Advertisement

NeuroMolecular Medicine

, Volume 11, Issue 3, pp 183–199 | Cite as

Gene Dysregulation in Huntington’s Disease: REST, MicroRNAs and Beyond

  • Rory Johnson
  • Noel J. Buckley
Original Paper

Abstract

Huntington’s disease (HD) is an incurable, fatal neurodegenerative disorder that is caused by a polyglutamine expansion in the huntingtin (Htt) protein. Neuronal death in the striatum—the most obvious manifestation of the disease—is likely to result from widespread dysregulation of gene expression in various brain regions. To date, several potential mechanisms for this have been discovered, including one involving REST (RE1-Silencing Transcription Factor), a master regulator of neuronal genes. Recently, independent studies have demonstrated that post-transcriptional gene regulation by microRNAs is also disrupted in HD. Expression of key neuronal microRNAs—including mir-9/9*, mir-124 and mir-132—is repressed in the brains of human HD patients and mouse models. These changes occur downstream of REST, and are likely to result in major disruption of mRNA regulation and neuronal function. In this study we will discuss these findings and their implications for our understanding of HD. Using updated bioinformatic analysis, we predict 21 new candidate microRNAs in HD. We propose future strategies for unifying large-scale transcriptional and microRNA datasets with the aim of explaining HD aetiology. By way of example, we show how available genomic datasets can be integrated to provide independent, analytical validation for dysregulation of REST and microRNA mir-124 in HD. As a consequence, gene ontology analysis indicates that HD is characterised by a broad-based depression of neural genes in the caudate and motor cortex. Thus, we propose that a combination of REST, microRNAs and possibly other non-coding RNAs profoundly affect the neuronal transcriptome in HD.

Keywords

Neurodegeneration Huntington’s disease MicroRNA Noncoding RNA REST NRSF 

Abbreviations

HD

Huntington’s disease

Htt

Huntingtin

mutHtt

Mutant huntingtin

BDNF

Brain-derived neurotrophic factor

miRNA

MicroRNA

REST

Repressor element 1-silencing transcription factor

RE1

Repressor element 1

NRSF

Neuron-restrictive silencing factor

NRSE

Neuron-restrictive silencing element

SCA

Spinocerebellar ataxia

SP1

Specificity protein 1

RISC

RNA-induced silencing complex

DRPLA

Dentatorubral-pallidoluysian atrophy

SBMA

Spinobulbar muscular atrophy

MRE

MicroRNA response element

CREB

cAMP response element binding

MeCP2

Methyl CpG binding protein 2

BACE1

β-site of APP cleaving enzyme

AD

Alzheimer’s disease

ncRNA

Noncoding RNA

ChIP-Seq

Chromatin immunoprecipitation coupled to high-throughput sequencing

Notes

Acknowledgements

We wish to thank Chiara Zuccato (University of Milan), Andrew M. Thomson (Genome Institute of Singapore) and Lawrence W. Stanton (Genome Institute of Singapore) for advice, discussions and critical reading of the manuscript. RJ is a postdoctoral fellow funded by the Singapore Agency for Science, Technology and Research (A*STAR).

