Advertisement

NeuroMolecular Medicine

, Volume 12, Issue 1, pp 86–97 | Cite as

Dietary Supplementation with S-Adenosyl Methionine Delays the Onset of Motor Neuron Pathology in a Murine Model of Amyotrophic Lateral Sclerosis

  • James Suchy
  • Sangmook Lee
  • Ambar Ahmed
  • Thomas B. Shea
Original Paper

Abstract

The full range of causative factors in Amyotrophic lateral sclerosis (ALS) remains elusive, but oxidative stress is recognized as a contributing factor. Mutations in Cu/Zn superoxide dismutase 1 (SOD-1), associated with familial ALS, promote widespread oxidative damage. Mice-expressing G93A mutant human SOD-1 mice display multiple pathological changes characteristic of ALS and are therefore useful for therapeutic development. Dietary supplementation with S-adenosyl methionine (SAM) has provided multiple neuroprotective effects in mouse models of age-related cognitive pathology. We examined herein whether SAM supplementation could affect the course of motor neuron pathology in mice-expressing mutant human SOD-1. SAM delayed disease onset by 2–3 weeks. SAM also delayed hallmarks of neurodegeneration in these mice and in ALS, including preventing loss of motor neurons, and reducing gliosis, SOD-1 aggregation, protein carbonylation, and induction of antioxidant activity. SAM did not increase survival time. These preliminary findings, using a single concentration of SAM, suggest that SAM supplementation maybe useful as part of a comprehensive therapeutic approach for ALS.

Keywords

Amyotrophic lateral sclerosis Motor neuron Neuropathology S-Adenosyl methionine Nutritional supplement Transgenic mouse 

Notes

Acknowledgments

This study was inspired by and is dedicated to the memory of Suzanne Seidel, mother, teacher, and philosopher, who passed away from ALS. This research was supported by internal funds from UMass Lowell. The continued advice of UMass Lowell Veterinarian Dr. Sonja (“Scout”) Chou is greatly appreciated.

