NeuroMolecular Medicine

, Volume 11, Issue 4, pp 239–251 | Cite as

Interaction Between α-Synuclein and Metal Ions, Still Looking for a Role in the Pathogenesis of Parkinson’s Disease

  • Marco Bisaglia
  • Isabella Tessari
  • Stefano Mammi
  • Luigi Bubacco
Original Paper

Abstract

The most recent literature on the interaction between α-synuclein in its several aggregation states and metal ions is discussed. This analysis shows two major types of interactions. Binding sites are present in the C-terminal region, and similar, low affinity (in the millimolar range) is exhibited toward many different metal ions, including copper and iron. A more complex scenario emerges for these latter metal ions, which are also able to coordinate with high affinity (in the micromolar range) to the N-terminal region of α-synuclein. Moreover, these redox-active metal ions may induce chemical modifications on the protein in vitro and in the reducing intracellular environment, and these modifications might be relevant for the aggregation properties of α-synuclein. Finally, an attempt is made to contextualize the interaction between α-synuclein and these metal ions in the framework of the elusive and multifactorial pathogenesis of Parkinson’s disease.

Keywords

Alpha-synuclein Copper Fibrils Metals Neurodegeneration 

References

  1. Abeliovich, A., Schmitz, Y., Farinas, I., Choi-Lundberg, D., Ho, W. H., Castillo, P. E., et al. (2000). Mice lacking alpha-synuclein display functional deficits in the nigrostriatal dopamine system. Neuron, 25, 239–252.CrossRefPubMedGoogle Scholar
  2. Berg, D., Youdim, M. B., & Riederer, P. (2004). Redox imbalance. Cell and Tissue Research, 318, 201–213.CrossRefPubMedGoogle Scholar
  3. Bertoncini, C. W., Jung, Y. S., Fernandez, C. O., Hoyer, W., Griesinger, C., Jovin, T. M., et al. (2005). Release of long-range tertiary interactions potentiates aggregation of natively unstructured alpha-synuclein. Proceedings of the National Academy of Sciences of the United States of America, 102, 1430–1435.CrossRefPubMedGoogle Scholar
  4. Bharathi, & Rao, K. S. (2007). Thermodynamics imprinting reveals differential binding of metals to alpha-synuclein: relevance to Parkinson’s disease. Biochemical and Biophysical Research Communications, 359, 115–120.Google Scholar
  5. Binolfi, A., Lamberto, G. R., Duran, R., Quintanar, L., Bertoncini, C. W., Souza, J. M., et al. (2008). Site-specific interactions of Cu(II) with alpha and beta-synuclein: Bridging the molecular gap between metal binding and aggregation. Journal of the American Chemical Society, 130, 11801–11812.CrossRefPubMedGoogle Scholar
  6. Binolfi, A., Rasia, R. M., Bertoncini, C. W., Ceolin, M., Zweckstetter, M., Griesinger, C., et al. (2006). Interaction of alpha-synuclein with divalent metal ions reveals key differences: A link between structure, binding specificity and fibrillation enhancement. Journal of the American Chemical Society, 128, 9893–9901.CrossRefPubMedGoogle Scholar
  7. Bisaglia, M., Mammi, S., & Bubacco, L. (2008). Structural insights on physiological functions and pathological effects of {alpha}-synuclein. FASEB Journal, 23, 329–340.CrossRefPubMedGoogle Scholar