References

  1. Abelson, J. F., Kwan, K. Y., O’Roak, B. J., Baek, D. Y., Stillman, A. A., et al. (2005). Sequence variants in SLITRK1 are associated with Tourette’s syndrome. Science, 310, 317–320. doi: 10.1126/science.1116502.PubMedGoogle Scholar
  2. Aboobaker, A. A., Tomancak, P., Patel, N., Rubin, G. M., & Lai, E. C. (2005). Drosophila microRNAs exhibit diverse spatial expression patterns during embryonic development. Proceedings of the National Academy of Sciences of the United States of America, 102, 18017–18022. doi: 10.1073/pnas.0508823102.PubMedGoogle Scholar
  3. Altar, C. A., Cai, N., Bliven, T., Juhasz, M., Conner, J. M., et al. (1997). Anterograde transport of brain-derived neurotrophic factor and its role in the brain. Nature, 389, 856–860. doi: 10.1038/39885.PubMedGoogle Scholar
  4. Arzberger, T., Krampfl, K., Leimgruber, S., & Weindl, A. (1997). Changes of NMDA receptor subunit (NR1, NR2B) and glutamate transporter (GLT1) mRNA expression in Huntington’s disease—an in situ hybridization study. Journal of Neuropathology and Experimental Neurology, 56, 440–454. doi: 10.1097/00005072-199704000-00013.PubMedGoogle Scholar
  5. Augood, S. J., Faull, R. L., & Emson, P. C. (1997). Dopamine D1 and D2 receptor gene expression in the striatum in Huntington’s disease. Annals of Neurology, 42, 215–221. doi: 10.1002/ana.410420213.PubMedGoogle Scholar
  6. Bae, B.-I., Xu, H., Igarashi, S., Fujimuro, M., Agrawal, N., et al. (2005). p53 mediates cellular dysfunction and behavioral abnormalities in huntington’s disease. Neuron, 47, 29–41. doi: 10.1016/j.neuron.2005.06.005.PubMedGoogle Scholar
  7. Bak, M., Silahtaroglu, A., Moller, M., Christensen, M., Rath, M. F., et al. (2008). MicroRNA expression in the adult mouse central nervous system. RNA, 14, 432–444. doi: 10.1261/rna.783108.PubMedGoogle Scholar
  8. Ballas, N., Battaglioli, E., Atouf, F., Andres, M. E., Chenoweth, J., et al. (2001). Regulation of neuronal traits by a novel transcriptional complex. Neuron, 31, 353–365. doi: 10.1016/S0896-6273(01)00371-3.PubMedGoogle Scholar
  9. Bartel, D. P. (2003). MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell, 116, 281–297. doi: 10.1016/S0092-8674(04)00045-5.Google Scholar
  10. Bartel, D. P. (2009). MicroRNAs: Target recognition and regulatory functions. Cell, 136, 215–233. doi: 10.1016/j.cell.2009.01.002.PubMedGoogle Scholar
  11. Benn, C. L., Sun, T., Sadri-Vakili, G., McFarland, K. N., DiRocco, D. P., et al. (2008). Huntingtin modulates transcription, occupies gene promoters in vivo, and binds directly to DNA in a polyglutamine-dependent manner. Journal of Neuroscience, 28, 10720–10733. doi: 10.1523/JNEUROSCI.2126-08.2008.PubMedGoogle Scholar
  12. Bilen, J., Liu, N., Burnett, B., Pittman, R., & Bonini, N. (2006). MicroRNA pathways modulate polyglutamine-induced neurodegeneration. Molecular Cell, 24, 157–163. doi: 10.1016/j.molcel.2006.07.030.PubMedGoogle Scholar
  13. Borovecki, F., Lovrecic, L., Zhou, J., Jeong, H., Then, F., et al. (2005). Genome-wide expression profiling of human blood reveals biomarkers for Huntington’s disease. PNAS, 102, 11023–11028. doi: 10.1073/pnas.0504921102.PubMedGoogle Scholar
  14. Boutell, J. M., Thomas, P., Neal, J. W., Weston, V. J., Duce, J., et al. (1999). Aberrant interactions of transcriptional repressor proteins with the Huntington’s disease gene product, huntingtin. Human Molecular Genetics, 8, 1647–1655. doi: 10.1093/hmg/8.9.1647.PubMedGoogle Scholar
  15. Bruce, A. W., Donaldson, I. J., Wood, I. C., Yerbury, S. A., Sadowski, M. I., et al. (2004). Genome-wide analysis of repressor element 1 silencing transcription factor/neuron-restrictive silencing factor (REST/NRSF) target genes. PNAS, 101, 10458–10463. doi: 10.1073/pnas.0401827101.PubMedGoogle Scholar
  16. Calderone, A., Jover, T., Noh, K.-M., Tanaka, H., Yokota, H., et al. (2003). Ischemic insults derepress the gene silencer REST in neurons destined to die. Journal of Neuroscience, 23, 2112–2121.PubMedGoogle Scholar
  17. Care, A., Catalucci, D., Felicetti, F., Bonci, D., Addario, A., et al. (2007). MicroRNA-133 controls cardiac hypertrophy. Nature Medicine, 13, 613–618. doi: 10.1038/nm1582.PubMedGoogle Scholar
  18. Carninci, P., Kasukawa, T., Katayama, S., Gough, J., Frith, M. C., et al. (2005). The transcriptional landscape of the mammalian genome. Science, 309, 1559–1563. doi: 10.1126/science.1112014.PubMedGoogle Scholar
  19. Cattaneo, E., Zuccato, C., & Tartari, M. (2005). Normal huntingtin function: an alternative approach to Huntington’s disease. Nature Reviews Neuroscience, 6, 919–930. doi: 10.1038/nrn1806.PubMedGoogle Scholar
  20. Cha, J. H. (2007). Transcriptional signatures in Huntington’s disease. Progress in Neurobiology, 83, 228–248. doi: 10.1016/j.pneurobio.2007.03.004.PubMedGoogle Scholar
  21. Chen, J.-F., Mandel, E. M., Thomson, J. M., Wu, Q., Callis, T. E., et al. (2006). The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nature Genetics, 38, 228–233. doi: 10.1038/ng1725.PubMedGoogle Scholar
