NeuroMolecular Medicine

, Volume 10, Issue 4, pp 209–218 | Cite as

Impact of Energy Intake and Expenditure on Neuronal Plasticity

Review Paper


The Roman poet Horace was among the first to recognize that when “clogged with yesterday’s excess, the body drags the mind down with it.” Although considerable attention has been paid in neuroscience to the enhancement of neuronal function by wheel running and caloric restriction, far less is known about the other side of this issue. What are the consequences of unhealthy habits to central nervous system function? Prolonged exposure to excessive caloric intake impairs neuronal function and also contributes to obesity and other risk factors for diabetes. Diabetes, a disease characterized by reduced sensitivity to glucose and insulin, is also associated with deficits in brain structure and function. In contrast, enhancement of somatic metabolism by wheel running or caloric restriction improves central neuroplasticity. Generalizing across studies reveals a relationship between global metabolic efficiency and neuroplasticity in the hippocampus, a brain region that is essential for learning and memory. The specific principles upheld by these findings are suggestive of a continuum, with global metabolic alterations fluctuating in concert with neuroplasticity in the hippocampus.


Diet Hippocampus Caloric restriction Exercise 



This work was supported by a NRSA predoctoral fellowship to A. S. and by the National Institute on Aging Intramural Research Program.


  1. Adlard, P. A., & Cotman, C. W. (2004). Voluntary exercise protects against stress-induced decreases in brain-derived neurotrophic factor protein expression. Neuroscience, 124, 985–992.PubMedCrossRefGoogle Scholar
  2. Adlard, P. A., Perreau, V. M., Pop, V., & Cotman, C. W. (2005). Voluntary exercise decreases amyloid load in a transgenic model of Alzheimer’s disease. Journal of Neuroscience, 25, 4217–4221.PubMedCrossRefGoogle Scholar
  3. Altman, J. (1962). Are new neurons formed in the brains of adult mammals? Science, 135, 1127–1128.PubMedCrossRefGoogle Scholar
  4. Andrade, J. P., Castanheira-Vale, A. J., Paz-Dias, P. G., Madeira, M. D., & Paula-Barbosa, M. M. (1996). The dendritic trees of neurons from the hippocampal formation of protein-deprived adult rats. A quantitative Golgi study. Experimental Brain Research, 109, 419–433.Google Scholar
  5. Andrade, J. P., Lukoyanov, N. V., & Paula-Barbosa, M. M. (2002). Chronic food restriction is associated with subtle dendritic alterations in granule cells of the rat hippocampal formation. Hippocampus, 12, 149–164.PubMedCrossRefGoogle Scholar
  6. Asztely, F., Kokaia, M., Olofsdotter, K., Ortegren, U., & Lindvall, O. (2000). Afferent-specific modulation of short-term synaptic plasticity by neurotrophins in dentate gyrus. European Journal of Neuroscience, 12, 662–669.CrossRefGoogle Scholar
  7. Barsh, G. S., Farooqi, I. S., & O’Rahilly, S. (2000). Genetics of body-weight regulation. Nature, 404, 644–651.PubMedGoogle Scholar
  8. Biessels, G. J., Kamal, A., Ramakers, G. M., Urban, I. J., Spruijt, B. M., Erkelens, D. W., et al. (1996). Place learning and hippocampal synaptic plasticity in streptozotocin-induced diabetic rats. Diabetes, 45(9), 1259–1266.PubMedCrossRefGoogle Scholar
  9. Bliss, T. V., & Lomo, T. (1973). Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. Journal of Physiology, 232, 331–356.PubMedGoogle Scholar
