NeuroMolecular Medicine

, 11:43

AAV-mediated Local Delivery of Interferon-β for the Treatment of Retinoblastoma in Preclinical Models

  • Chie-Schin Shih
  • Nikia Laurie
  • Jeremy Holzmacher
  • Yunyu Spence
  • Amit C. Nathwani
  • Andrew M. Davidoff
  • Michael A. Dyer
Original Paper


Interferon-β (IFN-β) has been found to have anti-tumor properties against a variety of malignancies through different mechanisms. However, clinical trials involving systemic administration of IFN-β have been hampered by secondary toxicity and the short half-life of IFN-β in the circulation. In order to circumvent these limitations, we have developed an adeno-associated viral (AAV) vector gene-therapy approach to deliver IFN-β to tumors. In this study, we tested the efficacy of AAV-mediated local delivery of IFN-β for the treatment of retinoblastoma in preclinical models. Retinoblastoma is an ideal candidate for gene-therapy-based anti-cancer treatment because target cell transduction and, therefore, IFN-β delivery can be contained within the ocular environment, thereby minimizing systemic toxicity. We report here that retinoblastoma cell lines exhibit pleiotropic responses to IFN-β consistent with previous studies on a variety of tumor cell lines. Intravitreal injection of AAV-IFN-β resulted in efficient retinal infection and sustained IFN-β production in the eye with minimal systemic exposure. Vector spread outside of the eye was not detected. Using our orthotopic xenograft model of retinoblastoma, we found that intravitreal injection of AAV-IFN-β had a potent anti-tumor effect in vivo. These data suggest that AAV-mediated delivery of IFN-β may provide a complementary approach to systemic chemotherapy which is the standard of care for retinoblastoma around the world.