  22. Chen, Z.-F., Paquette, A. J., & Anderson, D. J. (1998). NRSF/REST is required in vivo for repression of multiple neuronal target genes during embryogenesis. Nature Genetics, 20, 136–142. doi: 10.1038/2431.PubMedGoogle Scholar
  23. Chen-Plotkin, A. S., Sadri-Vakili, G., Yohrling, G. J., Braveman, M. W., Benn, C. L., et al. (2006). Decreased association of the transcription factor Sp1 with genes downregulated in Huntington’s disease. Neurobiology of Disease, 22, 233–241. doi: 10.1016/j.nbd.2005.11.001.PubMedGoogle Scholar
  24. Chong, J., Tapia-Ramirez, J., Kim, S., Toledo-Aral, J., Zheng, Y., et al. (1995). REST: A mammalian silencer protein that restricts sodium channel gene expression to neurons. Cell, 80, 949–957. doi: 10.1016/0092-8674(95)90298-8.PubMedGoogle Scholar
  25. Clemson, C. M., Hutchinson, J. N., Sara, S. A., Ensminger, A. W., Fox, A. H., et al. (2009). An architectural role for a nuclear noncoding RNA: NEAT1 RNA is essential for the structure of paraspeckles. Molecular Cell, 33(6), 717–726.PubMedGoogle Scholar
  26. Conaco, C., Otto, S., Han, J.-J., & Mandel, G. (2006). Reciprocal actions of REST and a microRNA promote neuronal identity. PNAS, 103, 2422–2427. doi: 10.1073/pnas.0511041103.PubMedGoogle Scholar
  27. Dinger, M. E., Amaral, P. P., Mercer, T. R., Pang, K. C., Bruce, S. J., et al. (2008). Long noncoding RNAs in mouse embryonic stem cell pluripotency and differentiation. Genome Research, 18, 1433–1445. doi: 10.1101/gr.078378.108.PubMedGoogle Scholar
  28. Dunah, A. W., Jeong, H., Griffin, A., Kim, Y. M., Standaert, D. G., et al. (2002). Sp1 and TAFII130 transcriptional activity disrupted in early Huntington’s disease. Science, 296, 2238–2243. doi: 10.1126/science.1072613.PubMedGoogle Scholar
  29. Eskenazi, B. R., Wilson-Rich, N. S., & Starks, P. T. (2007). A Darwinian approach to Huntington’s disease: Subtle health benefits of a neurological disorder. Medical Hypotheses, 69, 1183–1189. doi: 10.1016/j.mehy.2007.02.046.PubMedGoogle Scholar
  30. Faghihi, M. A., Modarresi, F., Khalil, A. M., Wood, D. E., Sahagan, B. G., et al. (2008). Expression of a noncoding RNA is elevated in Alzheimer’s disease and drives rapid feed-forward regulation of beta-secretase. Nature Medicine, 14, 723–730. doi: 10.1038/nm1784.PubMedGoogle Scholar
  31. Farh, K. K., Grimson, A., Jan, C., Lewis, B. P., Johnston, W. K., et al. (2005). The widespread impact of mammalian microRNAs on mRNA repression and evolution. Science, 310, 1817–1821. doi: 10.1126/science.1121158.PubMedGoogle Scholar
  32. Feng, J., Bi, C., Clark, B. S., Mady, R., Shah, P., et al. (2006). The Evf-2 noncoding RNA is transcribed from the Dlx-5/6 ultraconserved region and functions as a Dlx-2 transcriptional coactivator. Genes and Development, 20, 1470–1484. doi: 10.1101/gad.1416106.PubMedGoogle Scholar
  33. Ferrante, R. J., Kowall, N. W., Beal, M. F., Richardson, E. P., Jr., Bird, E. D., et al. (1985). Selective sparing of a class of striatal neurons in Huntington’s disease. Science, 230, 561–563. doi: 10.1126/science.2931802.PubMedGoogle Scholar
  34. Filipowicz, W., Bhattacharyya, S. N., & Sonenberg, N. (2008). Mechanisms of post-transcriptional regulation by microRNAs: Are the answers in sight? Nature Reviews. Genetics, 9, 102–114. doi: 10.1038/nrg2290.PubMedGoogle Scholar
  35. Friedlander, M. R., Chen, W., Adamidi, C., Maaskola, J., Einspanier, R., et al. (2008). Discovering microRNAs from deep sequencing data using miRDeep. Nature Biotechnology, 26, 407–415. doi: 10.1038/nbt1394.PubMedGoogle Scholar
  36. Gangaraju, V. K., & Lin, H. (2009). MicroRNAs: Key regulators of stem cells. Nature Reviews. Molecular Cell Biology, 10, 116–125. doi: 10.1038/nrm2621.PubMedGoogle Scholar
  37. Giraldez, A. J., Cinalli, R. M., Glasner, M. E., Enright, A. J., Thomson, J. M., et al. (2005). MicroRNAs regulate brain morphogenesis in zebrafish. Science, 308, 833–838. doi: 10.1126/science.1109020.PubMedGoogle Scholar
  38. Greenway, D. J., Street, M., Jeffries, A., & Buckley, N. J. (2007). RE1 silencing transcription factor maintains a repressive chromatin environment in embryonic hippocampal neural stem cells. Stem Cells, 25, 354–363. doi: 10.1634/stemcells.2006-0207.PubMedGoogle Scholar
  39. Griffiths-Jones, S. (2004). The microRNA registry. Nucleic Acids Research, 32, D109–D111. doi: 10.1093/nar/gkh023.PubMedGoogle Scholar
  40. He, L., He, X., Lim, L. P., de Stanchina, E., Xuan, Z., et al. (2007). A microRNA component of the p53 tumour suppressor network. Nature, 447, 1130–1134. doi: 10.1038/nature05939.PubMedGoogle Scholar
  41. He, L., Thomson, J. M., Hemann, M. T., Hernando-Monge, E., Mu, D., et al. (2005). A microRNA polycistron as a potential human oncogene. Nature, 435, 828–833. doi: 10.1038/nature03552.PubMedGoogle Scholar
