NeuroMolecular Medicine

, Volume 11, Issue 4, pp 252–266 | Cite as

Manganese and its Role in Parkinson’s Disease: From Transport to Neuropathology

  • Michael Aschner
  • Keith M. Erikson
  • Elena Herrero Hernández
  • Ronald Tjalkens
Original Paper


The purpose of this review is to highlight recent advances in the neuropathology associated with Mn exposures. We commence with a discussion on occupational manganism and clinical aspects of the disorder. This is followed by novel considerations on Mn transport (see also chapter by Yokel, this volume), advancing new hypotheses on the involvement of several transporters in Mn entry into the brain. This is followed by a brief description of the effects of Mn on neurotransmitter systems that are putative modulators of dopamine (DA) biology (the primary target of Mn neurotoxicity), as well as its effects on mitochondrial dysfunction and disruption of cellular energy metabolism. Next, we discuss inflammatory activation of glia in neuronal injury and how disruption of synaptic transmission and glial-neuronal communication may serve as underlying mechanisms of Mn-induced neurodegeneration commensurate with the cross-talk between glia and neurons. We conclude with a discussion on therapeutic aspects of Mn exposure. Emphasis is directed at treatment modalities and the utility of chelators in attenuating the neurodegenerative sequelae of exposure to Mn. For additional reading on several topics inherent to this review as well as others, the reader may wish to consult Aschner and Dorman (Toxicological Review 25:147–154, 2007) and Bowman et al. (Metals and neurodegeneration, 2009).


Manganese Parkinson’s Glia Neuroinflammation GABA Glutamate MRI 


  1. ACGIH. (2009). Threshold limit values (TLVs®) for chemical substances and physical agents and biological exposure indices (BEIs®) Cincinnati, OH.Google Scholar
  2. Alessio, L., Campagna, M., & Lucchini, R. (2007). From lead to manganese through mercury: Mythology, science, and lessons for prevention. American Journal of Industrial Medicine, 50, 779–787.PubMedGoogle Scholar
  3. Anderson, J. G., Cooney, P. T., & Erikson, K. M. (2007). Brain manganese accumulation is inversely related to gamma-amino butyric acid uptake in male and female rats. Toxicological Sciences, 95, 188–195.PubMedGoogle Scholar
  4. Anderson, J. G., Fordahl, S. C., Cooney, P. T., Weaver, T. L., Colyer, C. L., & Erikson, K. M. (2008). Manganese exposure alters extracellular GABA, GABA receptor and transporter protein and mRNA levels in the developing rat brain. Neurotoxicology, 29, 1044–1053.PubMedGoogle Scholar
  5. Anderson, J. G., Fordahl, S. C., Cooney, P. T., Weaver, T. L., Colyer, C. L., & Erikson, K. M. (2009). Manganese exposure alters extracellular norepinephrine, norepinephrine receptor and transporter protein and mRNA levels in the developing rat brain. Brain Research, Submitted.Google Scholar
  6. Apostoli, P., Lucchini, R., & Alessio, L. (2000). Are current biomarkers suitable for the assessment of manganese exposure in individual workers? American Journal of Industrial Medicine, 37, 283–290.PubMedGoogle Scholar
  7. Aschner, M., & Dorman, D. C. (2007). Manganese: Pharmacokinetics and molecular mechanisms of brain uptake. Toxicological Reviews, 25, 147–154.Google Scholar
  8. Aschner, M., Gannon, M., & Kimelberg, H. K. (1992). Manganese uptake and efflux in cultured rat astrocytes. Journal of Neurochemistry, 58, 730–735.PubMedGoogle Scholar
  9. Aschner, M., Guilarte, T. R., Schneider, J. S., & Zheng, W. (2007). Manganese: Recent advances in understanding its transport and neurotoxicity. Toxicology and Applied Pharmacology, 221, 131–147.PubMedGoogle Scholar
  10. Ashizawa, R. (1927). Uber einen sektionsfall von chronischer manganvergiftung. Jap J Med Sci Trans, Sect VIII-Int Med Pediat Psychiat, 1, 173–191.Google Scholar
  11. Autissier, N., Rochette, L., Dumas, P., Beley, A., Loireau, A., & Bralet, J. (1982). Dopamine and norepinephrine turnover in various regions of the rat brain after chronic manganese chloride administration. Toxicology, 24, 175–182.PubMedGoogle Scholar
  12. Baek, S. Y., Cho, J. H., Kim, E. S., Kim, H. J., Yoon, S., Kim, B. S., et al. (2004). CDNA array analysis of gene expression profiles in brain of mice exposed to manganese. Industrial Health, 42, 315–320.PubMedGoogle Scholar
  13. Bant, R. G., & Markesbery, W. R. (1977). Elevated manganese levels associated with dementia and extrapyramidal signs. Neurology, 27, 213.Google Scholar
  14. Barhoumi, R., Faske, J., Liu, X., & Tjalkens, R. B. (2004). Manganese potentiates lipopolysaccharide-induced expression of NOS2 in C6 glioma cells through mitochondrial-dependent activation of nuclear factor kappaB. Brain Research Molecular Brain Research, 122, 167–179.PubMedGoogle Scholar
  15. Bertinet, D. B., Tinivella, M., Balzola, F. A., de Francesco, A., Davini, O., Rizzo, L., et al. (2000). Brain manganese deposition and blood levels in patients undergoing home parenteral nutrition. JPEN. Journal of Parenteral and Enteral Nutrition, 24, 223–227.PubMedGoogle Scholar
  16. Bikashvili, T. Z., Shukakidze, A. A., & Kiknadze, G. I. (2001). Changes in the ultrastructure of the rat cerebral cortex after oral doses of manganese chloride. Neuroscience and Behavioral Physiology, 31, 385–389.PubMedGoogle Scholar
