Advertisement

NeuroMolecular Medicine

, 11:268 | Cite as

Modelling Parkinson’s Disease in Drosophila

  • José A. Botella
  • Florian Bayersdorfer
  • Florian Gmeiner
  • Stephan SchneuwlyEmail author
Review Paper

Abstract

The recent discovery of a number of genes involved in familial forms of Parkinson’s disease (PD) has moved the use of model genetic organisms to the frontline. One avenue holding tremendous potential to find therapies against human diseases is the use of intact living systems where complex biological processes can be examined. Despite key differences that need to be taken into account when using invertebrate models such as Drosophila, there are many advantages offered by this system. The rapid generation time and the ability to easily generate transgenic animals together with the variety of genetic tools to control temporal and spatial expression of any given gene makes the fly model a very attractive system to study human neurodegenerative disorders. In this review, we analyze how the use of fruit flies has revealed to be an excellent tool providing valuable insights into the current understanding of the molecular mechanisms involved in the progression of PD.

Keywords

Parkinson’s disease Drosophila α-Synuclein Parkin PINK1 Rotenone Oxidative stress 

References

  1. Asakawa, S., Hattori, N., Matsumine, H., et al. (1998). Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature, 392, 605–608.CrossRefPubMedGoogle Scholar
  2. Ascherio, A., Chen, H., Weisskopf, M. G., et al. (2006). Pesticide exposure and risk for Parkinson’s disease. Annals of Neurology, 60, 197–203.CrossRefPubMedGoogle Scholar
  3. Auluck, P. K., Chan, H. Y., Trojanowski, J. Q., et al. (2002). Chaperone suppression of alpha-synuclein toxicity in a Drosophila model for Parkinson’s disease. Science, 295, 865–868.CrossRefPubMedGoogle Scholar
  4. Auluck, P. K., Meulener, M. C., & Bonini, N. M. (2005). Mechanisms of suppression of {alpha}-synuclein neurotoxicity by geldanamycin in Drosophila. The Journal of Biological Chemistry, 280, 2873–2878.CrossRefPubMedGoogle Scholar
  5. Bae, Y. J., Park, K. S., & Kang, S. J. (2003). Genomic organization and expression of parkin in Drosophila melanogaster. Experimental and Molecular Medicine, 35, 393–402.PubMedGoogle Scholar
  6. Bharath, S., Hsu, M., Kaur, D., et al. (2002). Glutathione, iron and Parkinson’s disease. Biochemical Pharmacology, 64, 1037–1048.CrossRefPubMedGoogle Scholar
  7. Botella, J. A., Bayersdorfer, F., & Schneuwly, S. (2008). Superoxide dismutase overexpression protects dopaminergic neurons in a Drosophila model of Parkinson’s disease. Neurobiology of Diseases, 30, 65–73.CrossRefGoogle Scholar
  8. Bové, J., Prou, D., Perier, C., et al. (2005). Toxin-induced models of Parkinson’s disease. NeuroRx, 2, 484–494.CrossRefPubMedGoogle Scholar
  9. Brand, A. H., & Perrimon, N. (1993). Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development, 118, 401–415.PubMedGoogle Scholar
  10. Castello, P. R., Drechsel, D. A., & Patel, M. (2007). Mitochondria are a major source of paraquat-induced reactive oxygen species production in the brain. The Journal of Biological Chemistry, 282, 14186–14193.CrossRefPubMedGoogle Scholar
  11. Cha, G. H., Kim, S., Park, J., et al. (2005). Parkin negatively regulates JNK pathway in the dopaminergic neurons of Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 102, 10345–11050.CrossRefPubMedGoogle Scholar
  12. Chaudhuri, A., Bowling, K., Funderburk, C., et al. (2007). Interaction of genetic and environmental factors in a Drosophila parkinsonism model. Journal of Neuroscience, 27, 2457–2467.CrossRefPubMedGoogle Scholar
  13. Chen, L., & Feany, M. B. (2005). Alpha-synuclein phosphorylation controls neurotoxicity and inclusion formation in a Drosophila model of Parkinson disease. Nature Neuroscience, 8, 657–663.CrossRefPubMedGoogle Scholar
