NeuroMolecular Medicine

, Volume 10, Issue 4, pp 219–235 | Cite as

Neurological Benefits of Omega-3 Fatty Acids

  • S. C. DyallEmail author
  • A. T. Michael-Titus
Review Paper


The central nervous system is highly enriched in long-chain polyunsaturated fatty acid (PUFA) of the omega-6 and omega-3 series. The presence of these fatty acids as structural components of neuronal membranes influences cellular function both directly, through effects on membrane properties, and also by acting as a precursor pool for lipid-derived messengers. An adequate intake of omega-3 PUFA is essential for optimal visual function and neural development. Furthermore, there is increasing evidence that increased intake of the long-chain omega-3 PUFA, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), may confer benefits in a variety of psychiatric and neurological disorders, and in particular neurodegenerative conditions. However, the mechanisms underlying these beneficial effects are still poorly understood. Recent evidence also indicates that in addition to the positive effects seen in chronic neurodegenerative conditions, omega-3 PUFA may also have significant neuroprotective potential in acute neurological injury. Thus, these compounds offer an intriguing prospect as potentially new therapeutic approaches in both chronic and acute conditions. The purpose of this article is to review the current evidence of the neurological benefits of omega-3 PUFA, looking specifically at neurodegenerative conditions and acute neurological injury.


Eicosapentaenoic acid Docosahexaenoic acid Ageing Alzheimer’s disease Parkinson’s disease Huntington’s disease Multiple sclerosis Spinal cord injury Neurodegeneration 