  17. Bock, N. A., Paiva, F. F., Nascimento, G. C., Newman, J. D., & Silva, A. C. (2008). Cerebrospinal fluid to brain transport of manganese in a non-human primate revealed by MRI. Brain Research, 1198, 60–170.Google Scholar
  18. Boojar, M. M., Goodarzi, F., & Basedaghat, M. A. (2002). Long-term follow-up of workplace and well water manganese effects on iron status indexes in manganese miners. Archives of Environmental Health, 57, 519–528.PubMedGoogle Scholar
  19. Bouchard, M., Mergler, D., Baldwin, M., Panisset, M., Bowler, R., & Roels, H. A. (2007). Neurobehavioral functioning after cessation of manganese exposure: A follow-up after 14 years. American Journal of Industrial Medicine, 50, 831–840.PubMedGoogle Scholar
  20. Bowman, A., Erikson, K. M., & Aschner, M. (2009). Manganese: The Two faces of essentiality and neurotoxicity. In Huang S, Ed. Metals and neurodegeneration. Kerala, India: Research Signpost.Google Scholar
  21. Brouillet, E. P., Shinobu, L., McGarvey, U., Hochberg, F., & Beal, M. F. (1993). Manganese injection into the rat striatum produces excitotoxic lesions by impairing energy metabolism. Experimental Neurology, 120, 89–94.PubMedGoogle Scholar
  22. Burton, N. C., Schneider, J. S., Syversen, T., & Guilarte, T. S. (2009). Effects of chronic manganese exposure on glutamatergic and GABAergic neurotransmitter markers in the non-human primate brain. Toxicological Sciences [Epub ahead of print]. PMID: 19520674.Google Scholar
  23. Calne, D. B., Chu, N. S., Huang, C. C., Lu, C. S., & Olanow, W. (1994). Manganism and idiopathic parkinsonism: Similarities and differences. Neurology, 44, 1583–1586.PubMedGoogle Scholar
  24. CDC-MMWR. (2006). Deaths associated with hypocalcemia from chelation therapy-Texas, Pennsylvania and Oregon, 2003-2005. 55, 204–207.Google Scholar
  25. Cersosimo, M. G., & Koller, W. C. (2006). The diagnosis of manganese-induced parkinsonism. Neurotoxicology, 27, 340–346.PubMedGoogle Scholar
  26. Chandra, S. V., Murthy, R. C., Husain, T., & Bansal, S. K. (1984). Effect of interaction of heavy metals on (Na+-K+) ATPase and the uptake of 3H-DA and 3H-NA in rat brain synaptosomes. Acta pharmacologica et toxicologica, 54, 210–213.PubMedGoogle Scholar
  27. Chang, J. Y., & Liu, L. Z. (1999). Manganese potentiates nitric oxide production by microglia. Brain Research. Molecular Brain Research, 68, 22–28.PubMedGoogle Scholar
  28. Chen, C. J., Ou, Y. C., Lin, S. Y., Liao, S. L., Chen, S. Y., & Chen, J. H. (2006). Manganese modulates pro-inflammatory gene expression in activated glia. Neurochemistry International, 49(1), 62–71.Google Scholar
  29. Cook, D. G., Fahn, S., & Brait, K. A. (1974). Chronic manganese intoxication. Archives of Neurology, 30, 59–64.PubMedGoogle Scholar
  30. Cotzias, G. C., & Greenough, J. J. (1958). The high specificity of the manganese pathway through the body. Journal of Clinical Investigation, 37, 1298–1305.PubMedGoogle Scholar
  31. Couper, J. (1837). On the effects of black oxide of manganese when inhaled into the lungs. British Annals Medical Pharma, 1, 41–42.Google Scholar
  32. Crossgrove, J. S., Allen, D. D., Bukaveckas, B. L., Rhineheimer, S. S., & Yokel, R. A. (2003). Manganese distribution across the blood-brain barrier. I. Evidence for carrier-mediated influx of manganese citrate as well as manganese and manganese transferrin. Neurotoxicology, 24, 3–13.PubMedGoogle Scholar
  33. Crossgrove, J., & Zheng, W. (2004). Manganese toxicity upon overexposure. NMR in Biomedicine, 17, 544–553.PubMedGoogle Scholar
  34. da Silva, C. J., da Rocha, A. J., Jeronymo, S., Mendes, M. F., Milani, F. T., Maia, A. C., Jr., et al. (2007). A preliminary study revealing a new association in patients undergoing maintenance hemodialysis: Manganism symptoms and T1 hyperintense changes in the basal ganglia. American Journal of Neuroradiology, 28, 1474–1479.PubMedGoogle Scholar
  35. de Bie, R. M., Gladstone, R. M., Strafella, A. P., Ko, J. H., & Lang, A. E. (2007). Manganese-induced Parkinsonism associated with methcathinone (Ephedrone) abuse. Archives of Neurology, 64, 886–889.PubMedGoogle Scholar
  36. De Paris, P., & Caroldi, S. (1994). In vivo inhibition of serum dopamine-beta-hydroxylase by CaNa2EDTA injection. Human and Experimental Toxicology, 13, 253–256.PubMedGoogle Scholar
  37. Deitmer, J. W., Broer, A., & Broer, S. (2003). Glutamine efflux from astrocytes is mediated by multiple pathways. Journal of Neurochemistry, 87, 127–135.PubMedGoogle Scholar
  38. Deng, Y., Xu, Z., Xu, B., Tian, Y., Deng, X., Xin, X., & Gao, J. (2009). Excitotoxicity in rat’s brain induced by exposure of manganese and neuroprotective effects of pinacidil and nimodipine. Biological Trace Element Research [Epub ahead of print]. PMID: 19300915.Google Scholar
  39. Discalzi, G., Pira, E., Herrero Hernández, E., Valentini, C., Turbiglio, M., & Meliga, F. (2000). Occupational Mn parkinsonism: Magnetic resonance imaging and clinical patterns following CaNa2-EDTA chelation. Neurotoxicology, 21, 863–866.PubMedGoogle Scholar
  40. Eide, D. J. (2004). The SLC39 family of metal ion transporters. Pflugers Archives. European Journal of Physiology, 447, 796–800.Google Scholar
  41. Ejima, A., Imamura, T., Nakamura, S., et al. (1992). Manganese intoxication during total parenteral nutrition. Lancet, 339, 426.PubMedGoogle Scholar
  42. Embden, H. (1901). Zur kenntiss der metallischen nervendgifte. Deutsche medizinische Wochenschrift, 27, 795–796.CrossRefGoogle Scholar