Retinoblastoma Interferon-β AAV Gene therapy 


  1. Ali, R. R., Reichel, M. B., De Alwis, M., Kanuga, N., Kinnon, C., Levinsky, R. J., et al. (1998). Adeno-associated virus gene transfer to mouse retina. Human Gene Therapy, 9(1), 81–86.PubMedCrossRefGoogle Scholar
  2. Ali, R. R., Reichel, M. B., Thrasher, A. J., Levinsky, R. J., Kinnon, C., Kanuga, N., et al. (1996). Gene transfer into the mouse retina mediated by an adeno-associated viral vector. Human Molecular Genetics, 5(5), 591–594.PubMedCrossRefGoogle Scholar
  3. Bennett, J., Maguire, A. M., Cideciyan, A. V., Schnell, M., Glover, E., Anand, V., et al. (1999). Stable transgene expression in rod photoreceptors after recombinant adeno-associated virus-mediated gene transfer to monkey retina. Proceedings of the National Academy of Sciences of the USA, 96(17), 9920–9925.PubMedCrossRefGoogle Scholar
  4. Campochiaro, P. A. (2002). Gene therapy for retinal and choroidal diseases. Expert Opinion on Biological Therapy, 2, 537–544.PubMedCrossRefGoogle Scholar
  5. Chevez-Barrios, P., Chintagumpala, M., Mieler, W., Paysse, E., Boniuk, M., Kozinetz, C., et al. (2005). Response of retinoblastoma with vitreous tumor seeding to adenovirus-mediated delivery of thymidine kinase followed by ganciclovir. Journal of Clinical Oncology, 23(31), 7927–7935.PubMedCrossRefGoogle Scholar
  6. Chevez-Barrios, P., Hurwitz, M. Y., Louie, K., Marcus, K. T., Holcombe, V. N., Schafer, P., et al. (2000). Metastatic and nonmetastatic models of retinoblastoma. American Journal of Pathology, 157(4), 1405–1412.PubMedGoogle Scholar
  7. Choi, E. A., Lei, H., Maron, D. J., Mick, R., Barsoum, J., Yu, Q. C., et al. (2004). Combined 5-fluorouracil/systemic interferon-beta gene therapy results in long-term survival in mice with established colorectal liver metastases. Clinical Cancer Research, 10, 1535–1544.PubMedCrossRefGoogle Scholar
  8. Coppin, C., Porzsolt, F., Awa, A., Kumpf, J., Coldman, A., & Wilt, T. (2005). Immunotherapy for advanced renal cell cancer. Cochrane Database of Systematic Reviews, (1), CD001425.Google Scholar
  9. Davidoff, A. M., Gray, J. T., Ng, C. Y., Zhang, Y., Zhou, J., Spence, Y., et al. (2005). Comparison of the ability of adeno-associated viral vectors pseudotyped with serotype 2, 5, and 8 capsid proteins to mediate efficient transduction of the liver in murine and nonhuman primate models. Molecular Therapy, 11(6), 875–888.PubMedCrossRefGoogle Scholar
  10. Dejneka, N. S., Rex, T. S., & Bennett, J. (2003). Gene therapy and animal models for retinal disease. Developments in Ophthalmology, 37, 188–198.PubMedCrossRefGoogle Scholar
  11. Der, S. D., Zhou, A., Williams, B. R., & Silverman, R. H. (1998). Identification of genes differentially regulated by interferon alpha, beta, or gamma using oligonucleotide arrays. Proceedings of the National Academy of Sciences of the USA, 95(26), 15623–15628.PubMedCrossRefGoogle Scholar
  12. Dickson, P. V., Hagedorn, N. L., Hamner, J. B., Fraga, C. H., Ng, C. Y., Stewart, C. F., et al. (2007). Interferon beta-mediated vessel stabilization improves delivery and efficacy of systemically administered topotecan in a murine neuroblastoma model. Journal of Pediatric Surgery, 42(1), 160–165. discussion 165.PubMedCrossRefGoogle Scholar
  13. Dinculescu, A., Glushakova, L., Min, S. H., & Hauswirth, W. W. (2005). Adeno-associated virus-vectored gene therapy for retinal disease. Human Gene Therapy, 16(6), 649–663.PubMedCrossRefGoogle Scholar
  14. Dranoff, G. (2004). Cytokines in cancer pathogenesis and cancer therapy. Nature Reviews Cancer, 4(1), 11–22.PubMedCrossRefGoogle Scholar
  15. Dudus, L., Anand, V., Acland, G. M., Chen, S. J., Wilson, J. M., Fisher, K. J., et al. (1999). Persistent transgene product in retina, optic nerve and brain after intraocular injection of rAAV. Vision Research, 39(15), 2545–2553.PubMedCrossRefGoogle Scholar
  16. Dyer, M. A., & Cepko, C. L. (2000). p57(Kip2) regulates progenitor cell proliferation and amacrine interneuron development in the mouse retina. Development, 127(16), 3593–3605.PubMedGoogle Scholar
  17. Dyer, M. A., & Cepko, C. L. (2001). p27Kip1 and p57Kip2 regulate proliferation in distinct retinal progenitor cell populations. Journal of Neuroscience, 21, 4259–4271.PubMedGoogle Scholar