  8. Bisaglia, M., Schievano, E., Caporale, A., Peggion, E., & Mammi, S. (2006). The 11-mer repeats of human alpha-synuclein in vesicle interactions and lipid composition discrimination: A cooperative role. Biopolymers, 84, 310–316.CrossRefPubMedGoogle Scholar
  9. Bisaglia, M., Tessari, I., Pinato, L., Bellanda, M., Giraudo, S., Fasano, M., et al. (2005). A topological model of the interaction between alpha-synuclein and sodium dodecyl sulfate micelles. Biochemistry, 44, 329–339.CrossRefPubMedGoogle Scholar
  10. Bodles, A. M., Guthrie, D. J., Greer, B., & Irvine, G. B. (2001). Identification of the region of non-Abeta component (NAC) of Alzheimer’s disease amyloid responsible for its aggregation and toxicity. Journal of Neurochemistry, 78, 384–395.CrossRefPubMedGoogle Scholar
  11. Bortolus, M., Tombolato, F., Tessari, I., Bisaglia, M., Mammi, S., Bubacco, L., et al. (2008). Broken helix in vesicle and micelle-bound alpha-synuclein: Insights from site-directed spin labeling-EPR experiments and MD simulations. Journal of the American Chemical Society, 130, 6690–6691.CrossRefPubMedGoogle Scholar
  12. Brown, D. R., Qin, K., Herms, J. W., Madlung, A., Manson, J., Strome, R., et al. (1997). The cellular prion protein binds copper in vivo. Nature, 390, 684–687.CrossRefPubMedGoogle Scholar
  13. Cabin, D. E., Shimazu, K., Murphy, D., Cole, N. B., Gottschalk, W., McIlwain, K. L., et al. (2002). Synaptic vesicle depletion correlates with attenuated synaptic responses to prolonged repetitive stimulation in mice lacking alpha-synuclein. Journal of Neuroscience, 22, 8797–8807.PubMedGoogle Scholar
  14. Chartier-Harlin, M. C., Kachergus, J., Roumier, C., Mouroux, V., Douay, X., Lincoln, S., et al. (2004). Alpha-synuclein locus duplication as a cause of familial Parkinson’s disease. Lancet, 364, 1167–1169.CrossRefPubMedGoogle Scholar
  15. Chen, M., Margittai, M., Chen, J., & Langen, R. (2007). Investigation of alpha-synuclein fibril structure by site-directed spin labeling. Journal of Biological Chemistry, 282, 24970–24979.CrossRefPubMedGoogle Scholar
  16. Chinta, S. J., & Andersen, J. K. (2008). Redox imbalance in Parkinson’s disease. Biochimica et Biophysica Acta, 1780, 1362–1367.PubMedGoogle Scholar
  17. Cole, N. B., Murphy, D. D., Lebowitz, J., Di Noto, L., Levine, R. L., & Nussbaum, R. L. (2005). Metal-catalyzed oxidation of alpha-synuclein: Helping to define the relationship between oligomers, protofibrils, and filaments. Journal of Biological Chemistry, 280, 9678–9690.CrossRefPubMedGoogle Scholar
  18. Conway, K. A., Lee, S. J., Rochet, J. C., Ding, T. T., Williamson, R. E., & Lansbury, P. T., Jr. (2000). Acceleration of oligomerization, not fibrillization, is a shared property of both alpha-synuclein mutations linked to early-onset Parkinson’s disease: Implications for pathogenesis and therapy. Proceedings of the National Academy of Sciences of the United States of America, 97, 571–576.CrossRefPubMedGoogle Scholar
  19. Cookson, M. R. (2009). Alpha-synuclein and neuronal cell death. Molecular Neurodegeneration, 4, 9.CrossRefPubMedGoogle Scholar
  20. Davidson, W. S., Jonas, A., Clayton, D. F., & George, J. M. (1998). Stabilization of alpha-synuclein secondary structure upon binding to synthetic membranes. Journal of Biological Chemistry, 273, 9443–9449.CrossRefPubMedGoogle Scholar