  43. Erikson, K., & Aschner, M. (2002). Manganese causes differential regulation of glutamate transporter (GLAST) taurine transporter and metallothionein in cultured rat astrocytes. Neurotoxicology, 23, 595–602.PubMedGoogle Scholar
  44. Erikson, K. M., Dorman, D. C., Lash, L. H., & Aschner, M. (2008). Duration of airborne-manganese exposure in rhesus monkeys is associated with brain regional changes in biomarkers of neurotoxicity. Neurotoxicology, 29, 377–385.PubMedGoogle Scholar
  45. Fairhall, L. T., & Neal, P. A. (1943). Industrial manganese poisoning. National Institute of Health Bulletin No. 182, Washington DC, US Govt. Print. Off., 1–24.Google Scholar
  46. Fell, J. M., Reynolds, A. P., Meadows, N., Khan, K., Long, S. G., Quaghebeur, G., et al. (1996). Manganese toxicity in children receiving long-term parenteral nutrition. Lancet, 347, 1218–1221.PubMedGoogle Scholar
  47. Filipov, N. M., Seegal, R. F., & Lawrence, D. A. (2005). Manganese potentiates in vitro production of proinflammatory cytokines and nitric oxide by microglia through a nuclear factor kappa B-dependent mechanism. Toxicological Sciences, 84, 139–148.PubMedGoogle Scholar
  48. Finkelstein, M. M., & Jerrett, M. (2007). A study of the relationships between Parkinson’s disease and markers of traffic-derived and environmental manganese air pollution in two Canadian cities. Environmental Research, 104, 420–432.PubMedGoogle Scholar
  49. Fitsanakis, V. A., Zhang, N., Anderson, J. G., Erikson, K. M., Avison, M. J., Gore, J. C., et al. (2008). Measuring brain manganese and iron accumulation in rats following 14 weeks of low-dose manganese treatment using atomic absorption spectroscopy and magnetic resonance imaging. Toxicological Sciences, 103, 116–124.PubMedGoogle Scholar
  50. Fitsanakis, V. A., Zhang, N., Avison, M. J., Gore, J. C., Aschner, J. L., & Aschner, M. (2006). The use of magnetic resonance imaging (MRI) in the study of manganese neurotoxicity. Neurotoxicology, 27, 798–806.PubMedGoogle Scholar
  51. Foglieni, C., Fulgenzi, A., Ticozzi, P., Pellegatta, F., Sciorati, C., Belloni, D., et al. (2006). Protective effect of EDTA preadministration on renal ischemia. BMC Nephrology, 7, 5.PubMedGoogle Scholar
  52. Foulkes, E. C., & McMullen, D. M. (1987). Kinetics of transepithelial movement of heavy metals in rat jejunum. American Journal of Physiology, 253, G134–G138.PubMedGoogle Scholar
  53. Galindo, A., Del Arco, A., & Mora, F. (1999). Endogenous GABA potentiates the potassium-induced release of dopamine in striatum of the freely moving rat: A microdialysis study. Brain Research Bulletin, 50, 209–214.PubMedGoogle Scholar
  54. Gao, G., Wu, Y., & Guo, Y. (2003). Survey on chronic occupational hazards in welders. Chinese Journal Industrial Medicine, 16, 107.Google Scholar
  55. Garcia, S. J., Gellein, K., Syversen, T., & Aschner, M. (2006). A manganese-enhanced diet alters brain metals and transporters in the developing rat. Toxicological Sciences, 92, 516–525.PubMedGoogle Scholar
  56. Garcia, S. J., Gellein, K., Syversen, T., & Aschner, M. (2007). Iron deficient and manganese supplemented diets alter metals and transporters in the developing rat brain. Toxicological Sciences, 95, 205–214.PubMedGoogle Scholar
  57. Gavin, C. E., Gunter, K. K., & Gunter, T. E. (1990). Manganese and calcium efflux kinetics in brain mitochondria. Relevance to manganese toxicity. The Biochemical Journal, 266, 329–334.PubMedGoogle Scholar
  58. Gavin, C. E., Gunter, K. K., & Gunter, T. E. (1992). Mn2+ sequestration by mitochondria and inhibition of oxidative phosphorylation. Toxicology and Applied Pharmacology, 115, 1–5.PubMedGoogle Scholar
  59. Gerson, R. J., & Shaikh, Z. A. (1984). Differences in the uptake of cadmium and mercury by rat hepatocyte primary cultures. Role of a sulfhydryl carrier. Biochemical Pharmacology, 33, 199–203.PubMedGoogle Scholar
  60. Girijashanker, K., He, L., Soleimani, M., Reed, J. M., Li, H., Liu, Z., et al. (2008). Slc39a14 gene encodes ZIP14, a metal/bicarbonate symporter: Similarities to the ZIP8 transporter. Molecular Pharmacology, 73, 1413–1423.PubMedGoogle Scholar
  61. Graham, D. G. (1984). Catecholamine toxicity: A proposal for the molecular pathogenesis of manganese neurotoxicity and Parkinson’s disease. Neurotoxicology, 5, 83–95.PubMedGoogle Scholar
  62. Guilarte, T. R., Burton, N. C., McGlothan, J. L., et al. (2008a). Impairment of nigrostriatal dopamine neurotransmission by manganese is mediated by pre-synaptic mechanism(s): Implications to manganese-induced parkinsonism. Journal of Neurochemistry, 107, 1236–1247.PubMedGoogle Scholar
  63. Guilarte, T. R., Burton, N. C., Verina, T., Prabhu, V. V., Becker, K. G., Syversen, T., et al. (2008b). Increased APLP1 expression and neurodegeneration in the frontal cortex of manganese-exposed non-human primates. Journal of Neurochemistry, 105, 1948–1959.PubMedGoogle Scholar
  64. Guilarte, T. R., McGlothan, J. L., Degaonkar, M., Chen, M. K., Barker, P. B., Syversen, T., et al. (2006). Evidence for cortical dysfunction and widespread manganese accumulation in the nonhuman primate brain following chronic manganese exposure: A 1H-MRS and MRI study. Toxicological Sciences, 94, 351–358.PubMedGoogle Scholar
  65. Gunter, T. E., Gavin, C. E., Aschner, M., & Gunter, K. K. (2006). Speciation of manganese in cells and mitochondria: a search for the proximal cause of manganese neurotoxicity. Neurotoxicology, 27, 765–776.PubMedGoogle Scholar