  42. Hebert, S. S., Horre, K., Nicolai, L., Papadopoulou, A. S., Mandemakers, W., et al. (2008). Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer’s disease correlates with increased BACE1/beta-secretase expression. Proceedings of the National Academy of Sciences of the United States of America, 105, 6415–6420. doi: 10.1073/pnas.0710263105.PubMedGoogle Scholar
  43. Hedreen, J. C., Peyser, C. E., Folstein, S. E., & Ross, C. A. (1991). Neuronal loss in layers V and VI of cerebral cortex in Huntington’s disease. Neuroscience Letters, 133, 257–261. doi: 10.1016/0304-3940(91)90583-F.PubMedGoogle Scholar
  44. Hodges, A., Strand, A. D., Aragaki, A. K., Kuhn, A., Sengstag, T., et al. (2006). Regional and cellular gene expression changes in human Huntington’s disease brain. Human Molecular Genetics, 15, 965–977. doi: 10.1093/hmg/ddl013.PubMedGoogle Scholar
  45. Huang, C. C., Faber, P. W., Persichetti, F., Mittal, V., Vonsattel, J. P., et al. (1998). Amyloid formation by mutant huntingtin: Threshold, progressivity and recruitment of normal polyglutamine proteins. Somatic Cell and Molecular Genetics, 24, 217–233. doi: 10.1023/B:SCAM.0000007124.19463.e5.PubMedGoogle Scholar
  46. Huntington’s Disease Collaborative Research Group. (1993). A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. The Huntington’s Disease Collaborative Research Group. Cell, 72, 971–983. doi: 10.1016/0092-8674(93)90585-E.
  47. Ji, P., Diederichs, S., Wang, W., Boing, S., Metzger, R., et al. (2003). MALAT-1, a novel noncoding RNA, and thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene, 22, 8031–8041. doi: 10.1038/sj.onc.1206928.PubMedGoogle Scholar
  48. Johnson, R., Gamblin, R. J., Ooi, L., Bruce, A. W., Donaldson, I. J., et al. (2006). Identification of the REST regulon reveals extensive transposable element-mediated binding site duplication. Nucleic Acids Research, 34, 3862–3877. doi: 10.1093/nar/gkl525.PubMedGoogle Scholar
  49. Johnson, D., Mortazavi, A., Myers, R., & Wold, B. (2007). Genome-wide mapping of in vivo protein-DNA interactions. Science, 316, 1497–1502. doi: 10.1126/science.1141319.PubMedGoogle Scholar
  50. Johnson, R., Teh, C. H., Jia, H., Vanisri, R. R., Pandey, T., et al. (2009). Regulation of neural macroRNAs by the transcriptional repressor REST. RNA, 15, 85–96. doi: 10.1261/rna.1127009.PubMedGoogle Scholar
  51. Johnson, R., Teh, C. H.-L., Kunarso, G., Wong, K. Y., Srinivasan, G., et al. (2008a). REST regulates distinct transcriptional networks in embryonic and neural stem cells. PLoS Biology, 6, e256. doi: 10.1371/journal.pbio.0060256.PubMedGoogle Scholar
  52. Johnson, R., Zuccato, C., Belyaev, N. D., Guest, D. J., Cattaneo, E., et al. (2008b). A microRNA-based gene dysregulation pathway in Huntington’s disease. Neurobiology of Disease, 29, 438–445. doi: 10.1016/j.nbd.2007.11.001.PubMedGoogle Scholar
  53. Karres, J. S., Hilgers, V., Carrera, I., Treisman, J., & Cohen, S. M. (2007). The conserved microRNA miR-8 tunes atrophin levels to prevent neurodegeneration in Drosophila. Cell, 131, 136–145. doi: 10.1016/j.cell.2007.09.020.PubMedGoogle Scholar
  54. Kegel, K. B., Meloni, A. R., Yi, Y., Kim, Y. J., Doyle, E., et al. (2002). Huntingtin is present in the nucleus, interacts with the transcriptional corepressor C-terminal binding protein, and represses transcription. Journal of Biological Chemistry, 277, 7466–7476. doi: 10.1074/jbc.M103946200.PubMedGoogle Scholar
  55. Kim, M. O., Chawla, P., Overland, R. P., Xia, E., Sadri-Vakili, G., et al. (2008). Altered histone monoubiquitylation mediated by mutant huntingtin induces transcriptional dysregulation. Journal of Neuroscience, 28, 3947–3957. doi: 10.1523/JNEUROSCI.5667-07.2008.PubMedGoogle Scholar
  56. Kim, J., Inoue, K., Ishii, J., Vanti, W. B., Voronov, S. V., et al. (2007). A MicroRNA feedback circuit in midbrain dopamine neurons. Science, 317, 1220–1224. doi: 10.1126/science.1140481.PubMedGoogle Scholar
  57. Kosik, K. S. (2006). The neuronal microRNA system. Nature Reviews Neuroscience, 7, 911–920. doi: 10.1038/nrn2037.PubMedGoogle Scholar
  58. Krichevsky, A. M., King, K. S., Donahue, C. P., Khrapko, K., & Kosik, K. S. (2003). A microRNA array reveals extensive regulation of microRNAs during brain development. RNA, 9, 1274–1281. doi: 10.1261/rna.5980303.PubMedGoogle Scholar
  59. Krichevsky, A. M., Sonntag, K. C., Isacson, O., & Kosik, K. S. (2006). Specific microRNAs modulate embryonic stem cell-derived neurogenesis. Stem Cells, 24, 857–864. doi: 10.1634/stemcells.2005-0441.PubMedGoogle Scholar
  60. Kuhn, A., Goldstein, D. R., Hodges, A., Strand, A. D., Sengstag, T., et al. (2007). Mutant huntingtin’s effects on striatal gene expression in mice recapitulate changes observed in human Huntington’s disease brain and do not differ with mutant huntingtin length or wild-type huntingtin dosage. Human Molecular Genetics, 16, 1845–1861. doi: 10.1093/hmg/ddm133.PubMedGoogle Scholar
  61. Landgraf, P., Rusu, M., Sheridan, R., Sewer, A., Iovino, N., et al. (2007). A mammalian microRNA expression atlas based on small RNA library sequencing. Cell, 129, 1401–1414. doi: 10.1016/j.cell.2007.04.040.PubMedGoogle Scholar