  10. Bloomgarden, Z. T. (2004). Type 2 diabetes in the young: The evolving epidemic. Diabetes Care, 27, 998–1010.PubMedCrossRefGoogle Scholar
  11. Broadbent, N. J., Squire, L. R., & Clark, R. E. (2004). Spatial memory, recognition memory, and the hippocampus. Proceedings of the National Academy of Sciences of the United States of America, 101, 14515–14520.PubMedCrossRefGoogle Scholar
  12. Burkhalter, J., Fiumelli, H., Allaman, I., Chatton, J. Y., & Martin, J. L. (2003). Brain-derived neurotrophic factor stimulates energy metabolism in developing cortical neurons. Journal of Neuroscience, 23, 8212–8220.PubMedGoogle Scholar
  13. Burns, J. M., Donnelly, J. E., Anderson, H. S., Mayo, M. S., Spencer-Gardner, L., Thomas, G., et al. (2007). Peripheral insulin and brain structure in early Alzheimer disease. Neurology, 69, 1094–1104.PubMedCrossRefGoogle Scholar
  14. Cameron, H. A., & McKay, R. D. (2001). Adult neurogenesis produces a large pool of new granule cells in the dentate gyrus. Journal of Comparative Neurology, 435, 406–417.PubMedCrossRefGoogle Scholar
  15. Carro, E., Trejo, J. L., Busiguina, S., & Torres-Aleman, I. (2001). Circulating insulin-like growth factor I mediates the protective effects of physical exercise against brain insults of different etiology and anatomy. Journal of Neuroscience, 21, 5678–5684.PubMedGoogle Scholar
  16. Chen, M. J., & Russo-Neustadt, A. A. (2007). Running exercise- and antidepressant-induced increases in growth and survival-associated signaling molecules are IGF-dependent. Growth Factors, 25, 118–131.PubMedCrossRefGoogle Scholar
  17. Clark, R. E., Zola, S. M., & Squire, L. R. (2000). Impaired recognition memory in rats after damage to the hippocampus. Journal of Neuroscience, 20, 8853–8860.PubMedGoogle Scholar
  18. Colino, A., & Malenka, R. C. (1993). Mechanisms underlying induction of long-term potentiation in rat medial and lateral perforant paths in vitro. Journal of Neurophysiology, 69, 1150–1159.PubMedGoogle Scholar
  19. Convit, A., Wolf, O. T., Tarshish, C., & de Leon, M. J. (2003). Reduced glucose tolerance is associated with poor memory performance and hippocampal atrophy among normal elderly. Proceedings of the National Academy of Sciences of the United States of America, 100, 2019–2022.PubMedCrossRefGoogle Scholar
  20. Cotman, C. W., Berchtold, N. C., & Christie, L. A. (2007). Exercise builds brain health, key roles of growth factor cascades and inflammation. Trends in Neurosciences, 30, 464–472.PubMedCrossRefGoogle Scholar
  21. Dandona, P., Aljada, A., & Bandyopadhyay, A. (2004). Inflammation: The link between insulin resistance, obesity and diabetes. Trends in Immunology, 25(1), 4–7.PubMedCrossRefGoogle Scholar
  22. DelParigi, A., Chen, K., Salbe, A. D., Hill, J. O., Wing, R. R., Reiman, E. M., et al. (2004). Persistence of abnormal neural responses to a meal in postobese individuals. International Journal of Obesity and Related Metabolic Disorders, 28(3), 370–377.PubMedCrossRefGoogle Scholar
  23. den Heijer, T., Vermeer, S. E., van Dijk, E. J., Prins, N. D., Koudstaal, P. J., Hofman, A., et al. (2003). Type 2 diabetes and atrophy of medial temporal lobe structures on brain. MRI. Diabetologia, 46, 1604–1610.CrossRefGoogle Scholar