  66. Gupta, S. K., Murthy, R. C., & Chandra, S. V. (1980). Neuromelanin in manganese-exposed primates. Toxicology Letters, 6, 17–20.PubMedGoogle Scholar
  67. Gwiazda, R. H., Lee, D., Sheridan, J., & Smith, D. R. (2002). Low cumulative manganese exposure affects striatal GABA but not dopamine. Neurotoxicology, 23, 69–76.PubMedGoogle Scholar
  68. Haest, C. W., Kamp, D., Plasa, G., & Deuticke, B. (1977). Intra- and intermolecular cross-linking of membrane proteins in intact erythrocytes and ghosts by SH-oxidizing agents. Biochimica et Biophysica Acta, 469, 226–230.PubMedGoogle Scholar
  69. HaMai, D., Rinderknecht, A. L., Guo-Sharman, K., Kleinman, M. T., & Bondy, S. C. (2006). Decreased expression of inflammation-related genes following inhalation exposure to manganese. Neurotoxicology, 27, 395–401.PubMedGoogle Scholar
  70. Hauser, R. A., Zesiewicz, T. A., Rosemurgy, A. S., Martinez, C., & Olanow, C. W. (1994). Manganese intoxication and chronic liver failure. Annals of Neurology, 36, 871–875.PubMedGoogle Scholar
  71. Haydon, P. G., & Carmignoto, G. (2006). Astrocyte control of synaptic transmission and neurovascular coupling. Physiological Reviews, 86, 1009–1031.PubMedGoogle Scholar
  72. Hazell, A. S., Normandin, L., Nguyen, B., & Kennedy, G. (2003). Upregulation of ‘peripheral-type’ benzodiazepine receptors in the globus pallidus in a sub-acute rat model of manganese neurotoxicity. Neuroscience Letters, 349, 13–16.PubMedGoogle Scholar
  73. Hazell, A. S., Normandin, L., Norenberg, M. D., Kennedy, G., & Yi, J. H. (2006). Alzheimer type II astrocytic changes following sub-acute exposure to manganese and its prevention by antioxidant treatment. Neuroscience Letters, 396, 167–171.PubMedGoogle Scholar
  74. He, L., Girijashanker, K., Dalton, T. P., et al. (2006). ZIP8, member of the solute-carrier-39 (SLC39) metal-transporter family: characterization of transporter properties. Molecular Pharmacology, 70, 171–180.PubMedGoogle Scholar
  75. Hearn, A. S., Stroupe, M. E., Cabelli, D. E., Ramilo, C. A., Luba, J. P., Tainer, J. A., et al. (2003). Catalytic and structural effects of amino acid substitution at histidine 30 in human manganese superoxide dismutase: Insertion of valine C gamma into the substrate access channel. Biochemistry, 42, 2781–2789.PubMedGoogle Scholar
  76. Henriksson, J., & Tjalve, H. (2000). Manganese taken up into the CNS via the olfactory pathway in rats affects astrocytes. Toxicological Sci, 55, 392–398.Google Scholar
  77. Herrero Hernández, E., Discalzi, G., Dassi, P., Jarre, L., & Pira, E. (2003). Manganese intoxication: the cause of an inexplicable epileptic syndrome in a 3 year old child. Neurotoxicology, 24, 633–639.PubMedGoogle Scholar
  78. Herrero Hernández, E., Discalzi, G., Valentini, C., Venturi, F., Chiò, A., Carmellino, C., et al. (2006). Follow-up of patients affected by manganese-induced Parkinsonism after treatment with CaNa2EDTA. Neurotoxicology, 27, 333–339.PubMedGoogle Scholar
  79. Herrero Hernández, E., Valentini, M. C., & Discalzi, G. (2002). T1-weighted hyperintensity in basal ganglia at brain magnetic resonance imaging: are different pathologies sharing a common mechanism? Neurotoxicology, 23, 669–674.PubMedGoogle Scholar
  80. Hirsch, E. C., Hunot, S., Damier, P., & Faucheux, B. (1998). Glial cells and inflammation in Parkinson’s disease: A role in neurodegeneration? Annals of Neurology, 44, S115–S120.PubMedGoogle Scholar
  81. Holbrook, Jr. D. J. (1976). Assessment of the toxicity of automotive emissions, Vol. II. EPA 6001-76-010b.Google Scholar
  82. HSBC. (2003). “BOC group-litigation a real risk”. Personal injury litigation against welding rod manufacturers. Hazardous Times GeneralCologneRe.$File/HazardTimesApril2003.pdf.
  83. Huang, C. C., Chu, N. S., Lu, C. S., Chen, R. S., Schulzer, M., & Calne, D. B. (2007). The natural history of neurological manganism over 18 years. Parkinsonism Related Disorders, 13, 143–145.PubMedGoogle Scholar
  84. Huang, C. C., Chu, N. S., Lu, C. S., Wang, J. D., Tsai, J. L., Tzeng, J. L., et al. (1989). Chronic manganese intoxication. Archives of Neurology, 46, 1104–1106.PubMedGoogle Scholar
  85. Huang, C. C., Lu, C. S., Chu, N. S., et al. (1993). Progression after chronic manganese exposure. Neurology, 43, 1479–1483.PubMedGoogle Scholar
  86. Jiang, Y. M., Mo, X. A., Du, F. Q., Hochberg, F., Lilienfeld, D., Olanow, W., et al. (2006). Effective treatment of manganese-induced occupational Parkinsonism with p-aminosalicylic acid: A case of 17-year follow-up study. Journal of Occupational and Environmental Medicine, 48, 644–649.PubMedGoogle Scholar
  87. Kawamura, R., Ikuta, H., Fukuzumi, S., Yamadaa, R., Tsubaki, S., Kodama, T., et al. (1941). Intoxication by manganese in well water. The Kitasato Archives Experimental Medicine, 18, 145–169.Google Scholar
  88. Keen, C. L., Ensunsa, J. L., & Clegg, M. S. (2000). Manganese metabolism in animals and humans including the toxicity of manganese. Metal Ions in Biological Systems, 37, 89–121.PubMedGoogle Scholar
  89. Keen, C. L., & Leach, R. M. (1987). In H. G. Seiler, H. Sigel, & A. Sigel (Eds.), Handbook on toxicity of inorganic compounds (pp. 405–415). New York: Marcel Dekker.Google Scholar
  90. Kessler, K. R., Wunderlich, G., Hefter, H., & Seitz, R. J. (2003). Secondary progressive chronic manganism associated with markedly decreased striatal D2 receptor density. Movement Disorders, 18, 217–219.PubMedGoogle Scholar
