NeuroMolecular Medicine

, Volume 11, Issue 3, pp 153–161

The Therapeutic Potential of microRNAs in Nervous System Damage, Degeneration, and Repair

  • Emmette R. Hutchison
  • Eitan Okun
  • Mark P. Mattson
Original Paper


MicroRNAS (miRNAs) have been suggested to play important roles in the central nervous system during development as well as disease. miRNAs appear to be dysregulated in a number of neurodegenerative diseases, developmental disorders, and as a result of stroke. Each miRNA has the ability to regulate hundreds of messenger RNA transcripts, both by causing degradation of the mRNA and by inhibition of protein translation. Recent findings suggest that it may eventually be possible to treat some neurological disorders by restoring or inhibiting miRNAs altered by disease pathology. Both viral delivery and administration of modified oligonucleotides mimicking or inhibiting specific miRNAs have been effective in model systems. Artificial miRNAs have also been generated for the repression of specific transcripts. Alteration of miRNA expression by disease and insult also holds the potential for improved diagnostic tools. Finally, miRNAs have been shown to control cellular proliferation and specification, suggesting that manipulation of miRNAs in cultured cells could result in more convenient generation of pure cell populations for transplantation.


miRNAs Neurodegenerative disease Alzheimer’s disease Parkinson’s disease Huntington’s disease Transplantation 


