NeuroMolecular Medicine

, 10:247 | Cite as

Dietary Amino Acids and Brain Serotonin Function; Implications for Stress-Related Affective Changes

Review Paper

Abstract

Stress-related mood deterioration and affective disorders, such as depression, are among the leading causes of disease burden throughout the world, and are associated with severe medical consequences and mortality. Research has shown the involvement of dysfunctional brain serotonin (5-HT) biochemistry as a vulnerable biological factor in the onset of mood disturbances. Since the production of brain serotonin is limited by the availability of its plasma dietary amino acid precursor tryptophan, different foods and dietary amino acids that influence tryptophan availability are thought to alter affective behavior by changing brain 5-HT synthesis. Most dietary manipulation studies, however, reveal only modest affective changes, and note that these particularly occur in stress-prone or affected (sub-clinical) subjects. The current paper briefly summarizes evidence for the involvement of diminished brain serotonin function in affective disorders, discusses how this can be assessed and influenced by dietary manipulation procedures, and also notes how beneficial effects of dietary brain serotonin manipulation on affective behavior may be mediated by stress-induced brain serotonin vulnerability.

Keywords

Stress Serotonin Mood Food Tryptophan Carbohydrates 

References

  1. Adell, A., Garcia-Marquez, C., Armario, A., & Gelpi, E. (1988). Chronic stress increases serotonin and noradrenaline in rat brain and sensitizes their responses to a further acute stress’. Journal of Neurochemistry, 50, 1678–1681.PubMedCrossRefGoogle Scholar
  2. Aghajanian, G. K., & Sanders-Bush, E. (2002). Serotonin. In K. L. Davis, D. Charney, J. T. Coyle, & C. Nemeroff (Eds.), Neuropsychopharmacology; The fifth generation of progress. Philadelphia: Lippincott Williams & Wilkins.Google Scholar
  3. Agren, H., & Reibring, L. (1994). PET studies of presynaptic monoamine metabolism in depressed patients and healthy volunteers. Pharmacopsychiatry, 27, 2–6.PubMedCrossRefGoogle Scholar
  4. Akil, H. A., & Morano, M. I. (1995). Stress. In F. E. Bloom & D. J. Kupfer (Eds.), Psychopharmacology: The fourth generation of progress (pp. 933–944). New York: Raven Press.Google Scholar
  5. Akiskal, H. S. (2005). Mood disorders: Historical introduction and conceptual overview. In B. J. Sadock & V. A. Sadock (Eds.), Kaplan & Sadock’s Comprehensive Textbook of Psychiatry. Philadelphia: Lippincott Williams & Wilkins.Google Scholar
  6. American Psychiatric Association. (1994). Diagnostic and Statistical Manual of Mental Disorders (4th ed.). Washington, DC: American Psychiatric Association.Google Scholar
  7. Azmitia, E. C., & Whitaker-Azmitia, P. M. (1995). Anatomy, cell biology and placticity of the serotonergic system. In F. E. Bloom & D. J. Kupfer (Eds.), Psychopharmacology: The fourth generation of progress (pp. 343–449). New York: Raven Press.Google Scholar
  8. Bell, C., Abrams, J., & Nutt, D. (2001). Tryptophan depletion and its implications for psychiatry. British Journal of Psychiatry, 178, 399–405.PubMedCrossRefGoogle Scholar
  9. Benkelfat, C., Ellenbogen, M. A., Dean, P., Palmour, R. M., & Young, S. (1994). Mood-lowering effect of tryptophan depletion’. Archives of General Psychiatry, 51, 687–697.PubMedGoogle Scholar