  91. Kim, Y. (2006). Neuroimaging in manganism. Neurotoxicology, 27, 369–372.PubMedGoogle Scholar
  92. Kim, Y., Kim, J. W., Ito, K., Lim, H. S., Cheong, H. K., Kim, J. Y., et al. (1999). Idiopathic parkinsonism with superimposed manganese exposure: Utility of positron emission tomography. Neurotoxicology, 20, 249–252.PubMedGoogle Scholar
  93. Kim, Y., Kim, J. M., Kim, J. W., Yoo, C. I., Lee, C. R., Lee, J. H., et al. (2002). Dopamine transporter density is decreased in parkinsonian patients with a history of manganese exposure: what does it mean? Movement Disorders, 17, 568–575.PubMedGoogle Scholar
  94. Kim, Y., Park, J. K., Choi, Y., Yoo, C. I., Lee, C. R., Lee, H., et al. (2005). Blood manganese concentration is elevated in iron deficiency anemia patients, whereas globus pallidus signal intensity is minimally affected. Neurotoxicology, 26, 107–111.PubMedGoogle Scholar
  95. Klos, K. J., Ahlskog, J. E., Kumar, N., Cambern, S., Butz, J., Burritt, M., et al. (2006). Brain metal concentrations in chronic liver failure patients with pallidal T1 MRI hyperintensity. Neurology, 67, 1984–1989.PubMedGoogle Scholar
  96. Koller, W. C., Lyons, K. E., & Truly, W. (2004). Effect of levodopa treatment for parkinsonism in welders: A double-blind study. Neurology, 62, 730–733.PubMedGoogle Scholar
  97. Komaki, H., Maisawa, S., Sugai, K., Kobayashi, Y., & Hashimoto, T. (1999). Tremor and seizures associated with chronic manganese intoxication. Brain and Development, 21, 122–124.PubMedGoogle Scholar
  98. Koos, T., & Tepper, J. M. (1999). Inhibitory control of neostriatal projection neurons by GABAergic interneurons. Nature Neuroscience, 2, 467–472.PubMedGoogle Scholar
  99. Kosai, M. F. & Boyle, A. J. (1956). Ethylenediaminetetraacetic acid in manganese poisoning of rats. Industrial Medicine and Surgery, 25(1), 1–3.Google Scholar
  100. Kowaltowski, A. J., Castilho, R. F., & Vercesi, A. E. (1995). Ca(2+)-induced mitochondrial membrane permeabilization: Role of coenzyme Q redox state. American Journal of Physiology, 269, 141–147.Google Scholar
  101. Krachler, M., & Rossipal, E. (2000). Concentrations of trace elements in extensively hydrolysed infant formulae and their estimated daily intakes. Annals of Nutrition and Metabolism, 44, 68–74.PubMedGoogle Scholar
  102. Krieger, D., Krieger, S., Jansen, O., Gass, P., Theilmann, L., & Lichtnecker, H. (1995). Manganese and chronic hepatic encephalopathy. Lancet, 346, 270–274.PubMedGoogle Scholar
  103. Kruman, I. I., & Mattson, M. P. (1999). Pivotal role of mitochondrial calcium uptake in neural cell apoptosis and necrosis. Journal of Neurochemistry, 72, 529–540.PubMedGoogle Scholar
  104. Ky, S. Q., Deng, H. S., Xie, P. Y., & Hu, W. (1992). A report of two cases of chronic serious manganese poisoning treated with sodium para-aminosalicylic acid. British Journal of Industrial Medicine, 49, 66–69.PubMedGoogle Scholar
  105. Lai, J. C., Lim, L., & Davison, A. N. (1982). Effects of Cd2+, Mn2+, and Al3+ on rat brain synaptosomal uptake of noradrenaline and serotonin. Journal of Inorganic Biochemistry, 17, 215–225.PubMedGoogle Scholar
  106. Lategan, A. J., Marien, M. R., & Colpaert, F. C. (1990). Effects of locus coeruleus lesions on the release of endogenous dopamine in the rat nucleus accumbens and caudate nucleus as determined by intracerebral microdialysis. Brain Research, 523, 134–138.PubMedGoogle Scholar
  107. Levin, O. S. (2005). “Ephedron” encephalopathy. Zhurnal nevrologii i psikhiatrii imeni S.S. Korsakova, 105, 12–20.PubMedGoogle Scholar
  108. Liang, Y., & Xiang, Q. (2004). Occupational health services in PR China. Toxicology, 198, 45–54.PubMedGoogle Scholar
  109. Liu, X., Buffington, J. A., & Tjalkens, R. B. (2005). NF-kappaB-dependent production of nitric oxide by astrocytes mediates apoptosis in differentiated PC12 neurons following exposure to manganese and cytokines. Brain Research. Molecular Brain Research, 141, 39–47.PubMedGoogle Scholar
  110. Liu, X., Sullivan, K. A., Madl, J. E., Legare, M., & Tjalkens, R. B. (2006). Manganese-induced neurotoxicity: The role of astroglial-derived nitric oxide in striatal interneuron degeneration. Toxicological Sciences, 91, 521–531.PubMedGoogle Scholar
  111. Lloyd, R. V. (1995). Mechanism of the manganese-catalyzed autoxidation of dopamine. Chemical Research in Toxicology, 8, 111–116.PubMedGoogle Scholar
  112. Lonnerdal, B. (1994). Nutritional aspects of soy formula. Acta Paediatrica. Supplement, 402, 105–108.PubMedGoogle Scholar
  113. Lu, C. S., Huang, C. C., Chu, N. S., & Calne, D. B. (1994). Levodopa failure in chronic manganism. Neurology, 44, 1600–1602.PubMedGoogle Scholar
  114. Marien, M. R., Colpaert, F. C., & Rosenquist, A. C. (2004). Noradrenergic mechanisms in neurodegenerative diseases: A theory. Brain Research. Brain Research Reviews, 45, 38–78.PubMedGoogle Scholar
  115. Martel, A. E., Smith, R. M., & Motekaitis, R. J. (1998). NIST critically selected stability constants of metal complexes. NIST standard references database. P. 46.Google Scholar
  116. Martinez-Hernandez, A., Bell, K. P., & Norenberg, M. D. (1977). Glutamine synthetase: Glial localization in brain. Science, 195, 1356–1358.PubMedGoogle Scholar
  117. Meral, H., Kutukcu, Y., Atmaca, B., Ozer, F., & Hamamcioglu, K. (2007). Parkinsonism caused by chronic usage of intravenous potassium permanganate. Neurologist, 13, 92–94.PubMedGoogle Scholar