  18. Einhorn, S., & Grander, D. (1996). Why do so many cancer patients fail to respond to interferon therapy? Journal of Interferon and Cytokine Research, 16(4), 275–281.PubMedCrossRefGoogle Scholar
  19. Einhorn, S., & Strander, H. (1993). Interferon treatment of human malignancies–a short review. Medical Oncology and Tumor Pharmacotherapy, 10(1–2), 25–29.PubMedGoogle Scholar
  20. Fish, E. N., Uddin, S., Korkmaz, M., Majchrzak, B., Druker, B. J., & Platanias, L. C. (1999). Activation of a CrkL-stat5 signaling complex by type I interferons. Journal of Biological Chemistry, 274(2), 571–573.PubMedCrossRefGoogle Scholar
  21. Folliot, S., Briot, D., Conrath, H., Provost, N., Cherel, Y., Moullier, P., et al. (2003). Sustained tetracycline-regulated transgene expression in vivo in rat retinal ganglion cells using a single type 2 adeno-associated viral vector. Journal of Gene Medicine, 5(6), 493–501.PubMedCrossRefGoogle Scholar
  22. Gibson, A. D. (2002). Updated meta analysis finds that interferon-alpha improves progression-free and overall survival in low-grade non-Hodgkin's lymphoma when administered with chemotherapy that contains anthracycline or mitoxantrone. Clinical Lymphoma, 3, 82–84.PubMedGoogle Scholar
  23. Greil, J., Gramatzki, M., Burger, R., Marschalek, R., Peltner, M., Trautmann, U., et al. (1994). The acute lymphoblastic leukaemia cell line SEM with t(4;11) chromosomal rearrangement is biphenotypic and responsive to interleukin-7. British Journal Haematology, 86(2), 275–283.CrossRefGoogle Scholar
  24. Guy, J., Qi, X., Muzyczka, N., & Hauswirth, W. W. (1999). Reporter expression persists 1 year after adeno-associated virus-mediated gene transfer to the optic nerve. Archives of Ophthalmology, 117(7), 929–937.PubMedGoogle Scholar
  25. Hayden, B. H., Murray, T. G., Scott, I. U., Cicciarelli, N., Hernandez, E., Feuer, W., et al. (2000). Subconjunctival carboplatin in retinoblastoma: impact of tumor burden and dose schedule. Archives of Ophthalmology, 118(11), 1549–1554.PubMedGoogle Scholar
  26. Hendren, S. K., Prabakaran, I., Buerk, D. G., Karakousis, G., Feldman, M., Spitz, F., et al. (2004). Interferon-beta gene therapy improves survival in an immunocompetent mouse model of carcinomatosis. Surgery, 135, 427–436.PubMedCrossRefGoogle Scholar
  27. Hurwitz, M. Y., Marcus, K. T., Chevez-Barrios, P., Louie, K., Aguilar-Cordova, E., & Hurwitz, R. L. (1999). Suicide gene therapy for treatment of retinoblastoma in a murine model. Human Gene Therapy, 10(3), 441–448.PubMedCrossRefGoogle Scholar
  28. Kirkwood, J. (2002). Cancer immunotherapy: The interferon-alpha experience. Seminars in Oncology, 29(3 Suppl 7), 18–26.PubMedCrossRefGoogle Scholar
  29. Kirkwood, J. M., & Tarhini, A. A. (2003). Adjuvant high-dose interferon-alpha therapy for high-risk melanoma. Forum (Genova), 13(2), 127–140. quiz 187–188.Google Scholar
  30. Laurie, N. A., Gray, J. K., Zhang, J., Leggas, M., Relling, M., Egorin, M., et al. (2005). Topotecan combination chemotherapy in two new rodent models of retinoblastoma. Clinical Cancer Research, 11(20), 7569–7578.PubMedCrossRefGoogle Scholar
  31. Li, S., Tokuyama, T., Yamamoto, J., Koide, M., Yokota, N., & Namba, H. (2005). Potent bystander effect in suicide gene therapy using neural stem cells transduced with herpes simplex virus thymidine kinase gene. Oncology, 69(6), 503–508.PubMedCrossRefGoogle Scholar
  32. Liang, F. Q., Aleman, T. S., Dejneka, N. S., Dudus, L., Fisher, K. J., Maguire, A. M., et al. (2001). Long-term protection of retinal structure but not function using RAAV.CNTF in animal models of retinitis pigmentosa. Molecular Therapy, 4(5), 461–472.PubMedCrossRefGoogle Scholar
  33. Ludwig, H. (2004). Supportive therapies in the management of myeloma. Oncology (Williston Park), 18, 295–296, 298.Google Scholar
  34. Lu, W., Fidler, I. J., & Dong, Z. (1999). Eradication of primary murine fibrosarcomas and induction of systemic immunity by adenovirus-mediated interferon beta gene therapy. Cancer Research, 59, 5202–5208.PubMedGoogle Scholar
  35. McFall, R. C., Sery, T. W., & Makadon, M. (1977). Characterization of a new continuous cell line derived from a human retinoblastoma. Cancer Research, 37(4), 1003–1010.PubMedGoogle Scholar
  36. Murray, T. G., Cicciarelli, N., O’Brien, J. M., Hernandez, E., Mueller, R. L., Smith, B. J., et al. (1997). Subconjunctival carboplatin therapy and cryotherapy in the treatment of transgenic murine retinoblastoma. Archives of Ophthalmology, 115(10), 1286–1290.PubMedGoogle Scholar