References

  1. Agar, J., & Durham, H. (2003). Relevance of oxidative injury in the pathogenesis of motor neuron diseases. Amyotroph Lateral Scler Other Motor Neuron Disord, 4, 232–242.CrossRefPubMedGoogle Scholar
  2. Barbeito, L. H., Pehar, M., Cassina, P., Vargas, M. R., Peluffo, H., Viera, L., et al. (2004). A role for astrocytes in motor neuron loss in amyotrophic lateral sclerosis. Brain Research Brain Research Reviews, 47, 263–274.CrossRefPubMedGoogle Scholar
  3. Barber, S. C., Mead, R. J., & Shaw, P. J. (2006). Oxidative stress in ALS: A mechanism of neurodegeneration and a therapeutic target. Biochimica et Biophysica Acta, 1762, 1051–1067.PubMedGoogle Scholar
  4. Barneoud, P., & Curet, O. (1999). Beneficial effects of lysine acetylsalicylate, a soluble salt of aspirin, on motor performance in a transgenic model of amyotrophic lateral sclerosis. Experimental Neurology, 155, 243–251.CrossRefPubMedGoogle Scholar
  5. Barneoud, P., Lolivier, J., Sanger, D. J., Scatton, B., & Moser, P. (1997). Quantitative motor assessment in FALS mice: A longitudinal study. NeuroReport, 8, 2861–2865.PubMedCrossRefGoogle Scholar
  6. Bottiglieri, T. (2002). S-Adenosyl-L-methionine (SAMe): From the bench to the bedside–molecular basis of a pleiotropic molecule. American Journal of Clinical Nutrition, 76, 1151S–1157S.PubMedGoogle Scholar
  7. Bottiglieri, T., Godfrey, P., Flynn, T., Carney, M. W., Toone, B. K., & Reynolds, E. H. (1990). Cerebrospinal fluid S-adenosylmethionine in depression and dementia: Effects of treatment with parenteral and oral S-adenosylmethionine. Journal of Neurology, Neurosurgery and Psychiatry, 53, 1096–1098.CrossRefGoogle Scholar
  8. Bruijn, L. I., Miller, T. M., & Cleveland, D. W. (2004). Unraveling the mechanisms involved in motor neuron degeneration in ALS. Annual Review of Neuroscience, 27, 723–749.CrossRefPubMedGoogle Scholar
  9. Chan, A., Paskavitz, J., Remington, R., Rasmussen, S., & Shea, T. B. (2008a). Efficacy of a vitamin/nutriceutical formulation for early-stage Alzheimer’s disease: A 1-year, open-label pilot study with an 16-month caregiver extension. American Journal of Alzheimer’s Disease and Other Dementias, 23, 571–585.CrossRefPubMedGoogle Scholar
  10. Chan, A., & Shea, T. B. (2007). Effects of dietary supplementation with N-acetyl cysteine, acetyl-L-carnitine and S-adenosyl methionine on cognitive performance and aggression in normal mice and mice expressing human ApoE4. Neuromolecular Medicine, 9, 264–269.CrossRefPubMedGoogle Scholar
  11. Chan, A., Tchantchou, F., Graves, V., Rozen, R., & Shea, T. B. (2008b). Dietary and genetic compromise in folate availability reduces acetylcholine, cognitive performance and increases aggression: Critical role of S-adenosyl methionine. The Journal of Nutrition, Health and Aging, 12, 252–261.CrossRefGoogle Scholar
  12. Chi, L., Ke, Y., Luo, C., Gozal, D., & Liu, R. (2007). Depletion of reduced glutathione enhances motor neuron degeneration in vitro and in vivo. Neuroscience, 144, 991–1003.CrossRefPubMedGoogle Scholar
  13. Chiang, P. K., Gordon, R. K., Tal, J., Zeng, G. C., Doctor, B. P., Pardhasaradhi, K., et al. (1996). S-Adenosylmethionine and methylation. FASEB Journal, 10, 471–480.PubMedGoogle Scholar
  14. Cozzolino, M., Ferri, A., & Carri, M. T. (2008). Amyotrophic lateral sclerosis: From current developments in the laboratory to clinical implications. Antioxidants and Redox Signaling, 10, 405–443.CrossRefPubMedGoogle Scholar
  15. Dupuis, L., Gonzalez de Aguilar, J. L., Oudart, H., de Tapia, M., Barbeito, L., & Loeffler, J. P. (2004). Mitochondria in amyotrophic lateral sclerosis: A trigger and a target. Neuro-Degenerative Diseases, 1, 245–254.PubMedGoogle Scholar