  118. Meyer, J. S., & Quenzer, L. F. (2005). Psychopharmacology: Drugs, the brain, and behavior (pp. 132–137). Sunderland, MA: Sinauer Associates.Google Scholar
  119. Moreno, J. A., Sullivan, K. A., Carbone, D. L., Hanneman, W. H., & Tjalkens, R. B. (2008). Manganese potentiates nuclear factor-kappaB-dependent expression of nitric oxide synthase 2 in astrocytes by activating soluble guanylate cyclase and extracellular responsive kinase signaling pathways. Journal of Neuroscience Research, 86, 2028–2038.PubMedGoogle Scholar
  120. Nachtman, J. P., Delor, S., & Brennan, C. E. (1987). Manganese neurotoxicity: Effects of varying oxygen tension and EDTA on dopamine auto-oxidation. Neurotoxicology, 8, 249–253.PubMedGoogle Scholar
  121. Nelson, K., Golnick, J., Korn, T., & Angle, C. (1993). Manganese encephalopathy: Utility of early magnetic resonance imaging. British Journal of Industrial Medicine, 50, 510–513.PubMedGoogle Scholar
  122. Newland, M. C., Ceckler, T. L., Kordower, J. H., & Weiss, B. (1989). Visualizing manganese in the primate basal ganglia with magnetic resonance imaging. Experimental Neurology, 106, 251–258.PubMedGoogle Scholar
  123. Normandin, L., Ann Beaupre, L., Salehi, F., St-Pierre, A., Kennedy, G., Mergler, D., et al. (2004). Manganese distribution in the brain and neurobehavioral changes following inhalation exposure of rats to three chemical forms of manganese. Neurotoxicology, 25, 433–441.PubMedGoogle Scholar
  124. Ohtake, T., Negishi, K., Okamoto, K., Oka, M., Maesato, K., Moriya, H., et al. (2005). Manganese-induced Parkinsonism in a patient undergoing maintenance hemodialysis. American Journal of Kidney Diseases, 46, 749–753.PubMedGoogle Scholar
  125. Olanow, C. W. (2004). Manganese-induced parkinsonism and Parkinson’s disease. Annals of the New York Academy of Sciences, 1012, 209–223.PubMedGoogle Scholar
  126. Olanow, C. W., Good, P. F., Shinotoh, H., Hewitt, K. A., Vingerhoets, F., Snow, B. J., et al. (1996). Manganese intoxication in the rhesus monkey: A clinical, imaging, pathologic, and biochemical study. Neurology, 46, 492–498.PubMedGoogle Scholar
  127. Ono, K., Komai, K., & Yamada, M. (2002). Myoclonic involuntary movement associated with chronic manganese poisoning. Journal of the Neurological Sciences, 199, 93–96.PubMedGoogle Scholar
  128. Pal, P. K., Samii, A., & Calne, D. B. (1999). Manganese neurotoxicity: A review of clinical features, imaging and pathology. N eurotoxicology, 20, 227–238.Google Scholar
  129. Parenti, M., Rusconi, L., Cappabianca, V., Parati, E. A., & Groppetti, A. (1988). Role of dopamine in manganese neurotoxicity. Brain Research, 473, 236–240.PubMedGoogle Scholar
  130. Park, J. D., Chung, Y. H., Kim, C. Y., Ha, C. S., Yang, S. O., Khang, H. S., et al. (2007). Comparison of high MRI T1 signals with manganese concentration in brains of cynomolgus monkeys after 8 months of stainless steel welding-fume exposure. Inhalation Toxicology, 19, 965–971.PubMedGoogle Scholar
  131. Penalver, R. (1957). Diagnosis and treatment of manganese intoxication; report of a case. AMA Archives of Industrial Health, 16, 64–66.Google Scholar
  132. Pentschew, A., Ebner, F. F., & Kovatch, R. M. (1963). Experimental manganese encephalopathy in monkeys. A preliminary report. Journal of Neuropathology and Experimental Neurology, 22, 488–499.PubMedGoogle Scholar
  133. Perl, D. P., & Olanow, C. W. (2007). The neuropathology of manganese-induced Parkinsonism. Journal of Neuropathology and Experimental Neurology, 66, 675–682.PubMedGoogle Scholar
  134. Racette, B. A., McGee-Minnich, L., Moerlein, S. M., Mink, J. W., Videen, T. O., & Perlmutter, J. S. (2001). Welding-related parkinsonism: Clinical features, treatment, and pathophysiology. Neurology, 56, 8–13.PubMedGoogle Scholar
  135. Reardan, D. T., Meares, C. F., Goodwin, D. A., McTigue, M., David, G. S., Stone, M. R., et al. (1985). Antibodies against metal chelates. Nature, 316, 265–268.PubMedGoogle Scholar
  136. Ritter, J., & Marti-Feced, C. (1960). Trials and results of the treatment of patients with manganese poisoning and of the prevention of manganese poisoning by EDTA calcium or calcitetracemate disodium. Archives des maladies professionnelles, 21, 115–130.Google Scholar
  137. Rodier, J. (1955). Manganese poisoning in Moroccan miners. British Journal of Industrial Medicine, 12, 21–35.PubMedGoogle Scholar
  138. Rodier, J., Mallet, R., & Rodi, L. (1954). Detoxicating effects of ethylenediamine tetraacetate of calcium in experimental manganese poisoning. Archives des maladies professionnelles, 15, 210–223.Google Scholar
  139. Roels, H., Sarhan, M. J., Hanotiau, I., de Fays, M., Genet, P., Bernard, A., et al. (1985). Preclinical toxic effects of manganese in workers from a Mn salts and oxides producing plant. Science of the Total Environment, 42, 201–206.PubMedGoogle Scholar
  140. Rommelfanger, K. S., & Weinshenker, D. (2007). Norepinephrine: The redheaded stepchild of Parkinson’s disease. Biochemical Pharmacology, 74, 177–190.PubMedGoogle Scholar
  141. Rosenstock, H. A., Simons, D. G., & Meyer, J. S. (1971). Chronic manganism. Neurologic and laboratory studies during treatment with levodopa. JAMA, 217, 1354–1358.PubMedGoogle Scholar
  142. Roth, J. A., & Garrick, M. D. (2003). Iron interactions and other biological reactions mediating the physiological and toxic actions of manganese. Biochemical Pharmacology, 66, 1–13.PubMedGoogle Scholar