  10. Biggio, G., Fadda, F., Fanni, P., Tagliamonte, A., & Gessa, G. L. (1974). Rapid depletion of serum tryptophan, brain tryptophan, serotonin and 5-hydroxyindoleacetic acid by a tryptophan-free diet. Life Sciences, 14, 1321–1329.PubMedCrossRefGoogle Scholar
  11. Bolger, N., & Schilling, E. A. (1991). Personality and the problems of everyday life: The role of neuroticism in exposure and reactivity to daily stressors. Journal of personality, 59, 355–386.PubMedCrossRefGoogle Scholar
  12. Booij, L., Merens, W., Markus, C. R., & Van der Does, A. J. W. (2006). Diet rich in alpha-lactalbumin improves memory in unmedicated recovered depressed patients and matched controls. Journal of Psychopharmacology, 20(4), 526–535.PubMedCrossRefGoogle Scholar
  13. Brown, G. W., Bifulco, A., & Harris, T. O. (1987). Life events, vulnerability and onset of depression: Some refinements’. British Journal of Psychiatry, 150, 30–42.PubMedCrossRefGoogle Scholar
  14. Brown, G. W., & Harris, T. O. (1994). Life events and endogenous depression: A puzzle re-examined. Archives of General Psychiatry, 51, 525–534.PubMedGoogle Scholar
  15. Carpenter, L. L., Anderson, G. M., Pelton, G. H., Gudin, J. A., Kirwin, P. D., Price, L. H., et al. (1998). Tryptophan depletion during continuous CSF sampling in healthy human subjects. Neuropsychopharmacology, 19, 26–35.PubMedCrossRefGoogle Scholar
  16. Caspi, A., Sugden, K., Moffitt, T. E., Taylor, A., Craig, I. W., Harrington, H., et al. (2003). Influence of life stress on depression: Moderation by a polymorphism in the 5-HTT gene. Science, 301, 386–389.PubMedCrossRefGoogle Scholar
  17. Christensen, L., Krietsch, K., White, B., & Stagner, B. (1985). Impact of a dietary change on emotional distress. Journal of Abnormal Psychology, 94(4), 565–579.PubMedCrossRefGoogle Scholar
  18. Cowen, P. J., Power, A. C., Ware, C. J., & Anderson, I. M. (1994). 5-HT1a receptor sensitivity in major depression. A neuroendocrine study with buspiron. The British Journal of Psychiatry, 164, 372–379.PubMedCrossRefGoogle Scholar
  19. Curzon, G. (1985). Effects of food intake on brain transmitter amine precursors and amine synthesis. In M. Sandler & T. Silverstone (Eds.), Psychopharmacology and food (pp. 59–70). Oxford: Oxford University Press.Google Scholar
  20. Davidson, R. J., Pizzagalli, D., Nitschke, J. B., & Putnam, K. (2002). Depression; perspectives from affective neuroscience. Annual Review of Psychology, 53, 545–574.PubMedCrossRefGoogle Scholar
  21. Davis, S., Heal, D. J., & Stanfort, S. C. (1995). Long-lasting effects of and acute stress on the neurochemistry and function of 5-Hydroxytryptaminergic neurons in the mouse brain. Psychopharmacology, 118, 267–272.PubMedCrossRefGoogle Scholar
  22. Deijen, J. B., Heemstra, M. L., & Orlebeke, J. F. (1989). Dietary effects on mood and performance. Journal of Psychiatric Research, 23(3/4), 275–283.PubMedCrossRefGoogle Scholar
  23. Delgado, P. L., Charney, D. S., Price, L. H., Aghajanian, G. K., Landis, H., & Heninger, G. R. (1990). Serotonin function and the mechanism of antidepressant action: Reversal of antidepressant-induced remission by rapid depletion of plasma tryptophan. Archives of General Psychiatry, 47, 411–418.PubMedGoogle Scholar