  16. Dwyer, B. E., Lu, S. Y., & Nishimura, R. N. (1998). Heme oxygenase in the experimental ALS mouse. Experimental Neurology, 150, 206–212.CrossRefPubMedGoogle Scholar
  17. Erdmann, K., Cheung, B. W., Immenschuh, S., & Schroder, H. (2008). Heme oxygenase-1 is a novel target and antioxidant mediator of S-adenosylmethionine. Biochemical and Biophysical Research Communications, 368, 937–941.CrossRefPubMedGoogle Scholar
  18. Esposito, E., Rossi, C., Amodio, R., Di Castelnuovo, A., Bendotti, C., Rotondo, T., et al. (2000). Lyophilized red wine administration prolongs survival in an animal model of amyotrophic lateral sclerosis. Annals of Neurology, 48, 686–687.CrossRefPubMedGoogle Scholar
  19. Exner, M., Minar, E., Wagner, O., & Schillinger, M. (2004). The role of heme oxygenase-1 promoter polymorphisms in human disease. Free Radical Biology and Medicine, 37, 1097–1104.CrossRefPubMedGoogle Scholar
  20. Fornai, F., Longone, P., Cafaro, L., Kastsiuchenka, O., Ferrucci, M., Manca, M. L., et al. (2008). Lithium delays progression of amyotrophic lateral sclerosis. Proceedings of the National Academy of Sciences of the United States of America, 105, 2052–2057.CrossRefPubMedGoogle Scholar
  21. Fujita, K., Kato, T., Yamauchi, M., Ando, M., Honda, M., & Nagata, Y. (1998). Increases in fragmented glial fibrillary acidic protein levels in the spinal cords of patients with amyotrophic lateral sclerosis. Neurochemical Research, 23, 169–174.CrossRefPubMedGoogle Scholar
  22. Gharib, A., Sarda, N., Chabannes, B., Cronenberger, L., & Pacheco, H. (1982). The regional concentrations of S-adenosyl-L-methionine, S-adenosyl-L-homocysteine, and adenosine in rat brain. Journal of Neurochemistry, 38, 810–815.CrossRefPubMedGoogle Scholar
  23. Grunfeld, J. F., Barhum, Y., Blondheim, N., Rabey, J. M., Melamed, E., & Offen, D. (2007). Erythropoietin delays disease onset in an amyotrophic lateral sclerosis model. Experimental Neurology, 204, 260–263.CrossRefPubMedGoogle Scholar
  24. Guo, H., Lai, L., Butchbach, M. E., Stockinger, M. P., Shan, X., Bishop, G. A., et al. (2003). Increased expression of the glial glutamate transporter EAAT2 modulates excitotoxicity and delays the onset but not the outcome of ALS in mice. Human Molecular Genetics, 12, 2519–2532.CrossRefPubMedGoogle Scholar
  25. Gurney, M. E., Cutting, F. B., Zhai, P., Doble, A., Taylor, C. P., Andrus, P. K., et al. (1996). Benefit of vitamin E, riluzole, and gabapentin in a transgenic model of familial amyotrophic lateral sclerosis. Annals of Neurology, 39, 147–157.CrossRefPubMedGoogle Scholar
  26. Gurney, M. E., Pu, H., Chiu, A. Y., Dal Canto, M. C., Polchow, C. Y., Alexander, D. D., et al. (1994). Motor neuron degeneration in mice that express a human Cu, Zn superoxide dismutase mutation. Science, 264, 1772–1775.CrossRefPubMedGoogle Scholar
  27. Hensley, K., Mhatre, M., Mou, S., Pye, Q. N., Stewart, C., West, M., et al. (2006). On the relation of oxidative stress to neuroinflammation: Lessons learned from the G93A-SOD1 mouse model of amyotrophic lateral sclerosis. Antioxidants and Redox Signaling, 8, 2075–2087.CrossRefPubMedGoogle Scholar
  28. Ho, P. I., Ashline, D., Dhitavat, S., Ortiz, D., Collins, S. C., Shea, T. B., et al. (2003). Folate deprivation induces neurodegeneration: Roles of oxidative stress and increased homocysteine. Neurobiology of Diseases, 14, 32–42.CrossRefGoogle Scholar
  29. Ho, P. I., Ortiz, D., Rogers, E., & Shea, T. B. (2002). Multiple aspects of homocysteine neurotoxicity: Glutamate excitotoxicity, kinase hyperactivation and DNA damage. Journal of Neuroscience Research, 70, 694–702.CrossRefPubMedGoogle Scholar