  21. Dedmon, M. M., Lindorff-Larsen, K., Christodoulou, J., Vendruscolo, M., & Dobson, C. M. (2005). Mapping long-range interactions in alpha-synuclein using spin-label NMR and ensemble molecular dynamics simulations. Journal of the American Chemical Society, 127, 476–477.CrossRefPubMedGoogle Scholar
  22. Der-Sarkissian, A., Jao, C. C., Chen, J., & Langen, R. (2003). Structural organization of alpha-synuclein fibrils studied by site-directed spin labeling. Journal of Biological Chemistry, 278, 37530–37535.CrossRefPubMedGoogle Scholar
  23. Dexter, D. T., Carayon, A., Javoy-Agid, F., Agid, Y., Wells, F. R., Daniel, S. E., et al. (1991). Alterations in the levels of iron, ferritin and other trace metals in Parkinson’s disease and other neurodegenerative diseases affecting the basal ganglia. Brain, 114(Pt 4), 1953–1975.CrossRefPubMedGoogle Scholar
  24. Dexter, D. T., Wells, F. R., Lees, A. J., Agid, F., Agid, Y., Jenner, P., et al. (1989). Increased nigral iron content and alterations in other metal ions occurring in brain in Parkinson’s disease. Journal of Neurochemistry, 52, 1830–1836.CrossRefPubMedGoogle Scholar
  25. Ding, T. T., Lee, S. J., Rochet, J. C., & Lansbury, P. T., Jr. (2002). Annular alpha-synuclein protofibrils are produced when spherical protofibrils are incubated in solution or bound to brain-derived membranes. Biochemistry, 41, 10209–10217.CrossRefPubMedGoogle Scholar
  26. Dorsey, E. R., Constantinescu, R., Thompson, J. P., Biglan, K. M., Holloway, R. G., Kieburtz, K., et al. (2007). Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030. Neurology, 68, 384–386.CrossRefPubMedGoogle Scholar
  27. Drew, S. C., Leong, S. L., Pham, C. L., Tew, D. J., Masters, C. L., Miles, L. A., et al. (2008). Cu2+ binding modes of recombinant alpha-synuclein—insights from EPR spectroscopy. Journal of the American Chemical Society, 130, 7766–7773.CrossRefPubMedGoogle Scholar
  28. Eliezer, D., Kutluay, E., Bussell, R., Jr., & Browne, G. (2001). Conformational properties of alpha-synuclein in its free and lipid-associated states. Journal of Molecular Biology, 307, 1061–1073.CrossRefPubMedGoogle Scholar
  29. Fink, A. L. (2006). The aggregation and fibrillation of alpha-synuclein. Accounts of Chemical Research, 39, 628–634.CrossRefPubMedGoogle Scholar
  30. Fountaine, T. M., & Wade-Martins, R. (2007). RNA interference-mediated knockdown of alpha-synuclein protects human dopaminergic neuroblastoma cells from MPP(+) toxicity and reduces dopamine transport. Journal of Neuroscience Research, 85, 351–363.CrossRefPubMedGoogle Scholar
  31. Friedlich, A. L., Tanzi, R. E., & Rogers, J. T. (2007). The 5′-untranslated region of Parkinson’s disease alpha-synuclein messenger RNA contains a predicted iron responsive element. Molecular Psychiatry, 12, 222–223.CrossRefPubMedGoogle Scholar
  32. Fujiwara, H., Hasegawa, M., Dohmae, N., Kawashima, A., Masliah, E., Goldberg, M. S., et al. (2002). Alpha-synuclein is phosphorylated in synucleinopathy lesions. Nature Cell Biology, 4, 160–164.CrossRefPubMedGoogle Scholar
  33. Giasson, B. I., Duda, J. E., Murray, I. V., Chen, Q., Souza, J. M., Hurtig, H. I., et al. (2000). Oxidative damage linked to neurodegeneration by selective alpha-synuclein nitration in synucleinopathy lesions. Science, 290, 985–989.CrossRefPubMedGoogle Scholar