  24. Delgado, P. L., Miller, H. L., Salomon, R. M., Licinio, J., Heninger, G. R., Gelenberg, A. J., et al. (1993). Monoamines and the mechanism of antidepressant action: Effects of catecholamine depletion on mood of patients treated with antidepressants. Psychopharmacology Bulletin, 29(3), 389–396.PubMedGoogle Scholar
  25. Delgado, P. L., Price, L. H., Miller, H. L., Salomon, R. M., Aghajanian, G. K., Heninger, G. R., et al. (1994). Serotonin and the neurobiology of depression; effects of tryptophan depletion in drug-free depressed patients. Archives of General Psychiatry, 51, 865–874.PubMedGoogle Scholar
  26. Duman, R. S., Heninger, G. R., & Nestler, E. J. (1997). A molecular and cellular theory of depression. Archives of General Psychiatry, 54, 597–606.PubMedGoogle Scholar
  27. Eysenck, H. J., & Eysenck, M. W. (1985). Personality and individual differences. New York: Plenum Press.Google Scholar
  28. Fernstrom, J. D. (1990). Aromatic amino acids and monoamine synthesis in the central nervous system: Influence of the diet. The Journal of Nutritional Biochemistry, 1, 508–517.PubMedCrossRefGoogle Scholar
  29. Fernstrom, J. D., Larin, F., & Wurtman, R. J. (1973). Correlations between brain tryptophan and plasma neutral amino acids levels following food consumption in rats. Life Sciences, 13, 517.CrossRefGoogle Scholar
  30. Fernstrom, J. D., & Wurtman, R. J. (1971). Brain serotonin content: Increase following ingestion of carbohydrate diet. Science, 174, 1023–1025.PubMedCrossRefGoogle Scholar
  31. Fernstrom, J. D., & Wurtman, R. J. (1972). Brain serotonin content: Physiological regulation by plasma neutral amino acids. Science, 178, 414–416.PubMedCrossRefGoogle Scholar
  32. Firk, C., & Markus, C. R. (2007). Serotonin by stress interaction a susceptibility factor for the development of depression? Journal of Psychopharmacology, 21(5), 538–544.PubMedCrossRefGoogle Scholar
  33. Gallagher, D. J. (1990). Extraversion, neuroticism and appraisal of stressful academic events. Personality and Individual Differences, 11, 1053–1058.CrossRefGoogle Scholar
  34. Ginovart, N., Wilson, A. A., Meyer, J. H., Hussey, D., & Houle, S. (2003). [11C]-DASB, a tool for in vivo measurement of SSRI-induced occupancy of the serotonin transporter: PET characterization and evaluation in cats. Synapse, 47(2), 123–133.PubMedCrossRefGoogle Scholar
  35. Graeff, F. G., Guimaraes, F. S., de Andrade, T. G. C. S., & Deakin, J. F. W. (1996). Role of 5-HT in stress, anxiety, and depression. Pharmacology, Biochemistry, and Behavior, 54, 129–141.PubMedCrossRefGoogle Scholar
  36. Hariri, A. R., Draband, E. M., Munoz, K. A., Kolachana, B. S., Mattay, V. S., Egan, M. F., et al. (2005). A susceptibility gene for affective disorders and the response of the human amygdala. Archives of General Psychiatry, 62, 146–152.PubMedCrossRefGoogle Scholar
  37. Hartmann, E., Spinweber, C., & Fernstrom, J. (1977). Diet, amino acids and sleep’. Sleep Research, 6, 61.Google Scholar
  38. Heine, W., Radke, M., Wutzke, K. D., Peters, E., & Kundt, G. (1996). Alpha-lactalbumin enriched low-proteiinfant formulas: A comparison to breast milk feeding. Acta Paedriatica, 85, 1024–1028.Google Scholar
  39. Heinz, A., Braus, D. F., Smolka, M. N., Wrase, J., Puls, I., Hermann, D., et al. (2005). Amygdala-prefrontal coupling depends on a genetic variation of the serotonin transporter. Nature Neuroscience, 8(1), 20–21.PubMedCrossRefGoogle Scholar