  14. Clark, I. E., Dodson, M. W., Jiang, C., et al. (2006). Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature, 441, 1162–1166.CrossRefPubMedGoogle Scholar
  15. Cooper, A. A., Gitler, A. D., Cashikar, A., et al. (2006). Alpha-synuclein blocks ER-Golgi traffic and Rab1 rescues neuron loss in Parkinson’s models. Science, 313, 324–328.CrossRefPubMedGoogle Scholar
  16. Coulom, H., & Birman, S. (2004). Chronic exposure to rotenone models sporadic Parkinson’s disease in Drosophila melanogaster. Journal of Neuroscience, 24, 10993–10998.CrossRefPubMedGoogle Scholar
  17. Darios, F., Corti, O., Lücking, C. B., et al. (2003). Parkin prevents mitochondrial swelling and cytochrome c release in mitochondria-dependent cell death. Human Molecular Genetics, 12, 517–526.CrossRefPubMedGoogle Scholar
  18. Deng, H., Dodson, M. W., Huang, H., et al. (2008). The Parkinson’s disease genes pink1 and parkin promote mitochondrial fission and/or inhibit fusion in Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 105, 14503–14508.CrossRefPubMedGoogle Scholar
  19. Dixon, C., Mathias, N., Zweig, R. M., et al. (2005). Alpha-synuclein targets the plasma membrane via the secretory pathway and induces toxicity in yeast. Genetics, 170, 47–59.CrossRefPubMedGoogle Scholar
  20. Emdadul-Haque, M., Asanuma, M., Higashi, Y., et al. (2003). Apoptosis-inducing neurotoxicity of dopamine and its metabolites via reactive quinone generation in neuroblastoma cells. Biochimica et Biophysica Acta, 1619, 39–52.PubMedGoogle Scholar
  21. Feany, M. B., & Bender, W. W. (2000). A Drosophila model of Parkinson’s disease. Nature, 404, 394–398.CrossRefPubMedGoogle Scholar
  22. Flower, T. R., Clark-Dixon, C., Metoyer, C., et al. (2007). YGR198w (YPP1) targets A30P alpha-synuclein to the vacuole for degradation. Journal of Cell Biology, 177, 1091–1104.CrossRefPubMedGoogle Scholar
  23. Friggi-Grelin, F., Coulom, H., Meller, M., Gomez, D., Hirsh, J., & Birman, S. (2003). Targeted gene expression in Drosophila dopaminergic cells using regulatory sequences from tyrosine hydroxylase. Journal of Neurobiology, 54, 618–627.CrossRefPubMedGoogle Scholar
  24. Fujiwara, H., Hasegawa, M., Dohmae, N., et al. (2002). alpha-Synuclein is phosphorylated in synucleinopathy lesions. Nature Cell Biology, 4, 160–164.CrossRefPubMedGoogle Scholar
  25. Greene, J. C., Whitworth, A. J., Andrews, L. A., et al. (2005). Genetic and genomic studies of Drosophila parkin mutants implicate oxidative stress and innate immune responses in pathogenesis. Human Molecular Genetics, 14, 799–811.CrossRefPubMedGoogle Scholar
  26. Greene, J. C., Whitworth, A. J., Kuo, I., et al. (2003). Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants. Proceedings of the National Academy of Sciences of the United States of America, 100, 4078–4083.CrossRefPubMedGoogle Scholar
  27. Gruenewald, C., Botella, J. A., Bayersdorfer, F., et al. (2009). Hyperoxia-induced neurodegeneration as a tool to identify neuroprotective genes in Drosophila melanogaster. Free Radical Biology and Medicine, 46, 1668–1676.CrossRefPubMedGoogle Scholar
  28. Horowitz, J. M., Vernace, V. A., Myers, J. J., et al. (2001). Immunodetection of Parkin protein in vertebrate and invertebrate brains: A comparative study using specific antibodies. Journal of Chemical Neuroanatomy, 21, 75–93.CrossRefPubMedGoogle Scholar
  29. Imai, Y., Gehrke, S., Wang, H. Q., et al. (2008). Phosphorylation of 4E-BP by LRRK2 affects the maintenance of dopaminergic neurons in Drosophila. EMBO Journal, 27, 2432–2443.CrossRefPubMedGoogle Scholar
  30. Jones, J. M., Datta, P., Srinivasula, S. M., et al. (2003). Loss of Omi mitochondrial protease activity causes the neuromuscular disorder of mnd2 mutant mice. Nature, 425, 721–727.CrossRefPubMedGoogle Scholar