  34. Giasson, B. I., Murray, I. V., Trojanowski, J. Q., & Lee, V. M. (2001). A hydrophobic stretch of 12 amino acid residues in the middle of alpha-synuclein is essential for filament assembly. Journal of Biological Chemistry, 276, 2380–2386.CrossRefPubMedGoogle Scholar
  35. Glinka, Y., Tipton, K. F., & Youdim, M. B. (1996). Nature of inhibition of mitochondrial respiratory complex I by 6-Hydroxydopamine. Journal of Neurochemistry, 66, 2004–2010.PubMedCrossRefGoogle Scholar
  36. Golts, N., Snyder, H., Frasier, M., Theisler, C., Choi, P., & Wolozin, B. (2002). Magnesium inhibits spontaneous and iron-induced aggregation of alpha-synuclein. Journal of Biological Chemistry, 277, 16116–16123.CrossRefPubMedGoogle Scholar
  37. Heise, H., Hoyer, W., Becker, S., Andronesi, O. C., Riedel, D., & Baldus, M. (2005). Molecular-level secondary structure, polymorphism, and dynamics of full-length alpha-synuclein fibrils studied by solid-state NMR. Proceedings of the National Academy of Sciences of the United States of America, 102, 15871–15876.CrossRefPubMedGoogle Scholar
  38. Hong, L., & Simon, J. D. (2009). Binding of Cu(II) to human alpha-synucleins: Comparison of wild type and the point mutations associated with the familial Parkinson’s disease. Journal of Physical Chemistry B, 113, 9551–9561.CrossRefGoogle Scholar
  39. Hughes, A. J., Daniel, S. E., Ben-Shlomo, Y., & Lees, A. J. (2002). The accuracy of diagnosis of parkinsonian syndromes in a specialist movement disorder service. Brain, 125, 861–870.CrossRefPubMedGoogle Scholar
  40. Inglis, K. J., Chereau, D., Brigham, E. F., Chiou, S. S., Schobel, S., Frigon, N. L., et al. (2009). Polo-like kinase 2 (PLK2) phosphorylates alpha-synuclein at serine 129 in central nervous system. Journal of Biological Chemistry, 284, 2598–2602.CrossRefPubMedGoogle Scholar
  41. Iwai, A., Masliah, E., Yoshimoto, M., Ge, N., Flanagan, L., de Silva, H. A., et al. (1995). The precursor protein of non-A beta component of Alzheimer’s disease amyloid is a presynaptic protein of the central nervous system. Neuron, 14, 467–475.CrossRefPubMedGoogle Scholar
  42. Kostka, M., Hogen, T., Danzer, K. M., Levin, J., Habeck, M., Wirth, A., et al. (2008). Single particle characterization of iron-induced pore-forming alpha-synuclein oligomers. Journal of Biological Chemistry, 283, 10992–11003.CrossRefPubMedGoogle Scholar
  43. Kowalik-Jankowska, T., Rajewska, A., Jankowska, E., & Grzonka, Z. (2006a). Copper(II) binding by fragments of alpha-synuclein containing M1-D2- and -H50-residues: A combined potentiometric and spectroscopic study. Dalton Transactions, 5068–5076.Google Scholar
  44. Kowalik-Jankowska, T., Rajewska, A., Jankowska, E., Wisniewska, K., & Grzonka, Z. (2006b). Products of Cu(II)-catalyzed oxidation of the N-terminal fragments of alpha-synuclein in the presence of hydrogen peroxide. Journal of Inorganic Biochemistry, 100, 1623–1631.CrossRefPubMedGoogle Scholar
  45. Krantz, D. E., Peter, D., Liu, Y., & Edwards, R. H. (1997). Phosphorylation of a vesicular monoamine transporter by casein kinase II. Journal of Biological Chemistry, 272, 6752–6759.CrossRefPubMedGoogle Scholar