  24. Dore, S., Kar, S., & Quirion, R. (1997). Rediscovering an old friend, IGF-I, potential use in the treatment of neurodegenerative diseases. Trends in Neurosciences, 20, 326–331.PubMedCrossRefGoogle Scholar
  25. Duan, W., Guo, Z., Jiang, H., Ware, M., & Mattson, M. P. (2003). Reversal of behavioral and metabolic abnormalities, and insulin resistance syndrome, by dietary restriction in mice deficient in brain-derived neurotrophic factor. Endocrinology, 144, 2446–2453.PubMedCrossRefGoogle Scholar
  26. Eadie, B. D., Redila, V. A., & Christie, B. R. (2005). Voluntary exercise alters the cytoarchitecture of the adult dentate gyrus by increasing cellular proliferation, dendritic complexity, and spine density. Journal of Comparative Neurology, 486, 39–47.PubMedCrossRefGoogle Scholar
  27. Engert, F., & Bonhoeffer, T. (1999). Dendritic spine changes associated with hippocampal long-term synaptic plasticity. Nature, 399, 66–70.PubMedCrossRefGoogle Scholar
  28. Esposito, M. S., Piatti, V. C., Laplagne, D. A., Morgenstern, N. A., Ferrari, C. C., Pitossi, F. J., et al. (2005). Neuronal differentiation in the adult hippocampus recapitulates embryonic development. Journal of Neuroscience, 25, 10074–10086.PubMedCrossRefGoogle Scholar
  29. Farmer, J., Zhao, X., van Praag, H., Wodtke, K., Gage, F. H., & Christie, B. R. (2004). Effects of voluntary exercise on synaptic plasticity and gene expression in the dentate gyrus of adult male Sprague-Dawley rats in vivo. Neuroscience, 124, 71–79.PubMedCrossRefGoogle Scholar
  30. Fedulov, V., Rex, C. S., Simmons, D. A., Palmer, L., Gall, C. M., & Lynch, G. (2007). Evidence that long-term potentiation occurs within individual hippocampal synapses during learning. Journal of Neuroscience, 27, 8031–8039.PubMedCrossRefGoogle Scholar
  31. Fiala, B. A., Joyce, J. N., & Greenough, W. T. (1978). Environmental complexity modulates growth of granule cell dendrites in developing but not adult hippocampus of rats. Experimental Neurology, 59, 372–383.PubMedCrossRefGoogle Scholar
  32. Fontán-Lozano, A., Sáez-Cassanelli, J. L., Inda, M. C., de los Santos-Arteaga, M., Sierra-Domínguez, S. A., López-Lluch, G., et al. (2007). Caloric restriction increases learning consolidation and facilitates synaptic plasticity through mechanisms dependent on NR2B subunits of the NMDA receptor. Journal of Neuroscience, 27, 10185–10195.PubMedCrossRefGoogle Scholar
  33. Ge, S., Goh, E. L., Sailor, K. A., Kitabatake, Y., Ming, G. L., & Song, H. (2006). GABA regulates synaptic integration of newly generated neurons in the adult brain. Nature, 439, 589–593.PubMedCrossRefGoogle Scholar
  34. Ge, S., Yang, C. H., Hsu, K. S., Ming, G. L., & Song, H. (2007). A critical period for enhanced synaptic plasticity in newly generated neurons of the adult brain. Neuron, 54, 559–566.PubMedCrossRefGoogle Scholar
  35. Gold, S. M., Dziobek, I., Sweat, V., Tirsi, A., Rogers, K., Bruehl, H., et al. (2007). Hippocampal damage and memory impairments as possible early brain complications of type 2 diabetes. Diabetologia, 50, 711–719.PubMedCrossRefGoogle Scholar
  36. Green, K. N., Billings, L. M., Roozendaal, B., McGaugh, J. L., & LaFerla, F. M. (2006). Glucocorticoids increase amyloid-beta and tau pathology in a mouse model of Alzheimer’s disease. Journal of Neuroscience, 26, 9047–9056.PubMedCrossRefGoogle Scholar