  31. Kim, Y., Park, J., Kim, S., et al. (2008). PINK1 controls mitochondrial localization of Parkin through direct phosphorylation. Biochemical and Biophysical Research Communications, 377, 975–980.CrossRefPubMedGoogle Scholar
  32. Kim, R. H., Peters, M., Jang, Y., et al. (2005). DJ-1, a novel regulator of the tumor suppressor PTEN. Cancer Cell, 7, 263–273.CrossRefPubMedGoogle Scholar
  33. Klucken, J., Shin, Y., Masliah, E., et al. (2004). Hsp70 reduces alpha-synuclein aggregation and toxicity. The Journal of Biological Chemistry, 279, 25497–25502.CrossRefPubMedGoogle Scholar
  34. Kruger, R., Kuhn, W., Muller, T., et al. (1998). Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson’s disease. Nature Genetics, 18, 106–108.CrossRefPubMedGoogle Scholar
  35. Lavara-Culebras, E., & Paricio, N. (2007). Drosophila DJ-1 mutants are sensitive to oxidative stress and show reduced lifespan and motor deficits. Gene, 400, 158–165.CrossRefPubMedGoogle Scholar
  36. Lee, S. B., Kim, W., Lee, S., et al. (2007). Loss of LRRK2/PARK8 induces degeneration of dopaminergic neurons in Drosophila. Biochemical and Biophysical Research Communications, 358, 534–539.CrossRefPubMedGoogle Scholar
  37. Liou, A. K., Leak, R. K., Li, L., et al. (2008). Wild-type LRRK2 but not its mutant attenuates stress-induced cell death via ERK pathway. Neurobiology of Diseases, 32, 116–124.CrossRefGoogle Scholar
  38. Liu, Z., Wang, X., Yu, Y., et al. (2008). A Drosophila model for LRRK2-linked parkinsonism. Proceedings of the National Academy of Sciences of the United States of America, 105, 2693–2698.CrossRefPubMedGoogle Scholar
  39. Lotharius, J., & Brundin, P. (2002). Impaired dopamine storage resulting from alpha-synuclein mutations may contribute to the pathogenesis of Parkinson’s disease. Human Molecular Genetics, 11, 2395–2407.CrossRefPubMedGoogle Scholar
  40. Martins, L. M., Morrison, A., Klupsch, K., et al. (2004). Neuroprotective role of the Reaper-related serine protease HtrA2/Omi revealed by targeted deletion in mice. Molecular and Cellular Biology, 24, 9848–9862.CrossRefPubMedGoogle Scholar
  41. Menzies, F. M., Yenisetti, S. C., & Min, K. T. (2005). Roles of Drosophila DJ-1 in survival of dopaminergic neurons and oxidative stress. Current Biology, 15, 1578–1582.CrossRefPubMedGoogle Scholar
  42. Meulener, M., Whitworth, A. J., Armstrong-Gold, C. E., et al. (2005). Drosophila DJ-1 mutants are selectively sensitive to environmental toxins associated with Parkinson’s disease. Current Biology, 15, 1572–1577.CrossRefPubMedGoogle Scholar
  43. Moore, D. J., Zhang, L., Troncoso, J., et al. (2005). Association of DJ-1 and Parkin mediated by pathogenic DJ-1 mutations and oxidative stress. Human Molecular Genetics, 14, 71–84.CrossRefPubMedGoogle Scholar
  44. Mosharov, E. V., Staal, R. G., Bové, J., et al. (2006). Alpha-synuclein overexpression increases cytosolic catecholamine concentration. Journal of Neuroscience, 26, 9304–9311.CrossRefPubMedGoogle Scholar
  45. Narendra, D., Tanaka, A., Suen, D. F., et al. (2008). Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. Journal of Cell Biology, 183, 795–803.CrossRefPubMedGoogle Scholar
  46. Narendra, D., Tanaka, A., Suen, D. F., et al. (2009). Parkin-induced mitophagy in the pathogenesis of Parkinson disease. Autophagy, 5, 706–708.PubMedGoogle Scholar
  47. Nässel, D. R., & Elekes, K. (1992). Aminergic neurons in the brain of blowflies and Drosophila: Dopamine- and tyrosine hydroxylase-immunoreactive neurons and their relationship with putative histaminergic neurons. Cell and Tissue Research, 267, 147–167.CrossRefPubMedGoogle Scholar
  48. Paisán-Ruíz, C., Jain, S., Evans, E. W., et al. (2004). Cloning of the gene containing mutations that cause PARK8-linked Parkinson’s disease. Neuron, 44, 595–600.CrossRefPubMedGoogle Scholar
  49. Park, J., Kim, S. Y., Cha, G. H., et al. (2005). Drosophila DJ-1 mutants show oxidative stress-sensitive locomotive dysfunction. Gene, 361, 133–139.CrossRefPubMedGoogle Scholar