  46. Kruger, R., Kuhn, W., Muller, T., Woitalla, D., Graeber, M., Kosel, S., et al. (1998). Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson’s disease. Nature Genetics, 18, 106–108.CrossRefPubMedGoogle Scholar
  47. Lai, B. C., Marion, S. A., Teschke, K., & Tsui, J. K. (2002). Occupational and environmental risk factors for Parkinson’s disease. Parkinsonism & Related Disorders, 8, 297–309.CrossRefGoogle Scholar
  48. Larsen, K. E., Schmitz, Y., Troyer, M. D., Mosharov, E., Dietrich, P., Quazi, A. Z., et al. (2006). Alpha-synuclein overexpression in PC12 and chromaffin cells impairs catecholamine release by interfering with a late step in exocytosis. Journal of Neuroscience, 26, 11915–11922.CrossRefPubMedGoogle Scholar
  49. Lashuel, H. A., Hartley, D., Petre, B. M., Walz, T., & Lansbury, P. T., Jr. (2002). Neurodegenerative disease: Amyloid pores from pathogenic mutations. Nature, 418, 291.CrossRefPubMedGoogle Scholar
  50. Lee, J. C., Gray, H. B., & Winkler, J. R. (2008). Copper(II) binding to alpha-synuclein, the Parkinson’s protein. Journal of the American Chemical Society, 130, 6898–6899.CrossRefPubMedGoogle Scholar
  51. Lee, E. N., Lee, S. Y., Lee, D., Kim, J., & Paik, S. R. (2003). Lipid interaction of alpha-synuclein during the metal-catalyzed oxidation in the presence of Cu2+ and H2O2. Journal of Neurochemistry, 84, 1128–1142.CrossRefPubMedGoogle Scholar
  52. Lee, F. J., Liu, F., Pristupa, Z. B., & Niznik, H. B. (2001). Direct binding and functional coupling of alpha-synuclein to the dopamine transporters accelerate dopamine-induced apoptosis. FASEB Journal, 15, 916–926.CrossRefPubMedGoogle Scholar
  53. Lesage, S., & Brice, A. (2009). Parkinson’s disease: from monogenic forms to genetic susceptibility factors. Human Molecular Genetics, 18, R48–R59.CrossRefPubMedGoogle Scholar
  54. Li, W., West, N., Colla, E., Pletnikova, O., Troncoso, J. C., Marsh, L., et al. (2005). Aggregation promoting C-terminal truncation of alpha-synuclein is a normal cellular process and is enhanced by the familial Parkinson’s disease-linked mutations. Proceedings of the National Academy of Sciences of the United States of America, 102, 2162–2167.CrossRefPubMedGoogle Scholar
  55. Liu, L. L., & Franz, K. J. (2007). Phosphorylation-dependent metal binding by alpha-synuclein peptide fragments. JBIC Journal of Biological Inorganic Chemistry, 12, 234–247.CrossRefGoogle Scholar
  56. Lotharius, J., Barg, S., Wiekop, P., Lundberg, C., Raymon, H. K., & Brundin, P. (2002). Effect of mutant alpha-synuclein on dopamine homeostasis in a new human mesencephalic cell line. Journal of Biological Chemistry, 277, 38884–38894.CrossRefPubMedGoogle Scholar
  57. Murphy, D. D., Rueter, S. M., Trojanowski, J. Q., & Lee, V. M. (2000). Synucleins are developmentally expressed, and alpha-synuclein regulates the size of the presynaptic vesicular pool in primary hippocampal neurons. Journal of Neuroscience, 20, 3214–3220.PubMedGoogle Scholar
  58. Murray, I. V., Giasson, B. I., Quinn, S. M., Koppaka, V., Axelsen, P. H., Ischiropoulos, H., et al. (2003). Role of alpha-synuclein carboxy-terminus on fibril formation in vitro. Biochemistry, 42, 8530–8540.CrossRefPubMedGoogle Scholar