  30. Holzbaur, E. L., Howland, D. S., Weber, N., Wallace, K., She, Y., Kwak, S., et al. (2006). Myostatin inhibition slows muscle atrophy in rodent models of amyotrophic lateral sclerosis. Neurobiology of Diseases, 23, 697–707.CrossRefGoogle Scholar
  31. Hyland, K., Smith, I., Bottiglieri, T., Perry, J., Wendel, U., Clayton, P. T., et al. (1988). Demyelination and decreased S-adenosylmethionine in 5, 10-methylenetetrahydrofolate reductase deficiency. Neurology, 38, 459–462.PubMedGoogle Scholar
  32. Ito, H., Wate, R., Zhang, J., Ohnishi, S., Kaneko, S., Ito, H., et al. (2008). Treatment with edaravone, initiated at symptom onset, slows motor decline and decreases SOD1 deposition in ALS mice. Experimental Neurology, 213, 448–455.CrossRefPubMedGoogle Scholar
  33. Izumi, Y., & Kaji, R. (2007). Clinical trials of ultra-high-dose methylcobalamin in ALS. Brain Nerve, 59, 1141–1147.PubMedGoogle Scholar
  34. Johnston, J. A., Dalton, M. J., Gurney, M. E., & Kopito, R. R. (2000). Formation of high molecular weight complexes of mutant Cu, Zn-superoxide dismutase in a mouse model for familial amyotrophic lateral sclerosis. Proceedings of the National Academy of Sciences of the United States of America, 97, 12571–12576.CrossRefPubMedGoogle Scholar
  35. Julien, J. P., & Mushynski, W. E. (1998). Neurofilaments in health and disease. Progress in Nucleic Acid Research and Molecular Biology, 61, 1–23.CrossRefPubMedGoogle Scholar
  36. Jung, C., Rong, Y., Doctrow, S., Baudry, M., Malfroy, B., & Xu, Z. (2001). Synthetic superoxide dismutase/catalase mimetics reduce oxidative stress and prolong survival in a mouse amyotrophic lateral sclerosis model. Neuroscience Letters, 304, 157–160.CrossRefPubMedGoogle Scholar
  37. Kennedy, B. P., Bottiglieri, T., Arning, E., Ziegler, M. G., Hansen, L. A., & Masliah, E. (2004). Elevated S-adenosylhomocysteine in Alzheimer brain: Influence on methyltransferases and cognitive function. Journal of neural transmission, 111, 547–567.CrossRefPubMedGoogle Scholar
  38. Levine, J. B., Kong, J., Nadler, M., & Xu, Z. (1999). Astrocytes interact intimately with degenerating motor neurons in mouse amyotrophic lateral sclerosis (ALS). Glia, 28, 215–224.CrossRefPubMedGoogle Scholar
  39. Lieber, C. S., & Packer, L. (2002). S-Adenosylmethionine: molecular, biological, and clinical aspects–an introduction. American Journal of Clinical Nutrition, 76, 1148S–1150S.PubMedGoogle Scholar
  40. Liu, R., Li, B., Flanagan, S. W., Oberley, L. W., Gozal, D., & Qiu, M. (2002). Increased mitochondrial antioxidative activity or decreased oxygen free radical propagation prevent mutant SOD1-mediated motor neuron cell death and increase amyotrophic lateral sclerosis-like transgenic mouse survival. Journal of Neurochemistry, 80, 488–500.CrossRefPubMedGoogle Scholar
  41. Lu, S. C. (2000). S-Adenosylmethionine. International Journal of Biochemistry and Cell Biology, 32, 391–395.CrossRefPubMedGoogle Scholar
  42. Mahoney, D. J., Kaczor, J. J., Bourgeois, J., Yasuda, N., & Tarnopolsky, M. A. (2006). Oxidative stress and antioxidant enzyme upregulation in SOD1–G93A mouse skeletal muscle. Muscle and Nerve, 33, 809–816.CrossRefPubMedGoogle Scholar
  43. Mattson, M. P., & Shea, T. B. (2003). Folate and homocysteine metabolism in neural plasticity and neurodegenerative disorders. Trends in Neurosciences, 26, 137–146.CrossRefPubMedGoogle Scholar
  44. Muller, T., Woitalla, D., Hauptmann, B., Fowler, B., & Kuhn, W. (2001). Decrease of methionine and S-adenosylmethionine and increase of homocysteine in treated patients with Parkinson’s disease. Neuroscience Letters, 308, 54–56.CrossRefPubMedGoogle Scholar