  50. Park, J., Lee, G., & Chung, J. (2009). The PINK1-Parkin pathway is involved in the regulation of mitochondrial remodeling process. Biochemical and Biophysical Research Communications, 378, 518–523.CrossRefPubMedGoogle Scholar
  51. Park, J., Lee, S. B., Lee, S., et al. (2006). Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature, 441, 1157–1161.CrossRefPubMedGoogle Scholar
  52. Park, S. S., Schulz, E. M., & Lee, D. (2007). Disruption of dopamine homeostasis underlies selective neurodegeneration mediated by alpha-synuclein. European Journal of Neuroscience, 26, 3104–3112.CrossRefPubMedGoogle Scholar
  53. Pendleton, R. G., Parvez, F., Sayed, M., et al. (2002). Effects of pharmacological agents upon a transgenic model of Parkinson’s disease in Drosophila melanogaster. Journal of Pharmacology and Experimental Therapeutics, 300, 91–96.CrossRefPubMedGoogle Scholar
  54. Pesah, Y., Burgess, H., Middlebrooks, B., et al. (2005). Whole-mount analysis reveals normal numbers of dopaminergic neurons following misexpression of alpha-Synuclein in Drosophila. Genesis, 41, 154–159.CrossRefPubMedGoogle Scholar
  55. Polymeropoulos, M. H., Lavedan, C., Leroy, E., et al. (1997). Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science, 276, 2045–2047.CrossRefPubMedGoogle Scholar
  56. Poole, A. C., Thomas, R. E., & Andrews, L. A. (2008). The PINK1/Parkin pathway regulates mitochondrial morphology. Proceedings of the National Academy of Sciences of the United States of America, 105, 1638–1643.CrossRefPubMedGoogle Scholar
  57. Riparbelli, M. G., & Callaini, G. (2007). The Drosophila parkin homologue is required for normal mitochondrial dynamics during spermiogenesis. Developmental Biology, 303, 108–120.CrossRefPubMedGoogle Scholar
  58. Ross, O. A., Soto, A. I., Vilariño–Güell, C., et al. (2008). Genetic variation of Omi/HtrA2 and Parkinson’s disease. Parkinsonism and Related Disorders, 14, 539–543.CrossRefPubMedGoogle Scholar
  59. Sang, T. K., Chang, H. Y., Lawless, G. M., et al. (2007). A Drosophila model of mutant human parkin-induced toxicity demonstrates selective loss of dopaminergic neurons and dependence on cellular dopamine. Journal of Neuroscience, 27, 981–992.CrossRefPubMedGoogle Scholar
  60. Sherer, T. B., Kim, J. H., Betarbet, R., et al. (2003). Subcutaneous rotenone exposure causes highly selective dopaminergic degeneration and alpha-synuclein aggregation. Experimental Neurology, 179, 9–16.CrossRefPubMedGoogle Scholar
  61. Simón-Sánchez, J., & Singleton, A. B. (2008). Sequencing analysis of OMI/HTRA2 shows previously reported pathogenic mutations in neurologically normal controls. Human Molecular Genetics, 17, 1988–1993.CrossRefPubMedGoogle Scholar
  62. Singleton, A. B., Farrer, M., Johnson, J., et al. (2003). alpha-Synuclein locus triplication causes Parkinson’s disease. Science, 302, 841.CrossRefPubMedGoogle Scholar
  63. Strauss, K. M., Martins, L. M., Plun-Favreau, H., et al. (2005). Loss of function mutations in the gene encoding Omi/HtrA2 in Parkinson’s disease. Human Molecular Genetics, 14, 2099–2111.CrossRefPubMedGoogle Scholar
  64. Todd, A. M., & Staveley, B. E. (2008). Pink1 suppresses alpha-synuclein-induced phenotypes in a Drosophila model of Parkinson’s disease. Genome, 51, 1040–1046.CrossRefPubMedGoogle Scholar
  65. Trinh, K., Moore, K., Wes, P. D., et al. (2008). Induction of the phase II detoxification pathway suppresses neuron loss in Drosophila models of Parkinson’s disease. Journal of Neuroscience, 28, 465–472.CrossRefPubMedGoogle Scholar
  66. Valente, E. M., Abou-Sleiman, P. M., & Caputo, V. (2004). Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science, 304, 1158–1160.CrossRefPubMedGoogle Scholar
  67. Wang, C., Lu, R., Ouyang, X., et al. (2007). Drosophila overexpressing parkin R275W mutant exhibits dopaminergic neuron degeneration and mitochondrial abnormalities. Journal of Neuroscience, 27, 8563–8570.CrossRefPubMedGoogle Scholar