  40. Heinz, A., Smolka, M. N., Braus, D. F., Wrase, J., Beck, A., Flor, H., et al. (2007). Serotonin transporter genotype (5-HTTLPR): Effects of neutral and undefined conditions on amygdala activation. Biological Psychiatry, 61, 1011–1014.PubMedCrossRefGoogle Scholar
  41. Heninger, G. R., Delgado, P. L., & Charney, D. S. (1996). The revised monoamine theory of depression: A modulatory role for monoamines, based on new findings from monoamine depletion experiments in humans. Pharmacopsychiatry, 29, 2–11.PubMedCrossRefGoogle Scholar
  42. Hu, X., Oroszi, G., Chun, J., Smith, T. L., Goldman, D., & Schuckit, M. A. (2005). An expanded evaluation of the relationship of four alleles to the level of response to alcohol and the alcoholism risk. Alcoholism; Clinical and Experimental Research, 29, 8–16.CrossRefGoogle Scholar
  43. Jans, L., Riedel, W., Markus, C. R., & Blokland, A. (2007). Serotonergic vulnerability and depression: Assumptions, experimental evidence and implications. Molecular Psychiatry, 12, 522–543.PubMedCrossRefGoogle Scholar
  44. Jenaway, A., & Paykel, E. S. (1997). Life events and depression. In A. Honis & H. M. van Praag (Eds.), Depression, Neurobiological, Psychopathological and Therapeutic advances. Chicester: John Wiley & Sons.Google Scholar
  45. Kaye, W. H., Gwirtsman, H. E., Brewerton, T. D., George, D. T., & Wurtman, R. J. (1988). Bingeing behavior and plasma amino acids: A possible involvement of brain serotonin in bulimia nervosa. Psychiatric Research, 23, 31–43.CrossRefGoogle Scholar
  46. Kennett, G. A., Dickinson, S. L., & Curzon, G. (1985). Enhancement of some 5-HT-dependent behavioral responses following repeated immobilisation in rats’. Brain Research, 330, 253–263.PubMedCrossRefGoogle Scholar
  47. Klaassen, T., Riedel, W. J., van Someren, A., Deutz, N. E., Honig, A., & van Praag, H. M. (1999). Mood effects of 24-hour tryptophan depletion in healthy first-degree relatives of patients with affective disorders. Biological Psychiatry, 46, 489–497.PubMedCrossRefGoogle Scholar
  48. Knott, V. J., Howson, A. L., Perugini, M., Ravindran, A. V., & Young, S. N. (1999). The effect of acute tryptophan depletion and fenfluramine on quantitative EEG and mood in healthy male subjects. Biological Psychiatry, 46(2), 229–238.PubMedCrossRefGoogle Scholar
  49. Leathwood, P. D., & Pollet, P. (1982/83). Diet-induced mood changes in normal populations. Journal of Psychiatric Research, 17(2), 147–154.Google Scholar
  50. LeDoux, J. (1996). The Emotional Brain: The mysterious underpinnings of emotional life. New York: Simon & Schuster.Google Scholar
  51. Lesch, K. P. (2001). Serotonergic gene expression and depression: Implications for developing novel antidepressants. Journal of Affective Disorders, 62, 57–76.PubMedCrossRefGoogle Scholar
  52. Leyton, M., Young, S. N., Blier, P., Ellenbogen, M. A., Palmour, R. M., Ghardirian, A. M., et al. (1997). The effect of tryptophan depletion on mood in medication-free, former patients with major affective disorder. Neuropsychopharmacology, 16(4), 294–297.PubMedCrossRefGoogle Scholar
  53. Lieberman, H. R., Wurtman, J. J., & Chew, B. (1986). Changes in mood after carbohydrate consumption among obese individuals. American Journal of Clinical Nutrition, 44, 772–778.PubMedGoogle Scholar
  54. Linthorst, A. C. E. (2005). Stress, corticotrophin-releasing factor and serotonergic neurotransmission. In T. Steckler, N. H. Kalin, & J. M. H. M. Reul (Eds.), Handbook of stress and the brain (Part 1) (pp. 503–524). Amsetrdam: Elsevier.Google Scholar