  1. Abelson, J. F., Kwan, K. Y., O’Roak, B. J., Baek, D. Y., Stillman, A. A., Morgan, T. M., et al. (2005). Sequence variants in SLITRK1 are associated with Tourette’s syndrome. Science, 310(5746), 317–320.CrossRefPubMedGoogle Scholar
  2. Baek, D., Villén, J., Shin, C., Camargo, F. D., Gygi, S. P., & Bartel, D. P. (2008). The impact of microRNAs on protein output. Nature, 455(7209), 64–71.CrossRefPubMedGoogle Scholar
  3. Beveridge, N. J., Tooney, P. A., Carroll, A. P., Gardiner, E., Bowden, N., Scott, R. J., et al. (2008). Dysregulation of miRNA 181b in the temporal cortex in schizophrenia. Human Molecular Genetics, 17(8), 1156–1168.CrossRefPubMedGoogle Scholar
  4. Boissonneault, V., Plante, I., Rivest, S., & Provost, P. (2009). MicroRNA-298 and microRNA-328 regulate expression of mouse beta-amyloid precursor protein-converting enzyme 1. Journal of Biological Chemistry, 284(4), 1971–1981.CrossRefPubMedGoogle Scholar
  5. Boudreau, R. L., Martins, I., & Davidson, B. L. (2009). Artificial microRNAs as siRNA shuttles: Improved safety as compared to shRNAs in vitro and in vivo. Molecular Therapy, 17(1), 169–175.CrossRefPubMedGoogle Scholar
  6. Burmistrova, O. A., Goltsov, A. Y., Abramova, L. I., Kaleda, V. G., Orlova, V. A., & Rogaev, E. I. (2007). MicroRNA in schizophrenia: Genetic and expression analysis of miR-130b (22q11). Biochemistry (Mosc), 72(5), 578–582.CrossRefGoogle Scholar
  7. Cao, X., Pfaff, S. L., & Gage, F. H. (2007). A functional study of miR-124 in the developing neural tube. Genes and Development, 21(5), 531–536.CrossRefPubMedGoogle Scholar
  8. Carthew, R. W., & Sontheimer, E. J. (2009). Origins and Mechanisms of miRNAs and siRNAs. Cell, 136, 642–655.CrossRefPubMedGoogle Scholar
  9. Castanotto, D., Sakurai, K., Lingeman, R., Li, H., Shively, L., Aagaard, L., et al. (2007). Combinatorial delivery of small interfering RNAs reduces RNAi efficacy by selective incorporation into RISC. Nucleic Acids Research, 35(15), 5154–5164.CrossRefPubMedGoogle Scholar
  10. Cataldo, A. M., Petanceska, S., Peterhoff, C. M., Terio, N. B., Epstein, C. J., Villar, A., et al. (2003). App gene dosage modulates endosomal abnormalities of Alzheimer’s disease in a segmental trisomy 16 mouse model of down syndrome. Journal of Neuroscience, 23, 6788–6792.PubMedGoogle Scholar
  11. Cockrell, A. S., & Kafri, T. (2007). Gene delivery by lentivirus vectors. Molecular Biotechnology, 36, 184–204.CrossRefPubMedGoogle Scholar
  12. Cogswell, J. P., Ward, J., Taylor, I. A., Waters, M., Shi, Y., Cannon, B., et al. (2008). Identification of miRNA changes in Alzheimer’s disease brain and CSF yields putative biomarkers and insights into disease pathways. Journal of Alzheimer’s Disease, 14(1), 27–41.PubMedGoogle Scholar
  13. Conaco, C., Otto, S., Han, J. J., & Mandel, G. (2006). Reciprocal actions of REST and a microRNA promote neuronal identity. Proceedings of the National Academy of Sciences of the United States of America, 103(7), 2422–2427.CrossRefPubMedGoogle Scholar
  14. Croce, C. M., & Calin, G. A. (2005). miRNAs, cancer, and stem cell division. Cell, 122(1), 6–7.CrossRefPubMedGoogle Scholar
  15. De Pietri Tonelli, D., Pulvers, J. N., Haffner, C., Murchison, E. P., Hannon, G. J., & Huttner, W. B. (2008). miRNAs are essential for survival and differentiation of newborn neurons but not for expansion of neural progenitors during early neurogenesis in the mouse embryonic neocortex. Development, 135, 3911–3921.CrossRefPubMedGoogle Scholar
  16. Dharap, A., Bowen, K., Place, R., Li, L. C., & Vemuganti, R. (2009). Transient focal ischemia induces extensive temporal changes in rat cerebral microRNAome. Journal of Cerebral Blood Flow and Metabolism, 29(4), 675–687.CrossRefPubMedGoogle Scholar
  17. Ebert, M. S., Neilson, J. R., & Sharp, P. A. (2007). MicroRNA sponges: Competitive inhibitors of small RNAs in mammalian cells. Nature Methods, 4(9), 721–726.CrossRefPubMedGoogle Scholar
  18. Elmén, J., Lindow, M., Schütz, S., Lawrence, M., Petri, A., Obad, S., et al. (2008a). LNA-mediated microRNA silencing in non-human primates. Nature, 452, 896–899.CrossRefPubMedGoogle Scholar