  45. Oommen, A. M., Griffin, J. B., Sarath, G., & Zempleni, J. (2005). Roles for nutrients in epigenetic events. The Journal of Nutritional Biochemistry, 16, 74–77.CrossRefPubMedGoogle Scholar
  46. Park, J. H., Hong, Y. H., Kim, H. J., Kim, S. M., Kim, M. J., Park, K. S., et al. (2007). Pyruvate slows disease progression in a G93A SOD1 mutant transgenic mouse model. Neuroscience Letters, 413, 265–269.CrossRefPubMedGoogle Scholar
  47. Perluigi, M., Poon, H. F., Maragos, W., Pierce, W. M., Klein, J. B., Calabrese, V., et al. (2005). Proteomic analysis of protein expression and oxidative modification in r6/2 transgenic mice: A model of Huntington disease. Mol Cell Proteomics, 4, 1849–1861.CrossRefPubMedGoogle Scholar
  48. Poon, H. F., Hensley, K., Thongboonkerd, V., Merchant, M. L., Lynn, B. C., Pierce, W. M., et al. (2005). Redox proteomics analysis of oxidatively modified proteins in G93A-SOD1 transgenic mice–a model of familial amyotrophic lateral sclerosis. Free Radical Biology and Medicine, 39, 453–462.CrossRefPubMedGoogle Scholar
  49. Rakhit, R., Crow, J. P., Lepock, J. R., Kondejewski, L. H., Cashman, N. R., & Chakrabartty, A. (2004). Monomeric Cu, Zn-superoxide dismutase is a common misfolding intermediate in the oxidation models of sporadic and familial amyotrophic lateral sclerosis. Journal of Biological Chemistry, 279, 15499–15504.CrossRefPubMedGoogle Scholar
  50. Rao, S. D., & Weiss, J. H. (2004). Excitotoxic and oxidative cross-talk between motor neurons and glia in ALS pathogenesis. Trends in Neurosciences, 27, 17–23.CrossRefPubMedGoogle Scholar
  51. Ratter, F., Germer, M., Fischbach, T., Schulze-Osthoff, K., Peter, M. E., Droge, W., et al. (1996). S-adenosylhomocysteine as a physiological modulator of Apo-1-mediated apoptosis. International Immunology, 8, 1139–1147.CrossRefPubMedGoogle Scholar
  52. Remington, R., Chan, A., Paskavitz, J., & Shea, T. B. (2009). Efficacy of a vitamin/nutriceutical formulation for moderate-stage to later-stage Alzheimer’s disease: A placebo-controlled pilot study. American Journal of Alzheimer’s Disease and Other Dementias, 24, 27–33.CrossRefPubMedGoogle Scholar
  53. Robberecht, W. (2000). Oxidative stress in amyotrophic lateral sclerosis. Journal of Neurology, 247(Suppl 1), I1–I6.CrossRefPubMedGoogle Scholar
  54. Rosen, D. R., Siddique, T., Patterson, D., Figlewicz, D. A., Sapp, P., Hentati, A., et al. (1993). Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature, 362, 59–62.CrossRefPubMedGoogle Scholar
  55. Rothstein, J. D. (1996). Therapeutic horizons for amyotrophic lateral sclerosis. Current Opinion in Neurobiology, 6, 679–687.CrossRefPubMedGoogle Scholar
  56. Schatz, R. A., Wilens, T. E., & Sellinger, O. Z. (1981). Decreased in vivo protein and phospholipid methylation after in vivo elevation of brain S-adenosyl-homocysteine. Biochemical and Biophysical Research Communications, 98, 1097–1107.CrossRefPubMedGoogle Scholar
  57. Scott, S., Kranz, J. E., Cole, J., Lincecum, J. M., Thompson, K., Kelly, N., et al. (2008). Design, power, and interpretation of studies in the standard murine model of ALS. Amyotrophic Lateral Sclerosis, 9, 4–15.CrossRefPubMedGoogle Scholar
  58. Sekiya, M., Ichiyanagi, T., Ikeshiro, Y., & Yokozawa, T. (2009). The Chinese prescription Wen-Pi-Tang extract delays disease onset in amyotrophic lateral sclerosis model mice while attenuating the activation of glial cells in the spinal cord. Biological and Pharmaceutical Bulletin, 32, 382–388.CrossRefPubMedGoogle Scholar
  59. Selhub, J., & Miller, J. W. (1992). The pathogenesis of homocysteinemia: interruption of the coordinate regulation by S-adenosylmethionine of the remethylation and transsulfuration of homocysteine. American Journal of Clinical Nutrition, 55, 131–138.PubMedGoogle Scholar