  55. Lloyd, H. M., Rogers, P. J., & Hedderley, D. I. (1996). Acute effects on mood and performance of breakfast differing in fat and carbohydrate content. Appetite, 27, 151–164.PubMedCrossRefGoogle Scholar
  56. Lotrich, F. E., & Pollock, B. G. (2004). Meta-analysis of serotonin transporter polymorphisms and affective disorders. Psychiatric Genetics, 14(3), 121–129.PubMedCrossRefGoogle Scholar
  57. Luteijn, F., Starren, J., & van Dijk, H. (1975). Dutch personality inventory. Lisse, Netherlands: Swets & Zeitlinger.Google Scholar
  58. Maccari, S., Piazza, P. V., Kabbaj, M., Barbazanges, A., Simons, H., & Le-Moal, M. (1995). Adoption reverses the long-term impairment in glucocorticoid feedback induced by prenatal stress. Journal of Neurosciences, 15, 110–116.Google Scholar
  59. Maes, M., & Meltzer, H. (1995). The serotonin hypothesis of major depression’. In F. E. Bloom & D. J. Kupfer (Eds.), Psychopharmacology; the fourth generation of progress (pp. 933–944). New York: Raven Press.Google Scholar
  60. Malberg, J. E., & Duman, R. S. (2003). Cell proliferation in adult hippocampus is decreased by inescapable stress: Reversal by fluoxetine treatment. Neurpsychopharmacology, 28(9), 1562–1571.CrossRefGoogle Scholar
  61. Malison, R. T., Price, L. H., Berman, R., et al. (1998). Reduced brain serotonin transporter availability in major depression as measured by [123I]-2β-carbomethyoxy-3β-(4-iodophenyl)trophane and single photon emission computed tomography. Biological Psychiatry, 44, 1090–1098.PubMedCrossRefGoogle Scholar
  62. Markus, C. R. (2003). Food, stress and mood. In D. Wadson & F. Dodds (Eds.), Performance Functional Foods. Cambridge: Woodhead Publishing Limited.Google Scholar
  63. Markus, C. R. (2007). Effects of carbohydrates on brain tryptophan availability and stress performance. Biological Psychology, 76, 83–90.PubMedCrossRefGoogle Scholar
  64. Markus, C. R., Jonkman, L. M., Lammers, J., Duitz, M., Messer, M., & Rigtering, N. (2005). Evening intake of alpha-lactalbumin increases plasma tryptophan availability and improves morning alertness and brain measures of attention. American Journal of Clinical Nutrition, 81, 1026–1033.Google Scholar
  65. Markus, C. R., Olivier, B., Panhuysen, G., Gugten, J., van de Alles, M., Westenberg, H., et al. (2000). The bovine protein Alpha-Lactalbumin increases the plasma Trp/LNAA, and in vulnerable subjects it raises brain serotonin activity, reduces cortisol and improves mood under stress’. The American Journal of Clinical Nutrition, 71, 1536–1544.PubMedGoogle Scholar
  66. Markus, C. R., Panhuysen, G., Jonkman, L., & Bachman, M. (1999). Carbohydrate intake improves cognitive performance of stress-prone individuals under controllable laboratory stress. British Journal of Nutrition, 82, 457–467.PubMedGoogle Scholar
  67. Markus, C. R., Panhuysen, G., Tuiten, A., Koppeschaar, H., Fekkes, D., & Peters, M. (1998). Does carbohydrate, protein poor food prevent a deterioration of mood and cognitive performance of stress-prone subjects when subjected to a stressful task? Appetite, 31, 49–65.PubMedCrossRefGoogle Scholar
  68. McEwen, B. S., & Magarinos, A. M. (1997). Stress effects on morphology and function of the hippocampus. Annals of the New York Academy of Sciences, 821, 271–281.PubMedCrossRefGoogle Scholar