  59. Nakajo, S., Shioda, S., Nakai, Y., & Nakaya, K. (1994). Localization of phosphoneuroprotein 14 (PNP 14) and its mRNA expression in rat brain determined by immunocytochemistry and in situ hybridization. Brain Research. Molecular Brain Research, 27, 81–86.CrossRefPubMedGoogle Scholar
  60. Paik, S. R., Shin, H. J., & Lee, J. H. (2000). Metal-catalyzed oxidation of alpha-synuclein in the presence of Copper(II) and hydrogen peroxide. Archives of Biochemistry and Biophysics, 378, 269–277.CrossRefPubMedGoogle Scholar
  61. Paik, S. R., Shin, H. J., Lee, J. H., Chang, C. S., & Kim, J. (1999). Copper(II)-induced self-oligomerization of alpha-synuclein. Biochemical Journal, 340(Pt 3), 821–828.CrossRefPubMedGoogle Scholar
  62. Pall, H. S., Williams, A. C., Blake, D. R., Lunec, J., Gutteridge, J. M., Hall, M., et al. (1987). Raised cerebrospinal-fluid copper concentration in Parkinson’s disease. Lancet, 2, 238–241.CrossRefPubMedGoogle Scholar
  63. Peng, J., Peng, L., Stevenson, F. F., Doctrow, S. R., & Andersen, J. K. (2007). Iron and paraquat as synergistic environmental risk factors in sporadic Parkinson’s disease accelerate age-related neurodegeneration. Journal of Neuroscience, 27, 6914–6922.CrossRefPubMedGoogle Scholar
  64. Perez, R. G., Waymire, J. C., Lin, E., Liu, J. J., Guo, F., & Zigmond, M. J. (2002). A role for alpha-synuclein in the regulation of dopamine biosynthesis. Journal of Neuroscience, 22, 3090–3099.PubMedGoogle Scholar
  65. Polymeropoulos, M. H., Lavedan, C., Leroy, E., Ide, S. E., Dehejia, A., Dutra, A., et al. (1997). Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science, 276, 2045–2047.CrossRefPubMedGoogle Scholar
  66. Ponka, P., Beaumont, C., & Richardson, D. R. (1998). Function and regulation of transferrin and ferritin. Seminars in Hematology, 35, 35–54.PubMedGoogle Scholar
  67. Pronin, A. N., Morris, A. J., Surguchov, A., & Benovic, J. L. (2000). Synucleins are a novel class of substrates for G protein-coupled receptor kinases. Journal of Biological Chemistry, 275, 26515–26522.CrossRefPubMedGoogle Scholar
  68. Rasia, R. M., Bertoncini, C. W., Marsh, D., Hoyer, W., Cherny, D., Zweckstetter, M., et al. (2005). Structural characterization of copper(II) binding to alpha-synuclein: Insights into the bioinorganic chemistry of Parkinson’s disease. Proceedings of the National Academy of Sciences of the United States of America, 102, 4294–4299.CrossRefPubMedGoogle Scholar
  69. Riederer, P., Sofic, E., Rausch, W. D., Schmidt, B., Reynolds, G. P., Jellinger, K., et al. (1989). Transition metals, ferritin, glutathione, and ascorbic acid in parkinsonian brains. Journal of Neurochemistry, 52, 515–520.CrossRefPubMedGoogle Scholar
  70. Rochet, J. C., Conway, K. A., & Lansbury, P. T., Jr. (2000). Inhibition of fibrillization and accumulation of prefibrillar oligomers in mixtures of human and mouse alpha-synuclein. Biochemistry, 39, 10619–10626.CrossRefPubMedGoogle Scholar
  71. Ross, C. A., & Poirier, M. A. (2005). Opinion: What is the role of protein aggregation in neurodegeneration? Nature Reviews. Molecular Cell Biology, 6, 891–898.CrossRefPubMedGoogle Scholar
  72. Sandal, M., Valle, F., Tessari, I., Mammi, S., Bergantino, E., Musiani, F., et al. (2008). Conformational equilibria in monomeric alpha-synuclein at the single-molecule level. PLoS Biology, 6, e6.CrossRefPubMedGoogle Scholar