  37. Halagappa, V. K., Guo, Z., Pearson, M., Matsuoka, Y., Cutler, R. G., Laferla, F. M., et al. (2007). Intermittent fasting and caloric restriction ameliorate age-related behavioral deficits in the triple-transgenic mouse model of Alzheimer’s disease. Neurobiology of Disease, 26, 212–220.PubMedCrossRefGoogle Scholar
  38. Hanse, E., & Gustafsson, B. (1992). Long-term Potentiation and Field EPSPs in the Lateral and Medial Perforant Paths in the Dentate Gyrus In Vitro, a Comparison. European Journal of Neuroscience, 4, 1191–1201.PubMedCrossRefGoogle Scholar
  39. Hastings, N. B., & Gould, E. (1999). Rapid extension of axons into the CA3 region by adult-generated granule cells. Journal of Comparative Neurology, 413, 146–154.PubMedCrossRefGoogle Scholar
  40. Hayes, N. L., & Nowakowski, R. S. (2002). Dynamics of cell proliferation in the adult dentate gyrus of two inbred strains of mice. Brain Research. Developmental Brain Research, 134, 77–85.PubMedCrossRefGoogle Scholar
  41. Hebb, D. O. (1949). The organization of behavior: A neuropsychological theory. New York: John Wiley and Sons, Inc.Google Scholar
  42. Hillman, C. H., Erickson, K. I., & Kramer, A. F. (2008). Be smart, exercise your heart, exercise effects on brain and cognition. Nature Reviews in the Neurosciences, 9, 58–65.PubMedCrossRefGoogle Scholar
  43. Ho, L., Qin, W., Pompl, P. N., Xiang, Z., Wang, J., Zhao, Z., et al. (2004). Diet-induced insulin resistance promotes amyloidosis in a transgenic mouse model of Alzheimer’s disease. FASEB Journal, 18, 902–904.PubMedGoogle Scholar
  44. Holtmaat, A. J., Trachtenberg, J. T., Wilbrecht, L., Shepherd, G. M., Zhang, X., Knott, G. W., et al. (2005). Transient and persistent dendritic spines in the neocortex in vivo. Neuron, 45, 279–291.PubMedCrossRefGoogle Scholar
  45. Jackson-Guilford, J., Leander, J. D., & Nisenbaum, L. K. (2000). The effect of streptozotocin-induced diabetes on cell proliferation in the rat dentate gyrus. Neuroscience Letters, 293, 91–94.PubMedCrossRefGoogle Scholar
  46. Jagust, W., Harvey, D., Mungas, D., & Haan, M. (2005). Central obesity and the aging brain. Archives of Neurology, 62(10), 1545–1548.PubMedCrossRefGoogle Scholar
  47. Jakubs, K., Nanobashvili, A., Bonde, S., Ekdahl, C. T., Kokaia, Z., Kokaia, M., et al. (2006). Environment matters, synaptic properties of neurons born in the epileptic adult brain develop to reduce excitability. Neuron, 52, 1047–1059.PubMedCrossRefGoogle Scholar
  48. Juraska, J. M., Fitch, J. M., Henderson, C., & Rivers, N. (1985). Sex differences in dendritic branching of dentate granule cells following differential experience. Brain Research, 333, 73–80.PubMedCrossRefGoogle Scholar
  49. Kamal, A., Biessels, G. J., Urban, I. J., & Gispen, W. H. (1999). Hippocampal synaptic plasticity in streptozotocin-diabetic rats, impairment of long-term potentiation and facilitation of long-term depression. Neuroscience, 90, 737–745.PubMedCrossRefGoogle Scholar
  50. Kempermann, G., Jessberger, S., Steiner, B., & Kronenberg, G. (2004). Milestones of neuronal development in the adult hippocampus. Trends in Neurosciences, 27, 447–452.PubMedCrossRefGoogle Scholar
  51. Kim, E., Sohn, S., Lee, M., Jung, J., Kineman, R. D., & Park, S. (2006). Differential responses of the growth hormone axis in two rat models of streptozotocin-induced insulinopenic diabetes. Journal of Endocrinology, 188, 263–270.PubMedCrossRefGoogle Scholar