  69. Meijer, O. C., & De Kloet, E. R. (1994). Corticosterone suppresses the expression of 5-HT1a receptor mRNA in rat dentate gyrus. European Journal of Pharmacology, 7, 653–657.Google Scholar
  70. Merens, W., Booij, L., Markus, C. R., Zitman, F., & van der Does, A. J. W. (2005). The effects of a diet enriched with alpha-lactalbumin on mood, stress and cognitive functions in recovered depressed patients. British Journal of Nutrition, 94, 415–422.PubMedCrossRefGoogle Scholar
  71. Minet-Ringuet, J., Le-Ruvet, P. M., Tome, D., & Even, P. C. (2004). A tryptophan-rich protein diet efficiently restores sleep after food deprivation in the rat. Behavioural Brain Research, 152(2), 335–340.PubMedCrossRefGoogle Scholar
  72. Moreno, F. A., Gelenberg, A. J., Heninger, G. R., Potter, R. L., McKnight, K. M., Allen, J., et al. (1999). Tryptophan depletion and depressive vulnerability. Biological Psychiatry, 46, 498–505.PubMedCrossRefGoogle Scholar
  73. Moreno, F. A., Rowe, D. C., Kaiser, B., Chase, D., Michaels, T., Gelernter, J., et al. (2002). Association between a serotonin transporter promoter region polymorphism and mood response during tryptophan depletion. Molecular Psychiatry, 7, 213–216.PubMedCrossRefGoogle Scholar
  74. Neumeister, A., Konstantinidis, A., Stastny, J., Schwarz, M. J., Vitouch, O., Willeit, M., et al. (2002). Association between serotonin transporter gene promoter polymorphism (5-HTTLPR) and behavioral responses to tryptophan depletion in healthy women with and without family history of depression. Archives of General Psychiatry, 59, 613–620.PubMedCrossRefGoogle Scholar
  75. Neumeister, A., Praschak-Rieder, N., Hesselmann, B., & Rao, M. L. (1997). Effects of tryptophan depletion on drug-free patients with seasonal affective disorder during a stable response to bright light therapy. Archives of General Psychiatry, 54(2), 133–138.PubMedGoogle Scholar
  76. Nishizawa, S., Benkelfat, C., Young, S. N., Leyton, M., Mzengeza, S., de Montigny, C., et al. (1997). Differences between males and females in rates of serotonin synthesis in human brain. Proceedings of the National Academy of Science, 94, 5308–5313.CrossRefGoogle Scholar
  77. Oliver, G., Wardle, J., & Gibson, E. L. (2000). Stress and food choice; a laboratory study. Psychosomatic Medicine, 62(6), 853–865.PubMedGoogle Scholar
  78. Orosco, M., Rouch, C., Beslot, F., Feurte, S., Regnault, A., & Dauge, V. (2004). Alpha-lactalbumin-enriched diets enhance serotonin release and induce anxiolytic and rewarding effects in the rat. Behavioural Brain Research, 148, 1–10.PubMedCrossRefGoogle Scholar
  79. Pardridge, W. M., & Fierer, G. (1990). Transport of tryptophan into brain from the circulating, albumin-bound pool in rats and in rabbits. Journal of Neurochemistry, 54, 971–976.PubMedCrossRefGoogle Scholar
  80. Peréz-Cruet, J., Chase, T. N., & Murphy, D. L. (1974). Dietary regulation of brain tryptophan metabolism by plasma ratio of free tryptophan and neutral amino acids in human. Nature, 248, 693–695.PubMedCrossRefGoogle Scholar
  81. Reid, M., & Hammersley, R. (1995). Effects of carbohydrate intake on subsequent food intake and mood state’. Physiology & Behavior, 58(3), 421–427.CrossRefGoogle Scholar
  82. Richel, A. R., Deakin, J. F. W., & Anderson, I. M. (2005). Effect of tryptophan depletion on the response to controllable and uncontrollable noise stress. Biologial Psychiatry, 57, 295–300.CrossRefGoogle Scholar