  60. Shea, T. B., & Chan, A. (2008). S-adenosyl methionine: a natural therapeutic agent effective against multiple hallmarks and risk factors associated with Alzheimer’s disease. Journal of Alzheimer’s Disease, 13, 67–70.PubMedGoogle Scholar
  61. Shea, T. B., & Rogers, E. (2002). Folate quenches oxidative damage in brains of apolipoprotein E-deficient mice: Augmentation by vitamin E. Molecular Brain Research, 108, 1–6.CrossRefPubMedGoogle Scholar
  62. Shibata, N. (2001). Transgenic mouse model for familial amyotrophic lateral sclerosis with superoxide dismutase-1 mutation. Neuropathology, 21, 82–92.CrossRefPubMedGoogle Scholar
  63. Strong, M. J. (2003). The basic aspects of therapeutics in amyotrophic lateral sclerosis. Pharmacology and Therapeutics, 98, 379–414.CrossRefPubMedGoogle Scholar
  64. Tchantchou, F., Graves, M., Falcone, D., & Shea, T. B. (2008). S-adenosylmethionine mediates glutathione efficacy by increasing glutathione S-transferase activity: Implications for S-adenosyl methionine as a neuroprotective dietary supplement. Journal of Alzheimer’s Disease, 14, 323–328.PubMedGoogle Scholar
  65. Tchantchou, F., Graves, M., & Shea, T. B. (2006). Expression and activity of methionine cycle genes are altered following folate and vitamin E deficiency under oxidative challenge: Modulation by apolipoprotein E-deficiency. Nutritional Neuroscience, 9, 17–24.CrossRefPubMedGoogle Scholar
  66. Turner, B. J., & Talbot, K. (2008). Transgenics, toxicity and therapeutics in rodent models of mutant SOD1-mediated familial ALS. Progress in Neurobiology, 85, 94–134.CrossRefPubMedGoogle Scholar
  67. Veldink, J. H., Kalmijn, S., Groeneveld, G. J., Wunderink, W., Koster, A., de Vries, J. H., et al. (2007). Intake of polyunsaturated fatty acids and vitamin E reduces the risk of developing amyotrophic lateral sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 78, 367–371.CrossRefGoogle Scholar
  68. Wang, R., & Zhang, D. (2005). Memantine prolongs survival in an amyotrophic lateral sclerosis mouse model. European Journal of Neuroscience, 22, 2376–2380.CrossRefPubMedGoogle Scholar
  69. Watanabe, M., Dykes-Hoberg, M., Culotta, V. C., Price, D. L., Wong, P. C., & Rothstein, J. D. (2001). Histological evidence of protein aggregation in mutant SOD1 transgenic mice and in amyotrophic lateral sclerosis neural tissues. Neurobiology of Diseases, 8, 933–941.CrossRefGoogle Scholar
  70. Weydt, P., Hong, S. Y., Kliot, M., & Moller, T. (2003). Assessing disease onset and progression in the SOD1 mouse model of ALS. NeuroReport, 14, 1051–1054.CrossRefPubMedGoogle Scholar
  71. Weydt, P., Hong, S., Witting, A., Moller, T., Stella, N., & Kliot, M. (2005). Cannabinol delays symptom onset in SOD1 (G93A) transgenic mice without affecting survival. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 6, 182–184.CrossRefPubMedGoogle Scholar
  72. Xu, Z., Chen, S., Li, X., Luo, G., Li, L., & Le, W. (2006). Neuroprotective effects of (-)-epigallocatechin-3-gallate in a transgenic mouse model of amyotrophic lateral sclerosis. Neurochemical Research, 31, 1263–1269.CrossRefPubMedGoogle Scholar
  73. Zhang, X., Chen, S., Li, L., Wang, Q., & Le, W. (2008). Folic acid protects motor neurons against the increased homocysteine, inflammation and apoptosis in SOD1 G93A transgenic mice. Neuropharmacology, 54, 1112–1119.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2009

Authors and Affiliations

  • James Suchy
    • 1
  • Sangmook Lee
    • 1
  • Ambar Ahmed
    • 1
  • Thomas B. Shea
    • 1
  1. 1.Center for Cellular Neurobiology and Neurodegeneration Research, Department of Biological SciencesUniversity of Massachusetts LowellLowellUSA

Personalised recommendations