  62. Lanz, R., McKenna, N., Onate, S., Albrecht, U., Wong, J., et al. (1999). A steroid receptor coactivator, SRA, functions as an RNA and is present in an SRC-1 complex. Cell, 97, 17–27. doi: 10.1016/S0092-8674(00)80711-4.PubMedGoogle Scholar
  63. Leone, S., Mutti, C., Kazantsev, A., Sturlese, M., Moro, S., et al. (2008). SAR and QSAR study on 2-aminothiazole derivatives, modulators of transcriptional repression in Huntington’s disease. Bioorganic & Medicinal Chemistry, 16, 5695–5703. doi: 10.1016/j.bmc.2008.03.067.Google Scholar
  64. Leucht, C., Stigloher, C., Wizenmann, A., Klafke, R., Folchert, A., et al. (2008). MicroRNA-9 directs late organizer activity of the midbrain–hindbrain boundary. Nature Neuroscience, 11, 641–648. doi: 10.1038/nn.2115.PubMedGoogle Scholar
  65. Lewis, B. P., Shih, I. H., Jones-Rhoades, M. W., Bartel, D. P., & Burge, C. B. (2003). Prediction of mammalian microRNA targets. Cell, 115, 787–798. doi: 10.1016/S0092-8674(03)01018-3.PubMedGoogle Scholar
  66. Lim, L. P., Lau, N. C., Garrett-Engele, P., Grimson, A., Schelter, J. M., et al. (2005). Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature, 433, 769–773. doi: 10.1038/nature03315.PubMedGoogle Scholar
  67. Lipovich, L., Vanisri, R. R., Kong, S. L., Lin, C. Y., & Liu, E. T. (2006). Primate-specific endogenous cis-antisense transcription in the human 5q31 protocadherin gene cluster. Journal of Molecular Evolution, 62, 73–88. doi: 10.1007/s00239-005-0041-3.PubMedGoogle Scholar
  68. Louro, R., Nakaya, H. I., Amaral, P. P., Festa, F., Sogayar, M. C., et al. (2007). Androgen responsive intronic non-coding RNAs. BMC Biology, 5, 4. doi: 10.1186/1741-7007-5-4.PubMedGoogle Scholar
  69. Lu, J., Getz, G., Miska, E. A., Alvarez-Saavedra, E., Lamb, J., et al. (2005). MicroRNA expression profiles classify human cancers. Nature, 435, 834–838. doi: 10.1038/nature03702.PubMedGoogle Scholar
  70. Luthi-Carter, R., Hanson, S. A., Strand, A. D., Bergstrom, D. A., Chun, W., et al. (2002). Dysregulation of gene expression in the R6/2 model of polyglutamine disease: parallel changes in muscle and brain. Human Molecular Genetics, 11, 1911–1926. doi: 10.1093/hmg/11.17.1911.PubMedGoogle Scholar
  71. Luthi-Carter, R., Strand, A., Peters, N. L., Solano, S. M., Hollingsworth, Z. R., et al. (2000). Decreased expression of striatal signaling genes in a mouse model of Huntington’s disease. Human Molecular Genetics, 9, 1259–1271. doi: 10.1093/hmg/9.9.1259.PubMedGoogle Scholar
  72. Makeyev, E. V., Zhang, J., Carrasco, M. A., & Maniatis, T. (2007). The MicroRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Molecular Cell, 27, 435–448. doi: 10.1016/j.molcel.2007.07.015.PubMedGoogle Scholar
  73. Mangiarini, L., Sathasivam, K., Seller, M., Cozens, B., Harper, A., et al. (1996). Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell, 87, 493–506. doi: 10.1016/S0092-8674(00)81369-0.PubMedGoogle Scholar
  74. Mariner, P. D., Walters, R. D., Espinoza, C. A., Drullinger, L. F., Wagner, S. D., et al. (2008). Human Alu RNA is a modular transacting repressor of mRNA transcription during heat shock. Molecular Cell, 29, 499–509. doi: 10.1016/j.molcel.2007.12.013.PubMedGoogle Scholar
  75. McCampbell, A., Taylor, J. P., Taye, A. A., Robitschek, J., Li, M., et al. (2000). CREB-binding protein sequestration by expanded polyglutamine. Human Molecular Genetics, 9, 2197–2202. doi: 10.1093/hmg/9.14.2197.PubMedGoogle Scholar
  76. Mehler, M. F., & Mattick, J. S. (2007). Noncoding RNAs and RNA editing in brain development, functional diversification, and neurological disease. Physiological Reviews, 87, 799–823. doi: 10.1152/physrev.00036.2006.PubMedGoogle Scholar
  77. Meister, G., Landthaler, M., Peters, L., Chen, P. Y., Urlaub, H., et al. (2005). Identification of novel argonaute-associated proteins. Current Biology, 15, 2149–2155. doi: 10.1016/j.cub.2005.10.048.PubMedGoogle Scholar
  78. Mercer, T. R., Dinger, M. E., Sunkin, S. M., Mehler, M. F., & Mattick, J. S. (2008). Specific expression of long noncoding RNAs in the mouse brain. Proceedings of the National Academy of Sciences of the United States of America, 105, 716–721. doi: 10.1073/pnas.0706729105.PubMedGoogle Scholar
  79. Miska, E. A., Alvarez-Saavedra, E., Townsend, M., Yoshii, A., Sestan, N., et al. (2004). Microarray analysis of microRNA expression in the developing mammalian brain. Genome Biology, 5, R68. doi: 10.1186/gb-2004-5-9-r68.PubMedGoogle Scholar
  80. Mortazavi, A., Thompson, E. C. L., Garcia, S. T., Myers, R. M., & Wold, B. (2006). Comparative genomics modeling of the NRSF/REST repressor network: From single conserved sites to genome-wide repertoire. Genome Research, 16, 1208–1221. doi: 10.1101/gr.4997306.PubMedGoogle Scholar
  81. Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L., & Wold, B. (2008). Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nature Methods, 5, 621–628. doi: 10.1038/nmeth.1226.PubMedGoogle Scholar