  19. Elmén, J., Lindow, M., Silahtaroglu, A., Bak, M., Christensen, M., Lind-Thomsen, A., et al. (2008b). Antagonism of microRNA-122 in mice by systemically administered LNA-antimiR leads to up-regulation of a large set of predicted target mRNAs in the liver. Nucleic Acids Research, 36, 1153–1162.CrossRefPubMedGoogle Scholar
  20. Faghihi, M. A., Modarresi, F., Khalil, A. M., Wood, D. E., Sahagan, B. G., Morgan, T. E., et al. (2008). Expression of a noncoding RNA is elevated in Alzheimer’s disease and drives rapid feed-forward regulation of beta-secretase. Nature Medicine, 14(7), 723–730.CrossRefPubMedGoogle Scholar
  21. Gonzalez-Alegre, P., Bode, N., Davidson, B. L., & Paulson, H. L. (2005). Silencing primary dystonia: Lentiviral-mediated RNA interference therapy for DYT1 dystonia. Journal of Neuroscience, 25, 10502–10509.CrossRefPubMedGoogle Scholar
  22. Grimm, D., Streetz, K. L., Jopling, C. L., Storm, T. A., Pandey, K., Davis, C. R., et al. (2006). Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature, 441(7092), 537–541.CrossRefPubMedGoogle Scholar
  23. Harper, S. Q., & Gonzalez-Alegre, P. (2008). Lentivirus-mediated RNA interference in mammalian neurons. Methods in Molecular Biology, 442, 95–112.CrossRefPubMedGoogle Scholar
  24. Hébert, S. S., Horré, K., Nicolaï, L., Papadopoulou, A. S., Mandemakers, W., Silahtaroglu, A. N., et al. (2008). Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer’s disease correlates with increased BACE1/beta-secretase expression. Proceedings of the National Academy of Sciences of the United States of America, 105(17), 6415–6420.CrossRefPubMedGoogle Scholar
  25. Hol, E. M., van Leeuwen, F. W., & Fischer, D. F. (2005). The proteasome in Alzheimer’s disease and Parkinson’s disease: Lessons from ubiquitin B+1. Trends in Molecular Medicine, 11, 488–495.PubMedGoogle Scholar
  26. Jeyaseelan, K., Lim, K. Y., & Armugam, A. (2008). MicroRNA expression in the blood and brain of rats subjected to transient focal ischemia by middle cerebral artery occlusion. Stroke, 39(3), 959–966.CrossRefPubMedGoogle Scholar
  27. Johnson, R., Zuccato, C., Belyaev, N. D., Guest, D. J., Cattaneo, E., & Buckley, N. J. (2008). A microRNA-based gene dysregulation pathway in Huntington’s disease. Neurobiology of Diseases, 29(3), 438–445.CrossRefGoogle Scholar
  28. Kapsimali, M., Kloosterman, W. P., de Bruijn, E., Rosa, F., Plasterk, R. H., & Wilson, S. W. (2007). MicroRNAs show a wide diversity of expression profiles in the developing and mature central nervous system. Genome Biology, 8(8), R173.CrossRefPubMedGoogle Scholar
  29. Keller, J. N., Hanni, K. B., & Markesbery, W. R. (2000). Impaired proteasome function in Alzheimer’s disease. Journal of Neurochemistry, 75, 436–439.CrossRefPubMedGoogle Scholar
  30. Kim, J., Inoue, K., Ishii, J., Vanti, W. B., Voronov, S. V., Murchison, E., et al. (2007). A MicroRNA feedback circuit in midbrain dopamine neurons. Science, 317(5842), 1220–1224.CrossRefPubMedGoogle Scholar
  31. Krichevsky, A. M., Sonntag, K. C., Isacson, O., & Kosik, K. S. (2006). Specific microRNAs modulate embryonic stem cell-derived neurogenesis. Stem Cells, 24, 857–864.CrossRefPubMedGoogle Scholar
  32. Krützfeldt, J., Rajewsky, N., Braich, R., Rajeev, K. G., Tuschl, T., Manoharan, M., et al. (2005). Silencing of microRNAs in vivo with ‘antagomirs’. Nature, 438(7068), 685–689.CrossRefPubMedGoogle Scholar
  33. Kumar, P., Wu, H., McBride, J. L., Jung, K. E., Kim, M. H., Davidson, B. L., et al. (2007). Transvascular delivery of small interfering RNA to the central nervous system. Nature, 448(7149), 39–43.CrossRefPubMedGoogle Scholar
  34. Lee, R. C., Feinbaum, R. L., & Ambros, V. (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 75, 843–854.CrossRefPubMedGoogle Scholar
  35. Lim, L. P., Lau, N. C., Garrett-Engele, P., Grimson, A., Schelter, J. M., Castle, J., et al. (2005). Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature, 433(7027), 769–773.CrossRefPubMedGoogle Scholar
  36. Lukiw, W. J., Zhao, Y., & Cui, J. G. (2008). An NF-kappaB-sensitive micro RNA-146a-mediated inflammatory circuit in Alzheimer disease and in stressed human brain cells. Journal of Biological Chemistry, 283(46), 31315–31322.CrossRefPubMedGoogle Scholar