  52. Korf, E. S., White, L. R., Scheltens, P., & Launer, L. J. (2006). Brain aging in very old men with type 2 diabetes, the Honolulu-Asia Aging Study. Diabetes Care, 29, 2268–2274.PubMedCrossRefGoogle Scholar
  53. Kozorovitskiy, Y., Gross, C. G., Kopil, C., Battaglia, L., McBreen, M., Stranahan, A. M., et al. (2005). Experience induces structural and biochemical changes in the adult primate brain. Proceedings of the National Academy of Sciences of the United States of America, 102, 17478–17482.PubMedCrossRefGoogle Scholar
  54. Kumari, R., Willing, L. B., Krady, J. K., Vannucci, S. J., & Simpson, I. A. (2007). Impaired wound healing after cerebral hypoxia-ischemia in the diabetic mouse. Journal of Cerebral Blood Flow and Metabolism, 27, 710–718.PubMedGoogle Scholar
  55. LaManna, J. C., & Harik, S. I. (1985). Regional comparisons of brain glucose influx. Brain Research, 326, 299–305.PubMedCrossRefGoogle Scholar
  56. Lang, C., Barco, A., Zablow, L., Kandel, E. R., Siegelbaum, S. A., & Zakharenko, S. S. (2004). Transient expansion of synaptically connected dendritic spines upon induction of hippocampal long-term potentiation. Proceedings of the National Academy of Sciences of the United States of America, 101, 16665–16670.PubMedCrossRefGoogle Scholar
  57. Larson, E. B., Wang, L., Bowen, J. D., McCormick, W. C., Teri, L., Crane, P., et al. (2006). Exercise is associated with reduced risk for incident dementia among persons 65 years of age and older. Annals of Internal Medicine, 144, 73–81.PubMedGoogle Scholar
  58. Lee, J., Duan, W., & Mattson, M. P. (2002). Evidence that brain-derived neurotrophic factor is required for basal neurogenesis and mediates, in part, the enhancement of neurogenesis by dietary restriction in the hippocampus of adult mice. Journal of Neurochemistry, 82, 1367–1375.PubMedCrossRefGoogle Scholar
  59. Leuner, B., Gould, E., & Shors, T. J. (2006). Is there a link between adult neurogenesis and learning? Hippocampus, 16, 216–224.PubMedCrossRefGoogle Scholar
  60. Li, X. L., Aou, S., Oomura, Y., Hori, N., Fukunaga, K., & Hori, T. (2002). Impairment of long-term potentiation and spatial memory in leptin receptor-deficient rodents. Neuroscience, 113, 607–615.PubMedCrossRefGoogle Scholar
  61. Lindqvist, A., Mohapel, P., Bouter, B., Frielingsdorf, H., Pizzo, D., Brundin, P., et al. (2006). High-fat diet impairs hippocampal neurogenesis in male rats. European Journal of Neurology, 13, 1385–1388.PubMedCrossRefGoogle Scholar
  62. Lupien, S. B., Bluhm, E. J., & Ishii, D. N. (2003). Systemic insulin-like growth factor-I administration prevents cognitive impairment in diabetic rats, and brain IGF regulates learning/memory in normal adult rats. Journal of Neuroscience Research, 74, 512–523.PubMedCrossRefGoogle Scholar
  63. Magarinos, A. M., & McEwen, B. S. (2000). Experimental diabetes in rats causes hippocampal dendritic and synaptic reorganization and increased glucocorticoid reactivity to stress. Proceedings of the National Academy of Sciences of the United States of America, 97, 11056–11061.PubMedCrossRefGoogle Scholar
  64. Maher, P., Akaishi, T., & Abe, K. (2006). Flavonoid fisetin promotes ERK-dependent long-term potentiation and enhances memory. Proceedings of the National Academy of Sciences of the United States of America, 103, 16568–16573.PubMedCrossRefGoogle Scholar
