking against a common functional effect of this particular SNP in the two diseases. Haplotype analyses did not add significantly to the associations found in the single SNP analyses. Altogether, these results do not convincingly support KLC1 as a major susceptibility gene in any of the studied diseases, although there is a small effect of KLC1 in relation to cataract.

Keywords

Parkinson’s disease Alzheimer’s disease Cataract Kinesin KLC1 SNP Haplotype 

Notes

Acknowledgements

The authors are grateful for the excellent technical assistance of Mrs Mona Seibt Palmér. This work was supported by grants from the Swedish Research Council (projects 2006-6227, 2006-2740, 2006-3505 and 09946), the Alzheimer’s Association (NIRG-08-90356), cNEUPRO, the Royal Swedish Academy of Sciences, the Sahlgrenska University Hospital, the Göteborg Medical Society, the Swedish Medical Society, Swedish Brain Power, Stiftelsen Gamla Tjänarinnor, Ragnar och Einar Lundströms minne, Adlerbertska forskningsstiftelsen, Pfannenstills stiftelse, Wilhelm och Martina Lundgrens stiftelse, Gun och Bertil Stohnes stiftelse, Åhlén-stiftelsen, Kronprinsessan Margaretas Arbetsnämnd för Synskadade, Stiftelsen Hjalmar Svenssons Forskningsfond and Alzheimer Foundation, Sweden.