  68. Wang, D., Qian, L., Xiong, H., et al. (2006). Antioxidants protect PINK1-dependent dopaminergic neurons in Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 103, 13520–13525.CrossRefPubMedGoogle Scholar
  69. Wang, D., Tang, B., Zhao, G., et al. (2008). Dispensable role of Drosophila ortholog of LRRK2 kinase activity in survival of dopaminergic neurons. Molecular Neurodegeneration, 3, 3.CrossRefPubMedGoogle Scholar
  70. Warrick, J. M., Chan, H. Y., Gray-Board, G. L., et al. (1999). Suppression of polyglutamine-mediated neurodegeneration in Drosophila by the molecular chaperone HSP70. Nature Genetics, 23, 425–428.CrossRefPubMedGoogle Scholar
  71. Wassef, R., Haenold, R., Hansel, A., et al. (2007). Methionine sulfoxide reductase A and a dietary supplement S-methyl-l-cysteine prevent Parkinson’s-like symptoms. Journal of Neuroscience, 27, 12808–12816.CrossRefPubMedGoogle Scholar
  72. Whitworth, A. J., Lee, J. R., Ho, V. M., et al. (2008). Rhomboid-7 and HtrA2/Omi act in a common pathway with the Parkinson’s disease factors Pink1 and Parkin. Disease Models and Mechanisms, 1, 168–174.CrossRefPubMedGoogle Scholar
  73. Whitworth, A. J., Theodore, D. A., Greene, J. C., et al. (2005). Increased glutathione S-transferase activity rescues dopaminergic neuron loss in a Drosophila model of Parkinson’s disease. Proceedings of the National Academy of Sciences of the United States of America, 102, 8024–8029.CrossRefPubMedGoogle Scholar
  74. Whitworth, A. J., Wes, P. D., & Pallanck, L. J. (2006). Drosophila models pioneer a new approach to drug discovery for Parkinson’s disease. Drug Discovery Today, 11, 119–126.CrossRefPubMedGoogle Scholar
  75. Yang, Y., Gehrke, S., Haque, M. E., et al. (2005). Inactivation of Drosophila DJ-1 leads to impairments of oxidative stress response and phosphatidylinositol 3-kinase/Akt signaling. Proceedings of the National Academy of Sciences of the United States of America, 102, 13670–13675.CrossRefPubMedGoogle Scholar
  76. Yang, Y., Gehrke, S., Imai, Y., et al. (2006). Mitochondrial pathology and muscle and dopaminergic neuron degeneration caused by inactivation of Drosophila Pink1 is rescued by Parkin. Proceedings of the National Academy of Sciences of the United States of America, 103, 10793–10798.CrossRefPubMedGoogle Scholar
  77. Yang, Y., Nishimura, I., Imai, Y., et al. (2003). Parkin suppresses dopaminergic neuron-selective neurotoxicity induced by Pael-R in Drosophila. Neuron, 37, 911–924.CrossRefPubMedGoogle Scholar
  78. Yang, Y., Ouyang, Y., Yang, L., et al. (2008). Pink1 regulates mitochondrial dynamics through interaction with the fission/fusion machinery. Proceedings of the National Academy of Sciences of the United States of America, 105, 7070–7075.CrossRefPubMedGoogle Scholar
  79. Yu, S., Ueda, K., & Chan, P. (2005). Alpha-synuclein and dopamine metabolism. Molecular Neurobiology, 31, 243–254.CrossRefPubMedGoogle Scholar
  80. Yun, J., Cao, J. H., Dodson, M. W., et al. (2008). Loss-of-function analysis suggests that Omi/HtrA2 is not an essential component of the PINK1/PARKIN pathway in vivo. Journal of Neuroscience, 28, 14500–14510.CrossRefPubMedGoogle Scholar
  81. Zarranz, J. J., Alegre, J., Gómez-Esteban, J. C., et al. (2004). The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia. Annals of Neurology, 55, 164–173.CrossRefPubMedGoogle Scholar
  82. Zimprich, A., Biskup, S., Leitner, P., et al. (2004). Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron, 44, 601–607.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2009

Authors and Affiliations

  • José A. Botella
    • 1
  • Florian Bayersdorfer
    • 1
  • Florian Gmeiner
    • 1
  • Stephan Schneuwly
    • 1
    Email author
  1. 1.Institute of ZoologyUniversity of RegensburgRegensburgGermany

Personalised recommendations