  65. Mandyam, C. D., Harburg, G. C., & Eisch, A. J. (2007). Determination of key aspects of precursor cell proliferation, cell cycle length and kinetics in the adult mouse subgranular zone. Neuroscience, 146, 108–122.PubMedCrossRefGoogle Scholar
  66. Martínez-Tellez, R., Gómez-Villalobos Mde, J., & Flores, G. (2005). Alteration in dendritic morphology of cortical neurons in rats with diabetes mellitus induced by streptozotocin. Brain Research, 1048, 108–115.PubMedCrossRefGoogle Scholar
  67. Matsuo, N., Reijmers, L., & Mayford, M. (2008). Spine-type-specific recruitment of newly synthesized AMPA receptors with learning. Science, 319(5866), 1104–1107.PubMedCrossRefGoogle Scholar
  68. Mayeux, R. (2003). Epidemiology of neurodegeneration. Annual Review of Neuroscience, 26, 81–104.PubMedCrossRefGoogle Scholar
  69. McEwen, B. S. (2001). Plasticity of the hippocampus: Adaptation to chronic stress and allostatic load. Annals of the New York Academy of Sciences, 933, 265–277.PubMedGoogle Scholar
  70. McEwen, B. S., & Reagan, L. P. (2004). Glucose transporter expression in the central nervous system, relationship to synaptic function. European Journal of Pharmacology, 490, 13–24.PubMedCrossRefGoogle Scholar
  71. Messier, C. (2005). Impact of impaired glucose tolerance and type 2 diabetes on cognitive aging. Neurobiology of Aging, 26(Suppl 1), 26–30.PubMedCrossRefGoogle Scholar
  72. Mielke, J. G., Nicolitch, K., Avellaneda, V., Earlam, K., Ahuja, T., Mealing, G., et al. (2006). Longitudinal study of the effects of a high-fat diet on glucose regulation, hippocampal function, and cerebral insulin sensitivity in C57BL/6 mice. Behavioural Brain Research, 175(2), 374–382.PubMedCrossRefGoogle Scholar
  73. Molteni, R., Barnard, R. J., Ying, Z., Roberts, C. K., & Gomez-Pinilla, F. (2002). A high-fat, refined sugar diet reduces hippocampal brain-derived neurotrophic factor, neuronal plasticity, and learning. Neuroscience, 112, 803–814.PubMedCrossRefGoogle Scholar
  74. Morris, R. G. (2001). Episodic-like memory in animals, psychological criteria, neural mechanisms and the value of episodic-like tasks to investigate animal models of neurodegenerative disease. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 356, 1453–1465.PubMedCrossRefGoogle Scholar
  75. Morris, R. G., Anderson, E., Lynch, G. S., & Baudry, M. (1986). Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist, AP5. Nature, 319, 774–776.PubMedCrossRefGoogle Scholar
  76. Nakagawa, T., Tsuchida, A., Itakura, Y., Nonomura, T., Ono, M., Hirota, F., et al. (2000). Brain-derived neurotrophic factor regulates glucose metabolism by modulating energy balance in diabetic mice. Diabetes, 49, 436–444.PubMedCrossRefGoogle Scholar
  77. Nakazawa, K., McHugh, T. J., Wilson, M. A., & Tonegawa, S. (2004). NMDA receptors, place cells and hippocampal spatial memory. Nature Reviews in the Neurosciences, 5, 361–372.PubMedCrossRefGoogle Scholar
  78. Neeper, S. A., Gomez-Pinilla, F., Choi, J., & Cotman, C. (1995). Exercise and brain neurotrophins. Nature, 373, 109.PubMedCrossRefGoogle Scholar
  79. Niedernhofer, L. J., Garinis, G. A., Raams, A., Lalai, A. S., Robinson, A. R., Appeldoorn, E., et al. (2006). A new progeroid syndrome reveals that genotoxic stress suppresses the somatotroph axis. Nature, 444, 1038–1043.PubMedCrossRefGoogle Scholar