References

  1. Abraham, R., Moskvina, V., et al. (2008). A genome-wide association study for late-onset Alzheimer’s disease using DNA pooling. BMC Medical Genomics, 1, 44.CrossRefPubMedGoogle Scholar
  2. Alafuzoff, I., Iqbal, K., et al. (1987). Histopathological criteria for progressive dementia disorders: Clinical-pathological correlation and classification by multivariate data analysis. Acta Neuropathologica, 74(3), 209–225.CrossRefPubMedGoogle Scholar
  3. Amaratunga, A., Leeman, S. E., et al. (1995). Inhibition of kinesin synthesis in vivo inhibits the rapid transport of representative proteins for three transport vesicle classes into the axon. Journal of Neurochemistry, 64(5), 2374–2376.CrossRefPubMedGoogle Scholar
  4. Andersson, M. E., Sjolander, A., et al. (2007a). Kinesin gene variability may affect tau phosphorylation in early Alzheimer’s disease. International Journal of Molecular Medicine, 20(2), 233–239.PubMedGoogle Scholar
  5. Andersson, M. E., Zetterberg, M., et al. (2007b). Variability in the kinesin light chain 1 gene may influence risk of age-related cataract. Molecular Vision, 13, 993–996.PubMedGoogle Scholar
  6. Barrett, J. C., Fry, B., et al. (2005). Haploview: Analysis and visualization of LD and haplotype maps. Bioinformatics, 21(2), 263–265.CrossRefPubMedGoogle Scholar
  7. Beecham, G. W., Martin, E. R., et al. (2009). Genome-wide association study implicates a chromosome 12 risk locus for late-onset Alzheimer disease. American Journal of Human Genetics, 84(1), 35–43.CrossRefPubMedGoogle Scholar
  8. Bergman, O., Hakansson, A. et al. (2008). PITX3 polymorphism is associated with early onset Parkinson’s disease. Neurobiology of Aging doi: 10.1016/j.neurobiolaging.2008.03.008.
  9. Bertram, L., McQueen, M. B. et al. (2007). Systematic meta-analyses of Alzheimer disease genetic association studies: The AlzGene database. Nature Genetics, 39(1), 17–23. Accessed on Sept. 24, 2009.Google Scholar
  10. Bertram, L., Lange, C., et al. (2008). Genome-wide association analysis reveals putative Alzheimer’s disease susceptibility loci in addition to APOE. American Journal of Human Genetics, 83(5), 623–632.CrossRefPubMedGoogle Scholar
  11. Bertrand, E., Lechowicz, W., et al. (2003). Degenerative axonal changes in the hippocampus and amygdala in Parkinson’s disease. Folia Neuropathologica, 41(4), 197–207.PubMedGoogle Scholar
  12. Blennow, K., de Leon, M. J., et al. (2006). Alzheimer’s disease. Lancet, 368(9533), 387–403.CrossRefPubMedGoogle Scholar
  13. Blennow, K., Wallin, A., et al. (1995). Tau protein in cerebrospinal fluid: A biochemical marker for axonal degeneration in Alzheimer disease? Molecular and Chemical Neuropathology, 26(3), 231–245.CrossRefPubMedGoogle Scholar
  14. Carrasquillo, M. M., Zou, F., et al. (2009). Genetic variation in PCDH11X is associated with susceptibility to late-onset Alzheimer’s disease. Nature Genetics, 41(2), 192–198.CrossRefPubMedGoogle Scholar
  15. Carrell, R. W. (2005). Cell toxicity and conformational disease. Trends in Cell Biology, 15(11), 574–580.CrossRefPubMedGoogle Scholar
  16. Coon, K. D., Myers, A. J., et al. (2007). A high-density whole-genome association study reveals that APOE is the major susceptibility gene for sporadic late-onset Alzheimer’s disease. Journal of Clinical Psychiatry, 68(4), 613–618.CrossRefPubMedGoogle Scholar
  17. Daniel, S. E., & Lees, A. J. (1993). Parkinson’s Disease Society Brain Bank, London: Overview and research. Journal of Neural Transmission. Supplementum, 39, 165–172.PubMedGoogle Scholar
  18. Dhaenens, C. M., Van Brussel, E., et al. (2004). Association study of three polymorphisms of kinesin light-chain 1 gene with Alzheimer’s disease. Neuroscience Letters, 368(3), 290–292.CrossRefPubMedGoogle Scholar
  19. Excoffier, L., & Slatkin, M. (1995). Maximum-likelihood estimation of molecular haplotype frequencies in a diploid population. Molecular Biology and Evolution, 12(5), 921–927.PubMedGoogle Scholar
  20. Falzone, T. L., Stokin, G. B., et al. (2009). Axonal stress kinase activation and tau misbehavior induced by kinesin-1 transport defects. Journal of Neuroscience, 29(18), 5758–5767.CrossRefPubMedGoogle Scholar
  21. Folstein, M. F., Folstein, S. E., et al. (1975). “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12(3), 189–198.CrossRefPubMedGoogle Scholar
  22. Frederikse, P. H., Yun, E., et al. (2004). Synapsin and synaptic vesicle protein expression during embryonic and post-natal lens fiber cell differentiation. Molecular Vision, 10, 794–804.PubMedGoogle Scholar
  23. Fung, H. C., Scholz, S., et al. (2006). Genome-wide genotyping in Parkinson’s disease and neurologically normal controls: First stage analysis and public release of data. Lancet Neurology, 5(11), 911–916.CrossRefPubMedGoogle Scholar
  24. Gabriel, S. B., Schaffner, S. F., et al. (2002). The structure of haplotype blocks in the human genome. Science, 296(5576), 2225–2229.CrossRefPubMedGoogle Scholar
  25. Goldstein, L. S. (2003). Do disorders of movement cause movement disorders and dementia? Neuron, 40(2), 415–425.CrossRefPubMedGoogle Scholar
  26. Grupe, A., Abraham, R., et al. (2007). Evidence for novel susceptibility genes for late-onset Alzheimer’s disease from a genome-wide association study of putative functional variants. Human Molecular Genetics, 16(8), 865–873.CrossRefPubMedGoogle Scholar
  27. Guzik, B. W., & Goldstein, L. S. (2004). Microtubule-dependent transport in neurons: Steps towards an understanding of regulation, function and dysfunction. Current Opinion in Cell Biology, 16(4), 443–450.CrossRefPubMedGoogle Scholar
  28. International HapMap Consortium. (2003). The international HapMap project. Nature, 426(6968), 789–796.CrossRefGoogle Scholar
  29. Harold, D., Abraham, R., et al. (2009). Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nature Genetics, 41(10), 1088–1093.CrossRefPubMedGoogle Scholar
  30. Hirokawa, N., & Noda, Y. (2008). Intracellular transport and kinesin superfamily proteins, KIFs: Structure, function, and dynamics. Physiological Reviews, 88(3), 1089–1118.CrossRefPubMedGoogle Scholar
  31. Kaether, C., Skehel, P., et al. (2000). Axonal membrane proteins are transported in distinct carriers: A two-color video microscopy study in cultured hippocampal neurons. Molecular Biology of the Cell, 11(4), 1213–1224.PubMedGoogle Scholar