  83. Roberts, S. B., & Kendler, K. S. (1999). Neuroticism and self-esteem as indices of the vulnerability to major depression in women. Psychological Medicine, 29, 1101–1109.PubMedCrossRefGoogle Scholar
  84. Rosenthal, N. E., Genhart, M. J., Caballero, B., Jacobsen, F. M., Skwerer, R. G., Coursey, R. D., et al. (1989). Psychobiological effects of carbohydrate- and protein-rich meals in patients with seasonal affective disorder and normal controls. Biological Psychiatry, 25, 1029–1040.PubMedCrossRefGoogle Scholar
  85. Sargent, P. A., Husted Kjaer, K., Bench Chr, J., et al. (2000). Brain serotonin 1A receptor binding measured by positron emission tomography with [11C] WAY–100635. Effects of depression and antidepressant treatment. Archives of General Psychiatry, 57, 174–180.PubMedCrossRefGoogle Scholar
  86. Sayegh, R., Schiff, I., Wurtman, J., Spiers, P., McDermott, J., & Wurtman, R. (1995). The effect of a carbohydrate-rich beverage on mood, appetite, and cognitive function in women with premenstrual syndrome. Obstetrics and Gynecology, 86(4,1), 520–528.PubMedGoogle Scholar
  87. Scrutton, H., Carbonnier, A., Cowen, P. J., & Harmer, C. J. (2007). Effects of alpha-lactalbumin on emotional processing in healthy women. Journal of Psychopharmacology, 21(5), 519–524.PubMedCrossRefGoogle Scholar
  88. Smith, A., Leekam, S., Ralph, A., & McNeill, G. (1988). The influence of meal composition on post-lunch changes in performance efficiency and mood. Appetite, 10, 195–203.PubMedCrossRefGoogle Scholar
  89. Smith, S. E., Pihl, R. O., Young, S. N., & Ervin, F. R. (1987). A test of possible cognitive and environmental influences on the mood lowering effect of tryptophan depletion in normal males. Psychopharmacology-(Berl), 91(4), 451–457.CrossRefGoogle Scholar
  90. Spring, B., Chiodo, J., Harden, M., Bourgeois, M., Mason, J., & Lutherer, L. (1989). Psychobiological effects of carbohydrates. Journal of Clinical Psychiatry, 50, 27–33.PubMedGoogle Scholar
  91. Spring, B., Maller, O., Wurtman, J., Digman, L., & Gozolino, L. (1982). Effects of protein and carbohydrate meals on mood and performance: Interactions with sex and age. Journal of Psychiatric Research, 17, 155–167.PubMedCrossRefGoogle Scholar
  92. Steinberg, S., Annable, L., & Young, S. N. (1994). Tryptophan in the treatment of late luteal phase dysphoric disorder: A pilot study. Journal of Psychiatry and Neuroscience, 19(2), 114–119.PubMedGoogle Scholar
  93. Thompson, J. G. (1990). The psychobiology of emotions. New York: Plenum Press.Google Scholar
  94. Ursin, H., & Olff, M. (1993). The stress response. In S. C. Stanford & P. Salmon (Eds.), Stress, from synapse to syndrome (pp. 4–20). London: Academic Press.Google Scholar
  95. Van Praag, H. M. (2004). Can stress cause depression? Progress in Neuro-Psychopharmacology and Biological Psychiatry, 28, 891–907.PubMedCrossRefGoogle Scholar
  96. Van Praag, H. M., Korf, J., & Puite, J. (1970). 5-Hydroxyindoleacetic acid levels in the cerebrospinal fluid of depressive patients treated with probenecid. Nature, 225, 1559–1560.Google Scholar
  97. Walderhaug, E., Magnusson, A., Neumeister, A., Lappalainen, J., Lunde, H., Refsum, H., et al. (2007). Interactive effects of sex and 5-HTTLPR on mood and impulsivity during tryptophan depletion in healthy people. Biological Psychiatry, 62, 593–599.PubMedCrossRefGoogle Scholar