  37. Makeyev, E. V., et al. (2007). The microRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Molecular Cell, 27, 435–448.CrossRefPubMedGoogle Scholar
  38. Mattson, M. P. (2004). Pathways towards and away from Alzheimer’s disease. Nature, 430(7000), 631–639.CrossRefPubMedGoogle Scholar
  39. Mattson, M. P., Maudsley, S., & Martin, B. (2004). BDNF and 5-HT: A dynamic duo in age-related neuronal plasticity and neurodegenerative disorders. Trends in Neurosciences, 27(10), 589–594.CrossRefPubMedGoogle Scholar
  40. McBride, J. L., Boudreau, R. L., Harper, S. Q., Staber, P. D., Monteys, A. M., Martins, I., et al. (2008). Artificial miRNAs mitigate shRNA-mediated toxicity in the brain: Implications for the therapeutic development of RNAi. Proceedings of the National Academy of Sciences of the United States of America, 105(15), 5868–5873.CrossRefPubMedGoogle Scholar
  41. Mellios, N., Huang, H. S., Grigorenko, A., Rogaev, E., & Akbarian, S. (2008). A set of differentially expressed miRNAs, including miR-30a–5p, act as post-transcriptional inhibitors of BDNF in prefrontal cortex. Human Molecular Genetics, 17(19), 3030–3042.CrossRefPubMedGoogle Scholar
  42. Miska, E. A., Alvarez-Saavedra, E., Townsend, M., Yoshii, A., Sestan, N., Rakic, P., et al. (2004). Microarray analysis of microRNA expression in the developing mammalian brain. Genome Biology, 5(9):R68.CrossRefPubMedGoogle Scholar
  43. Packer, A. N., Xing, Y., Harper, S. Q., Jones, L., & Davidson, B. L. (2008). The bifunctional microRNA miR-9/miR-9* regulates REST and CoREST and is downregulated in Huntington’s disease. Journal of Neuroscience, 28(53), 14341–14346.CrossRefPubMedGoogle Scholar
  44. Perkins, D. O., Jeffries, C. D., Jarskog, L. F., Thomson, J. M., Woods, K., Newman, M. A., et al. (2007). microRNA expression in the prefrontal cortex of individuals with schizophrenia and schizoaffective disorder. Genome Biology, 8(2), R27.CrossRefPubMedGoogle Scholar
  45. Redell, J. B., Liu, Y., & Dash, P. K. (2009). Traumatic brain injury alters expression of hippocampal microRNAs: Potential regulators of multiple pathophysiological processes. Journal of Neuroscience Research, 87(6), 1435–1448.CrossRefPubMedGoogle Scholar
  46. Ren, G., Li, T., Lan, J. Q., Wilz, A., Simon, R. P., & Boison, D. (2007). Lentiviral RNAi-induced downregulation of adenosine kinase in human mesenchymal stem cell grafts: A novel perspective for seizure control. Experimental Neurology, 208(1), 26–37.CrossRefPubMedGoogle Scholar
  47. Saba, R., Goodman, C. D., Huzarewich, R. L., Robertson, C., & Booth, S. A. (2008). A miRNA signature of prion induced neurodegeneration. PLoS ONE, 3(11), e3652.CrossRefPubMedGoogle Scholar
  48. Salehi, A., Delcroix, J. D., Belichenko, P. V., Zhan, K., Wu, C., Valletta, J. S., et al. (2006). Increased App expression in a mouse model of Down’s syndrome disrupts NGF transport and causes cholinergic neuron degeneration. Neuron, 51, 29–42.CrossRefPubMedGoogle Scholar
  49. Sapru, M. K., Yates, J. W., Hogan, S., Jiang, L., Halter, J., & Bohn, M. C. (2006). Silencing of human alpha-synuclein in vitro and in rat brain using lentiviral-mediated RNAi. Experimental Neurology, 198, 382–390.CrossRefPubMedGoogle Scholar
  50. Schwamborn, J. C., Berezikov, E., & Knoblich, J. A. (2009). The TRIM-NHL protein TRIM32 activates microRNAs and prevents self-renewal in mouse neural progenitors. Cell, 136(5), 913–925.CrossRefPubMedGoogle Scholar
  51. Selbach, M., Schwanhäusser, B., Thierfelder, N., Fang, Z., Khanin, R., & Rajewsky, N. (2008). Widespread changes in protein synthesis induced by microRNAs. Nature, 455(7209), 58–63.CrossRefPubMedGoogle Scholar
  52. Sempere, L. F., Freemantle, S., Pitha-Rowe, I., Moss, E., Dmitrovsky, E., & Ambros, V. (2004). Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biology, 5(3):R13.CrossRefPubMedGoogle Scholar
  53. Sheedy, F. J., & O’Neill, L. A. (2008). Adding fuel to fire: microRNAs as a new class of mediators of inflammation. Annals of the Rheumatic Diseases, 67(Suppl 3), iii50–iii55.CrossRefPubMedGoogle Scholar