  73. Segrest, J. P., Jones, M. K., De Loof, H., Brouillette, C. G., Venkatachalapathi, Y. V., & Anantharamaiah, G. M. (1992). The amphipathic helix in the exchangeable apolipoproteins: A review of secondary structure and function. Journal of Lipid Research, 33, 141–166.PubMedGoogle Scholar
  74. Serpell, L. C., Berriman, J., Jakes, R., Goedert, M., & Crowther, R. A. (2000). Fiber diffraction of synthetic alpha-synuclein filaments shows amyloid-like cross-beta conformation. Proceedings of the National Academy of Sciences of the United States of America, 97, 4897–4902.CrossRefPubMedGoogle Scholar
  75. Shults, C. W. (2006). Lewy bodies. Proceedings of the National Academy of Sciences of the United States of America, 103, 1661–1668.CrossRefPubMedGoogle Scholar
  76. Singleton, A. B., Farrer, M., Johnson, J., Singleton, A., Hague, S., Kachergus, J., et al. (2003). Alpha-synuclein locus triplication causes Parkinson’s disease. Science, 302, 841.CrossRefPubMedGoogle Scholar
  77. Souza, J. M., Giasson, B. I., Chen, Q., Lee, V. M., & Ischiropoulos, H. (2000). Dityrosine cross-linking promotes formation of stable alpha-synuclein polymers. Implication of nitrative and oxidative stress in the pathogenesis of neurodegenerative synucleinopathies. Journal of Biological Chemistry, 275, 18344–18349.CrossRefPubMedGoogle Scholar
  78. Spillantini, M. G., Schmidt, M. L., Lee, V. M., Trojanowski, J. Q., Jakes, R., & Goedert, M. (1997). Alpha-synuclein in Lewy bodies. Nature, 388, 839–840.CrossRefPubMedGoogle Scholar
  79. Stokes, A. H., Hastings, T. G., & Vrana, K. E. (1999). Cytotoxic and genotoxic potential of dopamine. Journal of Neuroscience Research, 55, 659–665.CrossRefPubMedGoogle Scholar
  80. Sung, Y. H., Rospigliosi, C., & Eliezer, D. (2006). NMR mapping of copper binding sites in alpha-synuclein. Biochimica et Biophysica Acta, 1764, 5–12.PubMedGoogle Scholar
  81. Tehranian, R., Montoya, S. E., Van Laar, A. D., Hastings, T. G., & Perez, R. G. (2006). Alpha-synuclein inhibits aromatic amino acid decarboxylase activity in dopaminergic cells. Journal of Neurochemistry, 99, 1188–1196.CrossRefPubMedGoogle Scholar
  82. Ulmer, T. S., Bax, A., Cole, N. B., & Nussbaum, R. L. (2005). Structure and dynamics of micelle-bound human alpha-synuclein. Journal of Biological Chemistry, 280, 9595–9603.CrossRefPubMedGoogle Scholar
  83. Uversky, V. N. (2003). A protein-chameleon: Conformational plasticity of alpha-synuclein, a disordered protein involved in neurodegenerative disorders. Journal of Biomolecular Structure and Dynamics, 21, 211–234.PubMedGoogle Scholar
  84. Uversky, V. N., Li, J., & Fink, A. L. (2001a). Evidence for a partially folded intermediate in alpha-synuclein fibril formation. Journal of Biological Chemistry, 276, 10737–10744.CrossRefPubMedGoogle Scholar
  85. Uversky, V. N., Li, J., & Fink, A. L. (2001b). Metal-triggered structural transformations, aggregation, and fibrillation of human alpha-synuclein. A possible molecular NK between Parkinson’s disease and heavy metal exposure. Journal of Biological Chemistry, 276, 44284–44296.CrossRefPubMedGoogle Scholar
  86. Uversky, V. N., Yamin, G., Munishkina, L. A., Karymov, M. A., Millett, I. S., Doniach, S., et al. (2005). Effects of nitration on the structure and aggregation of alpha-synuclein. Brain Research. Molecular Brain Research, 134, 84–102.CrossRefPubMedGoogle Scholar