  143. Salazar, J., Mena, N., Hunot, S., Prigent, A., Alvarez-Fischer, D., Arredondo, M., et al. (2008). Divalent metal transporter 1 (DMT1) contributes to neurodegeneration in animal models of Parkinson’s disease. Proceedings of the National Academy of Sciences of the United States of America, 105, 18578–18583.PubMedGoogle Scholar
  144. Sánchez, D. J., Gómez, M., Domingo, J. L., Llobet, J. M., & Corbella, J. (1995). Relative efficacy of chelating agents on excretion and tissue distribution of manganese in mice. Journal of Applied Toxicology, 15, 285–288.PubMedGoogle Scholar
  145. Sanotsky, Y., Lesyk, R., Fedoryshyn, L., Komnatska, I., Matviyenko, Y., & Fahn, S. (2007). Manganic encephalopathy due to “ephedrone” abuse. Movement Disorders, 22, 1337–1343.PubMedGoogle Scholar
  146. Sata, F., Araki, S., Murata, K., & Aono, H. (1998). Behavior of heavy metals in human urine and blood following calcium disodium ethylenediamine tetraacetate injection: Observations in metal workers. Journal of Toxicology and Environmental Health. Part A, 54, 167–178.PubMedGoogle Scholar
  147. Scholten, J. M. (1953). On manganese encephalopathy; description of a case. Folia psychiatrica, neurologica et neurochirurgica Neerlandica, 56, 878–884.PubMedGoogle Scholar
  148. Selikhova, M., Fedoryshyn, L., Matviyenko, Y., Komnatska, I., Kyrylchuk, M., Krolicki, L., et al. (2008). Parkinsonism and dystonia caused by the illicit use of ephedrone—a longitudinal study. Movement Disorders, 23, 2224–2231.PubMedGoogle Scholar
  149. Sengupta, A., Mense, S. M., Lan, C., Zhou, M., Mauro, R. E., Kellerman, L., et al. (2007). Gene expression profiling of human primary astrocytes exposed to manganese chloride indicates selective effects on several functions of the cells. Neurotoxicology, 28, 478–489.PubMedGoogle Scholar
  150. Seth, P. K., & Chandra, S. V. (1984). Neurotransmitters and neurotransmitter receptors in developing and adult rats during manganese poisoning. Neurotoxicology, 5, 67–76.PubMedGoogle Scholar
  151. Seth, P. K., & Chandra, S. V. (1988). Neurotoxic effects of manganese. III Neuropathological changes in manganese intoxication. In S. C. Bondy & K. N. Prasad (Eds.), Metal neurotoxicity (pp. 22–23). Boca Raton, FL: CRC Press Inc.Google Scholar
  152. Shinotoh, H., Snow, B. J., Chu, N. S., Huang, C. C., Lu, C. S., Lee, C., et al. (1997). Presynaptic and postsynaptic striatal dopaminergic function in patients with manganese intoxication: A positron emission tomography study. Neurology, 48, 1053–1056.PubMedGoogle Scholar
  153. Shinotoh, H., Snow, B. J., Hewitt, K. A., Pate, B. D., Doudet, D., Nugent, R., et al. (1995). MRI and PET studies of manganese-intoxicated monkeys. Neurology, 45, 1199–1204.PubMedGoogle Scholar
  154. Shishova, E. Y., Di Costanzo, L., Emig, F. A., Ash, D. E., & Christianson, D. W. (2009). Probing the specificity determinants of amino acid recognition by arginase. Biochemistry, 48, 121–131.PubMedGoogle Scholar
  155. Sikk, K., Taba, P., Haldre, S., Bergquist, J., Nyholm, D., Zjablov, G., et al. (2007). Irreversible motor impairment in young addicts—ephedrone, manganism or both? Acta Neurologica Scandinavica, 115, 385–389.PubMedGoogle Scholar
  156. Singh, J., Husain, R., Tandon, S. K., Seth, P. K., & Chandra, S. V. (1974). Biochemical and histopathological alterations in early manganese toxicity in rats. Environmental Physiology and Biochemistry, 4, 16–23.Google Scholar
  157. Smith, A. D., & Bolam, J. P. (1990). The neural network of the basal ganglia as revealed by the study of synaptic connections of identified neurones. Trends in Neurosciences, 13, 259–265.PubMedGoogle Scholar
  158. Smith, D., Gwiazda, R., Bowler, R., Roels, H., Park, R., Taicher, C., et al. (2007). Biomarkers of Mn exposure in humans. American Journal of Industrial Medicine, 50, 801–811.PubMedGoogle Scholar
  159. Snyder, R. M., Mirabelli, C. K., & Crooke, S. T. (1986). Cellular association, intracellular distribution, and efflux of auranofin via sequential ligand exchange reactions. Biochemical Pharmacology, 35, 923–932.PubMedGoogle Scholar
  160. Sonnewald, U., Westergaard, N., Krane, J., Unsgård, G., Petersen, S. B., & Schousboe, A. (1991). First direct demonstration of preferential release of citrate from astrocytes using [13C]NMR spectroscopy of cultured neurons and astrocytes. Neuroscience Letters, 128, 235–239.PubMedGoogle Scholar
  161. Spranger, M., Schwab, S., Desiderato, S., Bonmann, E., Krieger, D., & Fandrey, J. (1998). Manganese augments nitric oxide synthesis in murine astrocytes: A new pathogenetic mechanism in manganism? Experimental Neurology, 149, 277–283.PubMedGoogle Scholar
  162. Struve, M. F., McManus, B. E., Wong, B. A., & Dorman, D. C. (2007). Basal ganglia neurotransmitter concentrations in rhesus monkeys following subchronic manganese sulfate inhalation. American Journal of Industrial Medicine, 50, 772–778.PubMedGoogle Scholar
  163. Takeda, A. (2003). Manganese action in brain function. Brain Research. Brain Research Reviews, 41, 79–87.PubMedGoogle Scholar
  164. Tandon, S. K., & Khandelwal, S. (1982). Chelation in metal intoxication. XII. Antidotal efficacy of chelating agents on acute toxicity of manganese. Archives of Toxicology, 50, 19–25.PubMedGoogle Scholar