  82. Nakamura, K., Jeong, S. Y., Uchihara, T., Anno, M., Nagashima, K., et al. (2001). SCA17, a novel autosomal dominant cerebellar ataxia caused by an expanded polyglutamine in TATA-binding protein. Human Molecular Genetics, 10, 1441–1448. doi: 10.1093/hmg/10.14.1441.PubMedGoogle Scholar
  83. Nomura, T., Kimura, M., Horii, T., Morita, S., Soejima, H., et al. (2008). MeCP2-dependent repression of an imprinted miR-184 released by depolarization. Human Molecular Genetics, 17, 1192–1199. doi: 10.1093/hmg/ddn011.PubMedGoogle Scholar
  84. Olson, M. V., & Varki, A. (2003). Sequencing the chimpanzee genome: insights into human evolution and disease. Nature Review. Genetics, 4, 20–28. doi: 10.1038/nrg981.Google Scholar
  85. Ooi, L., & Wood, I. C. (2007). Chromatin crosstalk in development and disease: lessons from REST. Nature Reviews Genetics, 8, 544–554. doi: 10.1038/nrg2100.PubMedGoogle Scholar
  86. Otto, S. J., McCorkle, S. R., Hover, J., Conaco, C., Han, J.-J., et al. (2007). A new binding motif for the transcriptional repressor rest uncovers large gene networks devoted to neuronal functions. Journal of Neuroscience, 27, 6729–6739. doi: 10.1523/JNEUROSCI.0091-07.2007.PubMedGoogle Scholar
  87. Packer, A. N., Xing, Y., Harper, S. Q., Jones, L., & Davidson, B. L. (2008). The bifunctional microRNA miR-9/miR-9* regulates REST and CoREST and is downregulated in Huntington’s disease. Journal of Neuroscience, 28, 14341–14346. doi: 10.1523/JNEUROSCI.2390-08.2008.PubMedGoogle Scholar
  88. Palm, K., Belluardo, N., Metsis, M., & To, Timmusk. (1998). Neuronal expression of zinc finger transcription factor REST/NRSF/XBR gene. Journal of Neuroscience, 18, 1280–1296.PubMedGoogle Scholar
  89. Pandey, R. R., Mondal, T., Mohammad, F., Enroth, S., Redrup, L., et al. (2008). Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Molecular Cell, 32, 232–246. doi: 10.1016/j.molcel.2008.08.022.PubMedGoogle Scholar
  90. Patel, N., Hoang, D., Miller, N., Ansaloni, S., Huang, Q., et al. (2008). MicroRNAs can regulate human APP levels. Molecular Neurodegeneration, 3, 10. doi: 10.1186/1750-1326-3-10.PubMedGoogle Scholar
  91. Perez, D. S., Hoage, T. R., Pritchett, J. R., Ducharme-Smith, A. L., Halling, M. L., et al. (2008). Long, abundantly expressed non-coding transcripts are altered in cancer. Human Molecular Genetics, 17, 642–655. doi: 10.1093/hmg/ddm336.PubMedGoogle Scholar
  92. Pollard, K. S., Salama, S. R., Lambert, N., Lambot, M.-A., Coppens, S., et al. (2006). An RNA gene expressed during cortical development evolved rapidly in humans. Nature, 443, 167–172. doi: 10.1038/nature05113.PubMedGoogle Scholar
  93. Ponjavic, J., Ponting, C. P., & Lunter, G. (2007). Functionality or transcriptional noise? Evidence for selection within long noncoding RNAs. Genome Research, 17, 556–565. doi: 10.1101/gr.6036807.PubMedGoogle Scholar
  94. Preker, P., Nielsen, J., Kammler, S., Lykke-Andersen, S., Christensen, M. S., et al. (2008). RNA exosome depletion reveals transcription upstream of active human promoters. Science, 322, 1851–1854. doi: 10.1126/science.1164096.PubMedGoogle Scholar
  95. Qiu, Z., Norflus, F., Singh, B., Swindell, M. K., Buzescu, R., et al. (2006). Sp1 is up-regulated in cellular and transgenic models of Huntington disease, and its reduction is neuroprotective. Journal of Biological Chemistry, 281, 16672–16680. doi: 10.1074/jbc.M511648200.PubMedGoogle Scholar
  96. Rajewsky, N., & Socci, N. D. (2004). Computational identification of microRNA targets. Developmental Biology, 267, 529–535. doi: 10.1016/j.ydbio.2003.12.003.PubMedGoogle Scholar
  97. Ravasi, T., Suzuki, H., Pang, K. C., Katayama, S., Furuno, M., et al. (2006). Experimental validation of the regulated expression of large numbers of non-coding RNAs from the mouse genome. Genome Research, 16, 11–19. doi: 10.1101/gr.4200206.PubMedGoogle Scholar
  98. Reiner, A., Albin, R. L., Anderson, K. D., D’Amato, C. J., Penney, J. B., et al. (1988). Differential loss of striatal projection neurons in Huntington disease. Proceedings of the National Academy of Sciences of the United States of America, 85, 5733–5737. doi: 10.1073/pnas.85.15.5733.PubMedGoogle Scholar
  99. Rigamonti, D., Bolognini, D., Mutti, C., Zuccato, C., Tartari, M., et al. (2007). Loss of huntingtin function complemented by small molecules acting as repressor element 1/neuron restrictive silencer element silencer modulators. Journal of Biological Chemistry, 282, 24554–24562. doi: 10.1074/jbc.M609885200.PubMedGoogle Scholar
  100. Rinn, J., Kertesz, M., Wang, J., Squazzo, S., Xu, X., et al. (2007). Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell, 127, 1311–1323. doi: 10.1016/j.cell.2007.05.022.Google Scholar
  101. Runne, H., Kuhn, A., Wild, E. J., Pratyaksha, W., Kristiansen, M., et al. (2007). Analysis of potential transcriptomic biomarkers for Huntington’s disease in peripheral blood. Proceedings of the National Academy of Sciences of the United States of America, 104, 14424–14429. doi: 10.1073/pnas.0703652104.PubMedGoogle Scholar