  37. Nathwani, A. C., Davidoff, A., Hanawa, H., Zhou, J. F., Vanin, E. F., & Nienhuis, A. W. (2001). Factors influencing in vivo transduction by recombinant adeno-associated viral vectors expressing the human factor IX cDNA. Blood, 97(5), 1258–1265.PubMedCrossRefGoogle Scholar
  38. Naumova, A., & Sapienza, C. (1994). The genetics of retinoblastoma, revisited. American Journal of Human Genetics, 54(2), 264–273.PubMedGoogle Scholar
  39. Pfeffer, L. M., Dinarello, C. A., Herberman, R. B., Williams, B. R., Borden, E. C., Bordens, R., et al. (1998). Biological properties of recombinant alpha-interferons: 40th anniversary of the discovery of interferons. Cancer Research, 58(12), 2489–2499.PubMedGoogle Scholar
  40. Qin, X. Q., Tao, N., Dergay, A., Moy, P., Fawell, S., Davis, A., et al. (1998). Interferon-beta gene therapy inhibits tumor formation and causes regression of established tumors in immune-deficient mice. Proceedings of the National Academy of Sciences of the USA, 95, 14411–14416.PubMedCrossRefGoogle Scholar
  41. Ries, L. A. G., Smith, M. A., Gurney, J. G., Linet, M., Tamra, T., Young, J. L., & Bunin, G. (1999). Cancer incidence and survival among children and adolescents: United States SEER Program 1975–1995. Bethesda, MD, NIH Pub. No. 99-4649.Google Scholar
  42. Rodriguez-Galindo, C., Wilson, M. W., Haik, B. G., Merchant, T. E., Billups, C. A., Shah, N., et al. (2003). Treatment of intraocular retinoblastoma with vincristine and carboplatin. Journal of Clinical Oncology, 21(10), 2019–2025.PubMedCrossRefGoogle Scholar
  43. Rohatiner, A. Z., Gregory, W. M., Peterson, B., Borden, E., Solal-Celigny, P., Hagenbeek, A., et al. (2005). Meta-analysis to evaluate the role of interferon in follicular lymphoma. Journal of Clinical Oncology, 23, 2215–2223.PubMedCrossRefGoogle Scholar
  44. Rolling, F. (2004). Recombinant AAV-mediated gene transfer to the retina: Gene therapy perspectives. Gene Therapy, 11(Suppl 1), S26–S32.PubMedCrossRefGoogle Scholar
  45. Sondak, V. K. (2002). How does interferon work? Does it even matter? Cancer, 95(5), 947–949.PubMedCrossRefGoogle Scholar
  46. Surace, E. M., & Auricchio, A. (2003). Adeno-associated viral vectors for retinal gene transfer. Progress in Retinal and Eye Research, 22, 705–719.PubMedCrossRefGoogle Scholar
  47. Van Quill, K. R., Dioguardi, P. K., Tong, C. T., Gilbert, J. A., Aaberg, T. M., Jr., Grossniklaus, H. E., et al. (2005). Subconjunctival carboplatin in fibrin sealant in the treatment of transgenic murine retinoblastoma. Ophthalmology, 112(6), 1151–1158.PubMedCrossRefGoogle Scholar
  48. Voutsadakis, I. A. (2000). Interferon-alpha and the pathogenesis of myeloproliferative disorders. Medical Oncology, 17, 249–257.PubMedCrossRefGoogle Scholar
  49. Wadhwa, P. D., Zielske, S. P., Roth, J. C., Ballas, C. B., Bowman, J. E., & Gerson, S. L. (2002). Cancer gene therapy: Scientific basis. Annual Review of Medicine, 53, 437–452.PubMedCrossRefGoogle Scholar
  50. Yoshida, J., Mizuno, M., & Wakabayashi, T. (2004). Interferon-beta gene therapy for cancer: Basic research to clinical application. Cancer Science, 95, 858–865.PubMedCrossRefGoogle Scholar
  51. Zhu, C. C., Dyer, M. A., Uchikawa, M., Kondoh, H., Lagutin, O. V., & Oliver, G. (2002). Six3-mediated auto repression and eye development requires its interaction with members of the Groucho-related family of co-repressors. Development, 129(12), 2835–2849.PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2009

Authors and Affiliations

  • Chie-Schin Shih
    • 1
    • 2
  • Nikia Laurie
    • 1
  • Jeremy Holzmacher
    • 1
  • Yunyu Spence
    • 3
  • Amit C. Nathwani
    • 4
  • Andrew M. Davidoff
    • 3
    • 5
  • Michael A. Dyer
    • 1
    • 6
  1. 1.Department of Developmental NeurobiologySt. Jude Children’s Research HospitalMemphisUSA
  2. 2.Department of Pediatric Hematology/OncologyIndiana University School of MedicineIndianapolisUSA
  3. 3.Department of SurgerySt. Jude Children’s Research HospitalMemphisUSA
  4. 4.Department of HematologyUniversity College LondonLondonUK
  5. 5.Department of SurgeryUniversity of Tennessee Health Sciences CenterMemphisUSA
  6. 6.Department of OphthalmologyUniversity of Tennessee Health Sciences CenterMemphisUSA

Personalised recommendations