  165. Tekkok, S. B., Brown, A. M., Westenbroek, R., Pellerin, L., & Ransom, B. R. (2005). Transfer of glycogen-derived lactate from astrocytes to axons via specific monocarboxylate transporters supports mouse optic nerve activity. Journal of Neuroscience Research, 81, 644–652.PubMedGoogle Scholar
  166. Tjalkens, R. B., Liu, X., Mohl, B., Wright, T., Moreno, J. A., Carbone, D. L., et al. (2008). The peroxisome proliferator-activated receptor-gamma agonist 1, 1-bis(3′-indolyl)-1-(p-trifluoromethylphenyl)methane suppresses manganese-induced production of nitric oxide in astrocytes and inhibits apoptosis in cocultured PC12 cells. Journal of Neuroscience Research, 86, 618–629.PubMedGoogle Scholar
  167. Tjalkens, R. B., Zoran, M. J., Mohl, B., & Barhoumi, R. (2006). Manganese suppresses ATP-dependent intercellular calcium waves in astrocyte networks through alteration of mitochondrial and endoplasmic reticulum calcium dynamics. Brain Research, 1113, 210–219.PubMedGoogle Scholar
  168. Troadec, J. D., Marien, M., Darios, F., Hartmann, A., Ruberg, M., Colpaert, F., et al. (2001). Noradrenaline provides long-term protection to dopaminergic neurons by reducing oxidative stress. Journal of Neurochemistry, 79, 200–210.PubMedGoogle Scholar
  169. Tuschl, K., Mills, P. B., Parsons, H., Malone, M., Fowler, D., Bitner-Glindzicz, M., et al. (2008). Hepatic cirrhosis, dystonia, polycythaemia and hypermanganesaemia—a new metabolic disorder. Journal of Inherited Metabolic Disease, 31, 151–163.Google Scholar
  170. von Jaksch, R. (1907). Uber mangantoxikosen und manganophobie. Münchener medizinische Wochenschrift, 20, 969–972.Google Scholar
  171. Voss, H. (1939). Progressive bulbarparalyse und amyotrophische lateralsklerose nach chronischer manganvergiftung. Archives of Bewerbepath Bewerbehyg, 9, 464–476.Google Scholar
  172. Walsh, M. P. (2007). The global experience with lead in gasoline and the lessons we should apply to the use of MMT. American Journal of Industrial Medicine, 50, 853–860.PubMedGoogle Scholar
  173. Wang, X. (2003). Analysis of health conditions of 1160 welders. Occupation and Health. 19.Google Scholar
  174. Wang, D., Zhou, W., & Wang, S. (2001). Hazard of manganese exposure to the welders. Chinese Journal of Industrial Medicine, 14, 114–115.Google Scholar
  175. Wasserman, G. A., Liu, X., Parvez, F., et al. (2006). Water manganese exposure and children’s intellectual function in Araihazar, Bangladesh. Environmental Health Perspectives, 114, 124–129.PubMedGoogle Scholar
  176. Wedler, F. C., Ley, B. W., & Grippo, A. A. (1989). Manganese(II) dynamics and distribution in glial cells cultured from chick cerebral cortex. Neurochemical Research, 14, 1129–1135.PubMedGoogle Scholar
  177. Woolf, A., Wright, R., Amarasiriwardena, C., & Bellinger, D. (2002). A child with chronic manganese exposure from drinking water. Environmental Health Perspectives, 110, 613–616.PubMedGoogle Scholar
  178. Wynter, J. E. (1962). The prevention of manganese poisoning. Industrial Medicine and Surgery, 31, 308–310.PubMedGoogle Scholar
  179. Xu, B., Xu, Z. F., & Deng, Y. (2009). Protective effects of MK-801 on manganese-induced glutamate metabolism disorder in rat striatum. Experimental and Toxicologic Pathology [Epub ahead of print]. PMID: 19540097.Google Scholar
  180. Yamada, M., Ohno, S., Okayasu, I., Okeda, R., Hatakeyama, S., Watanabe, H., et al. (1986). Chronic manganese poisoning: A neuropathological study with determination of manganese distribution in the brain. Acta Neuropathologica, 70, 273–278.PubMedGoogle Scholar
  181. Zecca, L., Stroppolo, A., Gatti, A., Tampellini, D., Toscani, M., Gallorini, M., et al. (2004). The role of iron and copper molecules in the neuronal vulnerability of locus coeruleus and substantia nigra during aging. Proceedings of the National Academy of Sciences of the United States of America, 101, 9843–9848.PubMedGoogle Scholar
  182. Zhang, S., Zhou, Z., & Fu, J. (2003). Effect of manganese chloride exposure on liver and brain mitochondria function in rats. Environmental Research, 93, 149–157.PubMedGoogle Scholar
  183. Zheng, W., Ren, S., & Graziano, J. H. (1998). Manganese inhibits mitochondrial aconitase: A mechanism of manganese neurotoxicity. Brain Research, 799, 334–342.PubMedGoogle Scholar
  184. Zwingmann, C., Leibfritz, D., & Hazell, A. S. (2003). Energy metabolism in astrocytes and neurons treated with manganese: Relation among cell-specific energy failure, glucose metabolism, and intercellular trafficking using multinuclear NMR-spectroscopic analysis. Journal of Cerebral Blood Flow and Metabolism, 23, 756–771.PubMedGoogle Scholar
  185. Zwingmann, C., Leibfritz, D., & Hazell, A. S. (2004). Brain energy metabolism in a sub-acute rat model of manganese neurotoxicity: An ex vivo nuclear magnetic resonance study using [1–13C]glucose. Neurotoxicology, 25, 573–587.PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2009

Authors and Affiliations

  • Michael Aschner
    • 1
  • Keith M. Erikson
    • 2
  • Elena Herrero Hernández
    • 3
  • Ronald Tjalkens
    • 4
  1. 1.Departments of Pediatrics and Pharmacology and the Kennedy Center for Research on Human DevelopmentVanderbilt University Medical CenterNashvilleUSA
  2. 2.Department of NutritionUniversity of North Carolina at GreensboroGreensboroUSA
  3. 3.Center for Research on Occupational and Environmental ToxicologyOregon Health and Science UniversityPortlandUSA
  4. 4.Environmental and Radiological Health SciencesColorado State UniversityFort CollinsUSA

Personalised recommendations