  98. Wardle, J., & Gibson, E. L. (2002). Impact of stress on diet; process and implications. In S. A. Stansfeld & M. Marmot (Eds.), Stress and the heart (pp. 125–149). London: BMJ Books.Google Scholar
  99. Watson, D., & Clark, L. A. (1984). Negative affectivity: The disposition to experience aversive emotional states. Psychological Bulletin, 96, 465–490.PubMedCrossRefGoogle Scholar
  100. Wells, A., Read, N. W., & MacDonald, I. A. (1998). Effects of carbohydrate and lipid on resting energy expenditure, heart rate, sleepiness, and mood. Physiology & Behavior, 63(4), 621–628.CrossRefGoogle Scholar
  101. Wendland, J. R., Martin, B. J., Kruse, M. R., Lesch, K. P., & Murphy, D. L. (2006). Simultaneous genotyping of four functional loci of human SLC6A4, with a reappraisal of 5-HTTLPR and rs25531. Molecular Psychiatry, 11, 224–226.PubMedCrossRefGoogle Scholar
  102. Williams, R. B., Marchuk, D. A., Gadde, K. M., Barefoot, J. C., Grichnik, K., Helms, M. J., et al. (2003). Serotoninrelated gene polymorphisms and central nervous system serotonin function. Neuropsychopharmacology, 28, 533–541.PubMedCrossRefGoogle Scholar
  103. Williams, W. A., Shoaf, S. E., Hommer, D., Rawlings, R., & Linnoila, M. (1999). Effects of acute tryptophan depletion on plasma and cerebrospinal fluid tryptophan and 5-hydroxyindoleacetic acid in normal volunteers. Journal of Neurochemistry, 72, 1641–1647.PubMedCrossRefGoogle Scholar
  104. Wurtman, R. J. (1987). Nutrients affecting brain composition and behavior’. Integrative Psychiatry, 5, 226–257.PubMedGoogle Scholar
  105. Wurtman, R. J. (2005). Genes, stress, and depression. Metabolism, 54, 16–19.PubMedCrossRefGoogle Scholar
  106. Wurtman, J. J., Brzezinski, A., Wurtman, R. J., & Laferrere, B. (1989). Effect of nutrient intake on premenstrual depression’. American Journal of Obstetrics and Gynecology, 161(5), 1228–1234.PubMedGoogle Scholar
  107. Wurtman, R. J., & Wurtman, J. J. (1984). Nutritional control of central neurotransmitters. In K. M., Pirke & D. Ploog (Eds.), The psychobiology of anorexia nervosa. Springer-Verlag.Google Scholar
  108. Wurtman, R. J., & Wurtman, J. J. (1986). Carbohydrate craving, obesity and brain serotonin’. Appetite, 7, 99.PubMedGoogle Scholar
  109. Wurtman, J. J., Wurtman, R. J., Growdon, J. H., Henry, P., Lipscomb, A., et al. (1981). Carbohydrate craving in obese people: Suppression by treatments affecting serotoninergic transmission. International Journal of Eating Disorders, 1, 2–15.CrossRefGoogle Scholar
  110. Yokogoshi, H., & Wurtman, R. J. (1986). Meal composition and plasma amino acid ratios: Effects of various proteins or carbohydrates, and of various protein concentrations. Metabolism, 35, 837–842.PubMedCrossRefGoogle Scholar
  111. Young, A. H., Goodwin, G. M., Dick, H., & Fink, G. (1994). Effects of glucocorticoids on 5-HT1a presynaptic function in the mouse. Psychopharmacology, 114, 360–364.PubMedCrossRefGoogle Scholar
  112. Young, S. N., Smith, S. E., Pihl, R. O., & Ervin, F. R. (1985). Tryptophan depletion causes a rapid lowering of mood in normal males’. Psychopharmacology, 87, 173–177.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press 2008

Authors and Affiliations

  1. 1.Department of Neuropsychology and PsychopharmacologyUniversity of MaastrichtMaastrichtThe Netherlands

Personalised recommendations