  32. Kamal, A., Almenar-Queralt, A., et al. (2001). Kinesin-mediated axonal transport of a membrane compartment containing beta-secretase and presenilin-1 requires APP. Nature, 414(6864), 643–648.CrossRefPubMedGoogle Scholar
  33. Kamal, A., Stokin, G. B., et al. (2000). Axonal transport of amyloid precursor protein is mediated by direct binding to the kinesin light chain subunit of kinesin-I. Neuron, 28(2), 449–459.CrossRefPubMedGoogle Scholar
  34. Lambert, J. C., Heath, S., et al. (2009). Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer’s disease. Nature Genetics, 41(10), 1094–1099.CrossRefPubMedGoogle Scholar
  35. Lees, A. J., Hardy, J., et al. (2009). Parkinson’s disease. Lancet, 373(9680), 2055–2066.CrossRefPubMedGoogle Scholar
  36. Li, H., Wetten, S., et al. (2008). Candidate single-nucleotide polymorphisms from a genomewide association study of Alzheimer disease. Archives of Neurology, 65(1), 45–53.CrossRefPubMedGoogle Scholar
  37. Lill, C. M., Bagade, S. et al. The PDGene Database. Alzheimer Research Forum. Accessed October 7, 2009. Available at: http://www.pdgene.org/.
  38. Livak, K. J. (1999). Allelic discrimination using fluorogenic probes and the 5′ nuclease assay. Genetic Analysis: Biomolecular Engineering, 14, 143–149.CrossRefGoogle Scholar
  39. Lo, W. K., Wen, X. J., et al. (2003). Microtubule configuration and membranous vesicle transport in elongating fiber cells of the rat lens. Experimental Eye Research, 77(5), 615–626.CrossRefPubMedGoogle Scholar
  40. Maraganore, D. M., de Andrade, M., et al. (2005). High-resolution whole-genome association study of Parkinson disease. American Journal of Human Genetics, 77(5), 685–693.CrossRefPubMedGoogle Scholar
  41. McCart, A. E., Mahony, D., et al. (2003). Alternatively spliced products of the human kinesin light chain 1 (KNS2) gene. Traffic, 4(8), 576–580.PubMedGoogle Scholar
  42. McKhann, G., Drachman, D., et al. (1984). Clinical diagnosis of Alzheimer’s disease: Report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology, 34(7), 939–944.PubMedGoogle Scholar
  43. Morfini, G., Pigino, G., et al. (2007). 1-Methyl-4-phenylpyridinium affects fast axonal transport by activation of caspase and protein kinase C. Proceedings of the National Academy of Sciences of the United States of America, 104(7), 2442–2447.CrossRefPubMedGoogle Scholar
  44. Pankratz, N., Wilk, J. B., et al. (2009). Genomewide association study for susceptibility genes contributing to familial Parkinson disease. Human Genetics, 124(6), 593–605.CrossRefPubMedGoogle Scholar
  45. Poduslo, S. E., Huang, R., et al. (2009). Genome screen of late-onset Alzheimer’s extended pedigrees identifies TRPC4AP by haplotype analysis. American Journal of Medical Genetics. Part B, Neuropsychiatric genetics, 150B(1), 50–55.CrossRefGoogle Scholar
  46. Ponce, A., Sorensen, C., et al. (2006). Role of short-range protein interactions in lens opacifications. Molecular Vision, 12, 879–884.PubMedGoogle Scholar
  47. Potkin, S. G., Guffanti, G., et al. (2009). Hippocampal atrophy as a quantitative trait in a genome-wide association study identifying novel susceptibility genes for Alzheimer’s disease. PLoS ONE, 4(8), e6501.CrossRefPubMedGoogle Scholar
  48. Prince, J. A., Feuk, L., et al. (2001). Robust and accurate single nucleotide polymorphism genotyping by dynamic allele-specific hybridization (DASH): Design criteria and assay validation. Genome Research, 11(1), 152–162.CrossRefPubMedGoogle Scholar
  49. Reiman, E. M., Webster, J. A., et al. (2007). GAB2 alleles modify Alzheimer’s risk in APOE epsilon4 carriers. Neuron, 54(5), 713–720.CrossRefPubMedGoogle Scholar
  50. Roy, S., Zhang, B., et al. (2005). Axonal transport defects: A common theme in neurodegenerative diseases. Acta Neuropathologica, 109(1), 5–13.CrossRefPubMedGoogle Scholar
  51. Srinivasan, B. S., Doostzadeh, J., et al. (2009). Whole genome survey of coding SNPs reveals a reproducible pathway determinant of Parkinson disease. Human Mutation, 30(2), 228–238.CrossRefPubMedGoogle Scholar
  52. Stokin, G. B., Lillo, C., et al. (2005). Axonopathy and transport deficits early in the pathogenesis of Alzheimer’s disease. Science, 307(5713), 1282–1288.CrossRefPubMedGoogle Scholar
  53. Szolnoki, Z., Kondacs, A., et al. (2007a). A cytoskeleton motor protein genetic variant may exert a protective effect on the occurrence of multiple sclerosis: The janus face of the kinesin light-chain 1 56836CC genetic variant. Neuromolecular Medicine, 9(4), 335–339.CrossRefPubMedGoogle Scholar
  54. Szolnoki, Z., Kondacs, A., et al. (2007b). A genetic variant in cytoskeleton motors amplifies susceptibility to leukoaraiosis in hypertensive smokers: Gene-environmental interactions behind vascular white matter demyelinization. Journal of Molecular Neuroscience, 33(2), 173–179.CrossRefPubMedGoogle Scholar
  55. Szolnoki, Z., Kondacs, A., et al. (2009). Gene-environmental effects behind leukoaraiosis: A silent genetic variant of the kinesin protein can be activated in a subject with poorly controlled long-lasting hypertension. Clinical Biochemistry, 42(7–8), 630–633.CrossRefPubMedGoogle Scholar
  56. Utton, M. A., Noble, W. J., et al. (2005). Molecular motors implicated in the axonal transport of tau and alpha-synuclein. Journal of Cell Science, 118(Pt 20), 4645–4654.CrossRefPubMedGoogle Scholar
  57. Vanderstichele, H., Van Kerschaver, E., et al. (2000). Standardization of measurement of beta-amyloid(1–42) in cerebrospinal fluid and plasma. Amyloid, 7(4), 245–258.CrossRefPubMedGoogle Scholar
  58. Vanmechelen, E., Vanderstichele, H., et al. (2000). Quantification of tau phosphorylated at threonine 181 in human cerebrospinal fluid: A sandwich ELISA with a synthetic phosphopeptide for standardization. Neuroscience Letters, 285(1), 49–52.CrossRefPubMedGoogle Scholar
  59. Westerlund, M., Belin, A. C., et al. (2008). Cerebellar alpha-synuclein levels are decreased in Parkinson’s disease and do not correlate with SNCA polymorphisms associated with disease in a Swedish material. FASEB Journal, 22(10), 3509–3514.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2009