  87. Uversky, V. N., Yamin, G., Souillac, P. O., Goers, J., Glaser, C. B., & Fink, A. L. (2002). Methionine oxidation inhibits fibrillation of human alpha-synuclein in vitro. FEBS Letters, 517, 239–244.CrossRefPubMedGoogle Scholar
  88. Vilar, M., Chou, H. T., Luhrs, T., Maji, S. K., Riek-Loher, D., Verel, R., et al. (2008). The fold of alpha-synuclein fibrils. Proceedings of the National Academy of Sciences of the United States of America, 105, 8637–8642.CrossRefPubMedGoogle Scholar
  89. Volles, M. J., & Lansbury, P. T., Jr. (2002). Vesicle permeabilization by protofibrillar alpha-synuclein is sensitive to Parkinson’s disease-linked mutations and occurs by a pore-like mechanism. Biochemistry, 41, 4595–4602.CrossRefPubMedGoogle Scholar
  90. Weinreb, P. H., Zhen, W., Poon, A. W., Conway, K. A., & Lansbury, P. T., Jr. (1996). NACP, a protein implicated in Alzheimer’s disease and learning, is natively unfolded. Biochemistry, 35, 13709–13715.CrossRefPubMedGoogle Scholar
  91. Wersinger, C., Prou, D., Vernier, P., & Sidhu, A. (2003). Modulation of dopamine transporter function by alpha-synuclein is altered by impairment of cell adhesion and by induction of oxidative stress. FASEB Journal, 17, 2151–2153.PubMedGoogle Scholar
  92. Wright, J. A., Wang, X., & Brown, D. R. (2009). Unique copper-induced oligomers mediate alpha-synuclein toxicity. FASEB Journal, 23, 4069–4076.CrossRefGoogle Scholar
  93. Yamin, G., Glaser, C. B., Uversky, V. N., & Fink, A. L. (2003). Certain metals trigger fibrillation of methionine-oxidized alpha-synuclein. Journal of Biological Chemistry, 278, 27630–27635.CrossRefPubMedGoogle Scholar
  94. Yavich, L., Tanila, H., Vepsalainen, S., & Jakala, P. (2004). Role of alpha-synuclein in presynaptic dopamine recruitment. Journal of Neuroscience, 24, 11165–11170.CrossRefPubMedGoogle Scholar
  95. Youdim, M. B., Ben-Shachar, D., & Riederer, P. (1991). Iron in brain function and dysfunction with emphasis on Parkinson’s disease. European Neurology, 31(Suppl 1), 34–40.CrossRefPubMedGoogle Scholar
  96. Yu, W. R., Jiang, H., Wang, J., & Xie, J. X. (2008). Copper (Cu2+) induces degeneration of dopaminergic neurons in the nigrostriatal system of rats. Neuroscience Bulletin, 24, 73–78.CrossRefPubMedGoogle Scholar
  97. Zarranz, J. J., Alegre, J., Gomez-Esteban, J. C., Lezcano, E., Ros, R., Ampuero, I., et al. (2004). The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia. Annals of Neurology, 55, 164–173.CrossRefPubMedGoogle Scholar
  98. Zecca, L., Stroppolo, A., Gatti, A., Tampellini, D., Toscani, M., Gallorini, M., et al. (2004). The role of iron and copper molecules in the neuronal vulnerability of locus coeruleus and substantia nigra during aging. Proceedings of the National Academy of Sciences of the United States of America, 101, 9843–9848.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2009

Authors and Affiliations

  • Marco Bisaglia
    • 1
  • Isabella Tessari
    • 1
  • Stefano Mammi
    • 2
  • Luigi Bubacco
    • 1
  1. 1.Department of BiologyUniversity of PadovaPadovaItaly
  2. 2.Department of Chemical SciencesUniversity of PadovaPadovaItaly

Personalised recommendations