  80. Nikonenko, I., Jourdain, P., Alberi, S., Toni, N., & Muller, D. (2002). Activity-induced changes of spine morphology. Hippocampus, 12, 585–591.PubMedCrossRefGoogle Scholar
  81. Pasquier, F., Boulogne, A., Leys, D., & Fontaine, P. (2006). Diabetes mellitus and dementia. Diabetes & Metabolism, 32, 403–414.PubMedCrossRefGoogle Scholar
  82. Pereira, A. C., Huddleston, D. E., Brickman, A. M., Sosunov, A. A., Hen, R., McKhann, G. M., et al. (2007). An in vivo correlate of exercise-induced neurogenesis in the adult dentate gyrus. Proceedings of the National Academy of Sciences of the United States of America, 104, 5638–5643.PubMedCrossRefGoogle Scholar
  83. Pysh, J. J., & Weiss, M. (1979). Exercise during development induces an increase in Purkinje cell dendritic tree size. Science, 206, 230–232.PubMedCrossRefGoogle Scholar
  84. Redila, V. A., & Christie, B. R. (2006). Exercise-induced changes in dendritic structure and complexity in the adult hippocampal dentate gyrus. Neuroscience, 137, 1299–1307.PubMedCrossRefGoogle Scholar
  85. Sapolsky, R. M. (1986). Glucocorticoid toxicity in the hippocampus, reversal by supplementation with brain fuels. Journal of Neuroscience, 6, 2240–2244.PubMedGoogle Scholar
  86. Sauvage, M. M., Fortin, N. J., Owens, C. B., Yonelinas, A. P., & Eichenbaum, H. (2008). Recognition memory, opposite effects of hippocampal damage on recollection and familiarity. Nature Neuroscience, 11, 16–18.PubMedCrossRefGoogle Scholar
  87. Schmidt-Hieber, C., Jonas, P., & Bischofberger, J. (2004). Enhanced synaptic plasticity in newly generated granule cells of the adult hippocampus. Nature, 429, 184–187.PubMedCrossRefGoogle Scholar
  88. Sorra, K. E., & Harris, K. M. (2000). Overview on the structure, composition, function, development, and plasticity of hippocampal dendritic spines. Hippocampus, 10, 501–511.PubMedCrossRefGoogle Scholar
  89. Squire, L. R., Wixted, J. T., & Clark, R. E. (2007). Recognition memory and the medial temporal lobe, a new perspective. Nature Reviews in the Neurosciences, 8, 872–883.PubMedCrossRefGoogle Scholar
  90. Stranahan, A. M., Arumugam, T. V., Cutler, R. G., Lee, K., Egan, J. M., & Mattson, M. P. (2008). Diabetes impairs hippocampal function through glucocorticoid-mediated effects on new and mature neurons. Nature Neuroscience, 11(3), 309–317.PubMedCrossRefGoogle Scholar
  91. Stranahan, A. M., Khalil, D., & Gould, E. (2006). Social isolation delays the positive effects of running on adult neurogenesis. Nature Neuroscience, 9, 526–533.PubMedCrossRefGoogle Scholar
  92. Stranahan, A. M., Khalil, D., & Gould, E. (2007). Running induces widespread structural alterations in the hippocampus and entorhinal cortex. Hippocampus, 17, 1017–1022.PubMedCrossRefGoogle Scholar
  93. Tang, Y. P., Shimizu, E., Dube, G. R., Rampon, C., Kerchner, G. A., Zhuo, M., et al. (1999). Genetic enhancement of learning and memory in mice. Nature, 401, 63–69.PubMedCrossRefGoogle Scholar
  94. Tataranni, P. A. (2000). Mechanisms of weight gain in humans. European Review for Medical and Pharmacological Sciences, 4, 1–7.PubMedGoogle Scholar
  95. Toni, N., Teng, E. M., Bushong, E. A., Aimone, J. B., Zhao, C., Consiglio, A., et al. (2007). Synapse formation on neurons born in the adult hippocampus. Nature Neuroscience, 10, 727–734.PubMedCrossRefGoogle Scholar