  54. Silahtaroglu, A. N., Nolting, D., Dyrskjøt, L., Berezikov, E., Møller, M., Tommerup, N., et al. (2007). Detection of microRNAs in frozen tissue sections by fluorescence in situ hybridization using locked nucleic acid probes and tyramide signal amplification. Nature Protocols, 2(10), 2520–2528.CrossRefPubMedGoogle Scholar
  55. Singer, O., Marr, R. A., Rockenstein, E., Crews, L., Coufal, N. G., Gage, F. H., et al. (2005). Targeting BACE1 with siRNAs ameliorates Alzheimer disease neuropathology in a transgenic model. Nature Neuroscience, 8(10), 1343–1349.CrossRefPubMedGoogle Scholar
  56. Singleton, A. B., Farrer, M., Johnson, J., Singleton, A., Hague, S., Kachergus, J., et al. (2003). alpha-Synuclein locus triplication causes Parkinson’s disease. Science, 302, 841.CrossRefPubMedGoogle Scholar
  57. Singleton, A., Myers, A., & Hardy, J. (2004). The law of mass action applied to neurodegenerative disease: A hypothesis concerning the etiology and pathogenesis of complex diseases. Human and Molecular Genetics, 13(Spec No 1), R123–R126.CrossRefGoogle Scholar
  58. Smirnova, L., Gräfe, A., Seiler, A., Schumacher, S., Nitsch, R., & Wulczyn, F. G. (2005). Regulation of miRNA expression during neural cell specification. European Journal of Neuroscience, 21(6), 1469–1477.CrossRefPubMedGoogle Scholar
  59. Tsang, J., Zhu, J., & van Oudenaarden, A. (2007). MicroRNA-mediated feedback and feedforward loops are recurrent network motifs in mammals. Molecular Cell, 26(5), 753–767.CrossRefPubMedGoogle Scholar
  60. Urbich, C., Kuehbacher, A., & Dimmeler, S. (2008). Role of microRNAs in vascular diseases, inflammation, and angiogenesis. Cardiovascular Research, 79(4), 581–588.CrossRefPubMedGoogle Scholar
  61. van Solingen, C., Seghers, L., Bijkerk, R., Duijs, J. M., Roeten, M. K., van Oeveren-Rietdijk, A. M., et al. (2008). Antagomir-mediated silencing of endothelial cell specific microRNA-126 impairs ischemia-induced angiogenesis. Journal of Cellular and Molecular Medicine. 2008 Dec 16. [Epub ahead of print].Google Scholar
  62. Várallyay, E., Burgyán, J., & Havelda, Z. (2008). MicroRNA detection by northern blotting using locked nucleic acid probes. Nature Protocols, 3(2), 190–196.CrossRefPubMedGoogle Scholar
  63. Wang, W. X., Rajeev, B. W., Stromberg, A. J., Ren, N., Tang, G., Huang, Q., et al. (2008a). The expression of microRNA miR-107 decreases early in Alzheimer’s disease and may accelerate disease progression through regulation of beta-site amyloid precursor protein-cleaving enzyme 1. Journal of Neuroscience, 28, 1213–1223.CrossRefPubMedGoogle Scholar
  64. Wang, G., van der Walt, J. M., Mayhew, G., Li, Y. J., Züchner, S., Scott, W. K., et al. (2008b). Variation in the miRNA-433 binding site of FGF20 confers risk for Parkinson disease by overexpression of alpha-synuclein. American Journal of Human Genetics, 82, 283–289.CrossRefPubMedGoogle Scholar
  65. Zhao, C., Deng, W., & Gage, F. H. (2008). Mechanisms and functional implications of adult neurogenesis. Cell, 132(4), 645–660.CrossRefPubMedGoogle Scholar
  66. Zhao, C., Sun, G., Li, S., & Shi, Y. (2009). A feedback regulatory loop involving microRNA-9 and nuclear receptor TLX in neural stem cell fate determination. Nature Structural & Molecular Biology, 16(4), 365–371.CrossRefGoogle Scholar
  67. Zhou, R., Yuan. P., Wang, Y., Hunsberger, J. G., Elkahloun, A., Wei, Y., et al. (2009). Evidence for selective microRNAs and their effectors as common long-term targets for the actions of mood stabilizers. Neuropsychopharmacology, 34, 1395–1405.CrossRefPubMedGoogle Scholar
  68. Zuccato, C., Belyaev, N., Conforti, P., Ooi, L., Tartari, M., Papadimou, E., et al. (2007). Widespread disruption of repressor element-1 silencing transcription factor/neuron-restrictive silencer factor occupancy at its target genes in Huntington's disease. Journal of Neuroscience, 27, 6972–6983.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2009

Authors and Affiliations

  • Emmette R. Hutchison
    • 1
    • 2
  • Eitan Okun
    • 1
  • Mark P. Mattson
    • 1
  1. 1.Laboratory of NeurosciencesNational Institute on Aging Intramural Research ProgramBaltimoreUSA
  2. 2.Brown University Department of NeuroscienceProvidenceUSA

Personalised recommendations