  102. Ruvkun, G. (2001). Molecular biology. Glimpses of a tiny RNA world. Science, 294, 797–799. doi: 10.1126/science.1066315.PubMedGoogle Scholar
  103. Saba, R., Goodman, C. D., Huzarewich, R. L., Robertson, C., & Booth, S. A. (2008). A miRNA signature of prion induced neurodegeneration. PLoS ONE, 3, e3652. doi: 10.1371/journal.pone.0003652.PubMedGoogle Scholar
  104. Sadri-Vakili, G., Bouzou, B., Benn, C. L., Kim, M. O., Chawla, P., et al. (2007). Histones associated with downregulated genes are hypo-acetylated in Huntington’s disease models. Human Molecular Genetics, 16, 1293–1306. doi: 10.1093/hmg/ddm078.PubMedGoogle Scholar
  105. Savas, J. N., Makusky, A., Ottosen, S., Baillat, D., Then, F., et al. (2008). Huntington’s disease protein contributes to RNA-mediated gene silencing through association with Argonaute and P bodies. Proceedings of the National Academy of Sciences of the United States of America, 105, 10820–10825. doi: 10.1073/pnas.0800658105.PubMedGoogle Scholar
  106. Schaefer, A., O’Carroll, D., Tan, C. L., Hillman, D., Sugimori, M., et al. (2007). Cerebellar neurodegeneration in the absence of microRNAs. Journal of Experimental Medicine, 204, 1553–1558. doi: 10.1084/jem.20070823.PubMedGoogle Scholar
  107. Schoenherr, C., & Anderson, D. (1995). The neuron-restrictive silencer factor (NRSF): A coordinate repressor of multiple neuron-specific genes. Science, 5202, 1360–1363. doi: 10.1126/science.7871435.Google Scholar
  108. Schoenherr, C. J., Paquette, A. J., & Anderson, D. J. (1996). Identification of potential target genes for the neuron-restrictive silencer factor. Proceedings of the National Academy of Sciences, 93, 9881–9886. doi: 10.1073/pnas.93.18.9881.Google Scholar
  109. Schratt, G. M., Tuebing, F., Nigh, E. A., Kane, C. G., Sabatini, M. E., et al. (2006). A brain-specific microRNA regulates dendritic spine development. Nature, 439, 283–289. doi: 10.1038/nature04367.PubMedGoogle Scholar
  110. Sempere, L. F., Freemantle, S., Pitha-Rowe, I., Moss, E., Dmitrovsky, E., et al. (2004). Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biology, 5, R13. doi: 10.1186/gb-2004-5-3-r13.PubMedGoogle Scholar
  111. Shibata, M., Kurokawa, D., Nakao, H., Ohmura, T., & Aizawa, S. (2008). MicroRNA-9 modulates Cajal–Retzius cell differentiation by suppressing Foxg1 expression in mouse medial pallium. Journal of Neuroscience, 28, 10415–10421. doi: 10.1523/JNEUROSCI.3219-08.2008.PubMedGoogle Scholar
  112. Shimojo, M. (2008). Huntingtin regulates RE1-silencing transcription factor/neuron-restrictive silencer factor (REST/NRSF) nuclear trafficking indirectly through a complex with REST/NRSF-interacting LIM domain protein (RILP) and dynactin p150 Glued. Journal of Biological Chemistry, 283, 34880–34886. doi: 10.1074/jbc.M804183200.PubMedGoogle Scholar
  113. Smirnova, L., Grafe, A., Seiler, A., Schumacher, S., Nitsch, R., et al. (2005). Regulation of miRNA expression during neural cell specification. European Journal of Neuroscience, 21, 1469–1477. doi: 10.1111/j.1460-9568.2005.03978.x.PubMedGoogle Scholar
  114. Snell, R. G., MacMillan, J. C., Cheadle, J. P., Fenton, I., Lazarou, L. P., et al. (1993). Relationship between trinucleotide repeat expansion and phenotypic variation in Huntington’s disease. Nature Genetics, 4, 393–397. doi: 10.1038/ng0893-393.PubMedGoogle Scholar
  115. Sood, P., Krek, A., Zavolan, M., Macino, G., & Rajewsky, N. (2006). Cell-type-specific signatures of microRNAs on target mRNA expression. PNAS, 103, 2746–2751. doi: 10.1073/pnas.0511045103.PubMedGoogle Scholar
  116. Stark, K. L., Xu, B., Bagchi, A., Lai, W. S., Liu, H., et al. (2008). Altered brain microRNA biogenesis contributes to phenotypic deficits in a 22q11-deletion mouse model. Nature Genetics, 40, 751–760. doi: 10.1038/ng.138.PubMedGoogle Scholar
  117. Steffan, J. S., Kazantsev, A., Spasic-Boskovic, O., Greenwald, M., Zhu, Y.-Z., et al. (2000). The Huntington’s disease protein interacts with p53 and CREB-binding protein and represses transcription. PNAS, 97, 6763–6768. doi: 10.1073/pnas.100110097.PubMedGoogle Scholar
  118. Strand, A. D., Baquet, Z. C., Aragaki, A. K., Holmans, P., Yang, L., et al. (2007). Expression profiling of Huntington’s disease models suggests that brain-derived neurotrophic factor depletion plays a major role in striatal degeneration. Journal of Neuroscience, 27, 11758–11768. doi: 10.1523/JNEUROSCI.2461-07.2007.PubMedGoogle Scholar
  119. Sun, Y.-M., Greenway, D. J., Johnson, R., Street, M., Belyaev, N. D., et al. (2005). Distinct profiles of REST interactions with its target genes at different stages of neuronal development. Molecular Biology of the Cell, 16, 5630–5638. doi: 10.1091/mbc.E05-07-0687.PubMedGoogle Scholar
  120. Tochitani, S., & Hayashizaki, Y. (2008). Nkx2.2 antisense RNA overexpression enhanced oligodendrocytic differentiation. Biochemical and Biophysical Research Communications, 372, 691–696. doi: 10.1016/j.bbrc.2008.05.127.PubMedGoogle Scholar