Authors and Affiliations

  • Malin von Otter
    • 1
  • Sara Landgren
    • 2
  • Staffan Nilsson
    • 3
  • Caroline Lundvall
    • 1
  • Lennart Minthon
    • 4
  • Nenad Bogdanovic
    • 5
  • Niels Andreasen
    • 5
  • Deborah R. Gustafson
    • 1
  • Ingmar Skoog
    • 1
  • Anders Wallin
    • 1
  • Anna Håkansson
    • 2
  • Hans Nissbrandt
    • 2
  • Madeleine Zetterberg
    • 6
  • Gunnar Tasa
    • 7
  • Kaj Blennow
    • 1
  • Henrik Zetterberg
    • 1
  1. 1.Department of Psychiatry and Neurochemistry, Institute of Neuroscience and PhysiologyThe Sahlgrenska Academy at University of GothenburgGothenburgSweden
  2. 2.Department of Pharmacology, Institute of Neuroscience and PhysiologyThe Sahlgrenska Academy at University of GothenburgGothenburgSweden
  3. 3.Department of Mathematical Statistics, Institute of Mathematical SciencesChalmers University of TechnologyGothenburgSweden
  4. 4.Department of Clinical Sciences in Malmö, Clinical Memory Research UnitLund UniversityLundSweden
  5. 5.Karolinska Institutet Alzheimer Disease Research Center, Department of NVSKarolinska InstitutetStockholmSweden
  6. 6.Department of Clinical Neuroscience and Rehabilitation, Institute of Neuroscience and PhysiologyThe Sahlgrenska Academy at University of GothenburgMölndalSweden
  7. 7.Department of Human Biology and Genetics, Institute of General and Molecular PathologyUniversity of TartuTartuEstonia

Personalised recommendations