  96. Trejo, J. L., Carro, E., & Torres-Aleman, I. (2001). Circulating insulin-like growth factor I mediates exercise-induced increases in the number of new neurons in the adult hippocampus. Journal of Neuroscience, 21, 1628–1634.PubMedGoogle Scholar
  97. Van der Borght, K., Havekes, R., Bos, T., Eggen, B. J., & Van der Zee, E. A. (2007). Exercise improves memory acquisition and retrieval in the Y-maze task: Relationship with hippocampal neurogenesis. Behavioral Neuroscience, 121, 324–334.PubMedCrossRefGoogle Scholar
  98. van Praag, H., Christie, B. R., Sejnowski, T. J., & Gage, F. H. (1999a). Running enhances neurogenesis, learning, and long-term potentiation in mice. Proceedings of the National Academy of Sciences of the United States of America, 96, 13427–13431.PubMedCrossRefGoogle Scholar
  99. van Praag, H., Kempermann, G., & Gage, F. H. (1999b). Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nature Neuroscience, 2, 266–270.PubMedCrossRefGoogle Scholar
  100. van Praag, H., Schinder, A. F., Christie, B. R., Toni, N., Palmer, T. D., & Gage, F. H. (2002). Functional neurogenesis in the adult hippocampus. Nature, 415, 1030–1034.PubMedCrossRefGoogle Scholar
  101. Wang, G. J., Yang, J., Volkow, N. D., Telang, F., Ma, Y., Zhu, W., et al. (2006). Gastric stimulation in obese subjects activates the hippocampus and other regions involved in brain reward circuitry. Proceedings of the National Academy of Sciences of the United States of America, 103(42), 15641–15645.PubMedCrossRefGoogle Scholar
  102. Watanabe, Y., Gould, E., & McEwen, B. S. (1992). Stress induces atrophy of apical dendrites of hippocampal CA3 pyramidal neurons. Brain Research, 588, 341–345.PubMedCrossRefGoogle Scholar
  103. Wolf, S. A., Kronenberg, G., Lehmann, K., Blankenship, A., Overall, R., Staufenbiel, M., et al. (2006). Cognitive and physical activity differently modulate disease progression in the amyloid precursor protein (APP)-23 model of Alzheimer’s disease. Biological Psychiatry, 60(12), 1314–1323.PubMedCrossRefGoogle Scholar
  104. Yeo, G. S., Connie Hung, C. C., Rochford, J., Keogh, J., Gray, J., Sivaramakrishnan, S., et al. (2004). A de novo mutation affecting human TrkB associated with severe obesity and developmental delay. Nature Neuroscience, 7, 1187–1189.PubMedCrossRefGoogle Scholar
  105. Yuste, R., & Bonhoeffer, T. (2001). Morphological changes in dendritic spines associated with long-term synaptic plasticity. Annual Review of Neuroscience, 24, 1071–1089.PubMedCrossRefGoogle Scholar
  106. Zhang, W. J., Tan, Y. F., Yue, J. T., Vranic, M., & Wojtowicz, J. M. (2008). Impairment of hippocampal neurogenesis in streptozotocin-treated diabetic rats. Acta Neurologica Scandinavica, 117, 205–210.PubMedCrossRefGoogle Scholar
  107. Zhao, C., Teng, E. M., Summers, R. G., Jr., Ming, G. L., & Gage, F. H. (2006). Distinct morphological stages of dentate granule neuron maturation in the adult mouse hippocampus. Journal of Neuroscience, 26, 3–11.PubMedCrossRefGoogle Scholar
  108. Zhou, Q., Homma, K. J., & Poo, M. M. (2004). Shrinkage of dendritic spines associated with long-term depression of hippocampal synapses. Neuron, 44, 749–757.PubMedCrossRefGoogle Scholar

Copyright information

© U.S. Government 2008

Authors and Affiliations

  1. 1.Cellular and Molecular Neuroscience Section, Laboratory of NeurosciencesNational Institute on Aging Intramural Research Program Balitmore USA

Personalised recommendations