  121. Varki, A., & Altheide, T. K. (2005). Comparing the human and chimpanzee genomes: searching for needles in a haystack. Genome Research, 15, 1746–1758. doi: 10.1101/gr.3737405.PubMedGoogle Scholar
  122. Visvanathan, J., Lee, S., Lee, B., Lee, J. W., & Lee, S. K. (2007). The microRNA miR-124 antagonizes the anti-neural REST/SCP1 pathway during embryonic CNS development. Genes and Development, 21, 744–749. doi: 10.1101/gad.1519107.PubMedGoogle Scholar
  123. Vo, N., Klein, M. E., Varlamova, O., Keller, D. M., Yamamoto, T., et al. (2005). From the cover: A cAMP-response element binding protein-induced microRNA regulates neuronal morphogenesis. PNAS, 102, 16426–16431. doi: 10.1073/pnas.0508448102.PubMedGoogle Scholar
  124. Vonsattel, J. P., & DiFiglia, M. (1998). Huntington disease. Journal of Neuropathology and Experimental Neurology, 57, 369–384. doi: 10.1097/00005072-199805000-00001.PubMedGoogle Scholar
  125. Walker, F. O. (2007). Huntington’s disease. Lancet, 369, 218–228. doi: 10.1016/S0140-6736(07)60111-1.PubMedGoogle Scholar
  126. Wang, W. X., Rajeev, B. W., Stromberg, A. J., Ren, N., Tang, G., et al. (2008). The expression of microRNA miR-107 decreases early in Alzheimer’s disease and may accelerate disease progression through regulation of beta-site amyloid precursor protein-cleaving enzyme 1. Journal of Neuroscience, 28, 1213–1223. doi: 10.1523/JNEUROSCI.5065-07.2008.PubMedGoogle Scholar
  127. Wayman, G. A., Davare, M., Ando, H., Fortin, D., Varlamova, O., et al. (2008). An activity-regulated microRNA controls dendritic plasticity by down-regulating p250GAP. Proceedings of the National Academy of Sciences of the United States of America, 105, 9093–9098. doi: 10.1073/pnas.0803072105.PubMedGoogle Scholar
  128. Wheeler, V. C., Auerbach, W., White, J. K., Srinidhi, J., Auerbach, A., et al. (1999). Length-dependent gametic CAG repeat instability in the Huntington’s disease knock-in mouse. Human Molecular Genetics, 8, 115–122. doi: 10.1093/hmg/8.1.115.PubMedGoogle Scholar
  129. Willingham, A., Orth, A., Batalov, S., Peters, E., Wen, B., et al. (2005). A strategy for probing the function of noncoding RNAs finds a repressor of NFAT. Science, 309, 1570–1573. doi: 10.1126/science.1115901.PubMedGoogle Scholar
  130. Wu, J., & Xie, X. (2006). Comparative sequence analysis reveals an intricate network among REST, CREB and miRNA in mediating neuronal gene expression. Genome Biology, 7, R85. doi: 10.1186/gb-2006-7-9-r85.PubMedGoogle Scholar
  131. Yu, J. Y., Chung, K. H., Deo, M., Thompson, R. C., & Turner, D. L. (2008). MicroRNA miR-124 regulates neurite outgrowth during neuronal differentiation. Experimental Cell Research, 314, 2618–2633. doi: 10.1016/j.yexcr.2008.06.002.PubMedGoogle Scholar
  132. Zabel, C., Chamrad, D. C., Priller, J., Woodman, B., Meyer, H. E., et al. (2002). Alterations in the mouse and human proteome caused by Huntington’s disease. Molecular & Cellular Proteomics, 1, 366–375. doi: 10.1074/mcp.M200016-MCP200.Google Scholar
  133. Zhao, T., Li, G., Mi, S., Li, S., Hannon, G. J., et al. (2007a). A complex system of small RNAs in the unicellular green alga Chlamydomonas reinhardtii. Genes and Development, 21, 1190–1203. doi: 10.1101/gad.1543507.PubMedGoogle Scholar
  134. Zhao, Y., Ransom, J. F., Li, A., Vedantham, V., von Drehle, M., et al. (2007b). Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell, 129, 303–317. doi: 10.1016/j.cell.2007.03.030.PubMedGoogle Scholar
  135. Zuccato, C., Belyaev, N., Conforti, P., Ooi, L., Tartari, M., et al. (2007). Widespread disruption of repressor element-1 silencing transcription factor/neuron-restrictive silencer factor occupancy at its target genes in huntington’s disease. Journal of Neuroscience, 27, 6972–6983. doi: 10.1523/JNEUROSCI.4278-06.2007.PubMedGoogle Scholar
  136. Zuccato, C., & Cattaneo, E. (2007). Role of brain-derived neurotrophic factor in Huntington’s disease. Progress in Neurobiology, 81, 294–330. doi: 10.1016/j.pneurobio.2007.01.003.PubMedGoogle Scholar
  137. Zuccato, C., Ciammola, A., Rigamonti, D., Leavitt, B. R., Goffredo, D., et al. (2001). Loss of huntingtin-mediated BDNF gene transcription in Huntington’s disease. Science, 293, 493–498. doi: 10.1126/science.1059581.PubMedGoogle Scholar
  138. Zuccato, C., Tartari, M., Crotti, A., Goffredo, D., Valenza, M., et al. (2003). Huntingtin interacts with REST/NRSF to modulate the transcription of NRSE-controlled neuronal genes. Nature Genetics, 35, 76–83. doi: 10.1038/ng1219.PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2009

Authors and Affiliations

  1. 1.Stem Cell and Developmental Biology Group, Genome Institute of SingaporeSingaporeSingapore
  2. 2.Centre for the Cellular Basis of Behaviour, Centre for Cell and Integrative Biology, King’s College London, Institute of PsychiatryLondonUK

Personalised recommendations