  1. Aid, S., Vancassel, S., Poumes-Ballihaut, C., Chalon, S., Guesnet, P., & Lavialle, M. (2003). Effect of a diet-induced n-3 PUFA depletion on cholinergic parameters in the rat hippocampus. Journal of Lipid Research, 44(8), 1545–1551.PubMedCrossRefGoogle Scholar
  2. Akbar, M., & Kim, H.-Y. (2002). Protective effects of docosahexaenoic acid in staurosporine-induced apoptosis: Involvement of phosphatidylinositol-3 kinase pathway. Journal of Neurochemistry, 82, 655–665.PubMedCrossRefGoogle Scholar
  3. Anderton, B. H. (2002). Ageing of the brain. Mechanisms of Ageing and Development, 123, 811–817.PubMedCrossRefGoogle Scholar
  4. Arendash, G. W., Jensen, M. T., Salem, N., Jr., Hussein, N., Cracchiolo, J., Dickson, A., et al. (2007). A diet high in omega-3 fatty acids does not improve or protect cognitive performance in Alzheimer’s transgenic mice. Neuroscience, 149, 286–302.PubMedCrossRefGoogle Scholar
  5. Assayag, K., Yakunin, E., Loeb, V., Selkoe, D. J., & Sharon, R. (2007). Polyunsaturated fatty acids induce alpha-synuclein-related pathogenic changes in neuronal cells. American Journal of Pathology, 171(6), 2000–2011.PubMedCrossRefGoogle Scholar
  6. Azbill, R. D., Mu, X., Bruce-Keller, A. J., Mattson, M. P., & Springer, J. E. (1997). Impaired mitochondrial function, oxidative stress and altered antioxidant enzyme activities following traumatic spinal cord injury. Brain Research, 765(2), 283–290.PubMedCrossRefGoogle Scholar
  7. Babin, F., Abderrazik, M., Favier, F., Cristol, J. P., Leger, C. L., Papoz, L., et al. (1999). Differences between polyunsaturated fatty acid status of non-institutionalised elderly women and younger controls: A bioconversion defect can be suspected. European Journal of Clinical Nutrition, 53, 591–596.PubMedCrossRefGoogle Scholar
  8. Bai, L., Hof, P. R., Standaert, D. G., Xing, Y., Nelson, S. E., Young, A. B., et al. (2004). Changes in the expression of the NR2B subunit during aging in macaque monkeys. Neurobiology of Aging, 25, 201–208.PubMedCrossRefGoogle Scholar
  9. Barberger-Gateau, P., Letenneur, L., Deschamps, V., Peres, K., Dartigues, J.-F., & Renaud, S. (2002). Fish, meat, and risk of dementia: Cohort study. British Medical Journal, 325, 932–933.PubMedCrossRefGoogle Scholar
  10. Barcelo-Coblijn, G., Hogyes, E., Kitajka, K., Puskas, L. G., Zvara, A., Hackler, L., Jr., et al. (2003a). Modification by docosahexaenoic acid of age-induced alterations in gene expression and molecular composition of rat brain phospholipids. Proceedings of the National Academy of Sciences of the United States of America, 100(20), 11321–11326.PubMedCrossRefGoogle Scholar
  11. Barcelo-Coblijn, G., Kitajka, K., Puskas, L. G., Hogyes, E., Zvara, A., Hackler, L., Jr., et al. (2003b). Gene expression and molecular composition of phospholipids in rat brain in relation to dietary n-6 to n-3 fatty acid ratio. Biochimica et Biophysica Acta, 1632(1–3), 72–79.PubMedGoogle Scholar
  12. Bates, D., Cartlidge, N. E., French, J. M., Jackson, M. J., Nightingale, S., Shaw, D. A., et al. (1989). A double-blind controlled trial of long chain n-3 polyunsaturated fatty acids in the treatment of multiple sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 52, 18–22.CrossRefGoogle Scholar
  13. Bazan, N. G., Birkle, D. L., & Reddy, T. S. (1984). Docosahexaenoic acid (22:6, n-3) is metabolized to lipoxygenase reaction products in the retina. Biochemical and Biophysical Research Communications, 125(2), 741–747.PubMedCrossRefGoogle Scholar
  14. Belayev, L., Liu, Y., Zhao, W., Busto, R., & Ginsberg, M. D. (2001). Human albumin therapy of acute ischemic stroke: Marked neuroprotective efficacy at moderate doses and with a broad therapeutic window. Stroke, 32(2), 553–560.PubMedGoogle Scholar
  15. Belayev, L., Marcheselli, V. L., Khoutorova, L., Rodriguez de Turco, E. B., Busto, R., Ginsberg, M. D., et al. (2005). Docosahexaenoic acid complexed to albumin elicits high-grade ischemic neuroprotection. Stroke, 36(1), 118–123.PubMedCrossRefGoogle Scholar
  16. Berlett, B. S., & Stadtman, E. R. (1997). Protein oxidation in aging, disease, and oxidative stress. Journal of Biological Chemistry, 272(33), 20313–20316.PubMedCrossRefGoogle Scholar
  17. Beydoun, M. A., Kaufman, J. S., Satia, J. A., Rosamond, W., & Folsom, A. R. (2007). Plasma n-3 fatty acids and the risk of cognitive decline in older adults: The Atherosclerosis Risk in Communities Study. American Journal of Clinical Nutrition, 85, 1103–1111.PubMedGoogle Scholar
  18. Blokland, A., Honig, W., Browns, F., & Jolles, J. (1999). Cognition-enhancing properties of subchronic phosphatidylserine (PS) treatment in middle-aged rats: Comparison of bovine cortex PS with egg PS and soybean PS. Nutrition, 15(10), 778–783.PubMedCrossRefGoogle Scholar
  19. Blondeau, N., Widman, C., Lazdunski, M., & Heurteaux, C. (2002). Polyunsaturated fatty acids induce ischemic and epileptic tolerance. Neuroscience, 109(2), 231–241.PubMedCrossRefGoogle Scholar
  20. Bolton-Smith, C., Woodward, M., & Tavendale, R. (1997). Evidence for age-related differences in the fatty acid composition of human adipose tissue, independent of diet. European Journal of Clinical Nutrition, 51, 619–624.PubMedCrossRefGoogle Scholar
  21. Boston, P. F., Bennett, A., Horrobin, D. F., & Bennett, C. N. (2004). Ethyl-EPA in Alzheimer’s disease – A pilot study. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 71(5), 341–346.PubMedCrossRefGoogle Scholar
  22. Bourre, J.-M., Francois, M., Youyou, A., Dumont, O., Piciotti, M., Pascal, G., et al. (1989). The effects of dietary α-linolenic acid on the composition of nerve membranes, enzymatic activity, amplitude of electrophysiological parameters, resistance to poisons and performance of learning tasks in rats. Journal of Nutrition, 119, 1880–1892.PubMedGoogle Scholar
  23. Bousquet, M., Saint-Pierre, M., Julien, C., Salem, N., Jr., Cicchetti, F., & Calon, F. (2008). Beneficial effects of dietary omega-3 polyunsaturated fatty acid on toxin-induced neuronal degeneration in an animal model of Parkinson’s disease. The FASEB Journal, 22(4), 1213–1225.PubMedCrossRefGoogle Scholar
  24. Brenna, J. T. (2002). Efficiency of conversion of alpha-linolenic acid to long chain n-3 fatty acids in man. Current Opinion in Clinical Nutrition and Metabolic Care, 5(2), 127–132.PubMedCrossRefGoogle Scholar
  25. Burdge, G. C. (2006). Metabolism of a-linolenic acid in humans. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 75, 161–168.PubMedCrossRefGoogle Scholar
  26. Burdge, G. C., & Wootton, S. A. (2002). Conversion of alpha-linolenic acid to eicosapentaenoic, docosapentaenoic and docosahexaenoic acids in young women. British Journal of Nutrition, 88(4), 411–420.PubMedCrossRefGoogle Scholar
  27. Burgess, J. R., Stevens, L., Zhang, W., & Peck, L. (2000). Long-chain polyunsaturated fatty acids in children with attention-deficit hyperactivity disorder. American Journal of Clinical Nutrition, 71(1), 327–27.Google Scholar
  28. Burr, G. O., & Burr, M. M. (1929). A new deficiency disease produced by the rigid exclusion of fat from the diet. Journal of Biological Chemistry, 82, 345–367.Google Scholar
  29. Burr, G. O., & Burr, M. M. (1930). On the nature and role of the essential fatty acids in nutrition. Journal of Biological Chemistry, 86, 587–621.Google Scholar
  30. Butovich, I. A., Lukyanova, S. M., & Bachmann, C. (2006). Dihydroxydocosahexaenoic acids of the neuroprotectin D family: Synthesis, structure and inhibition of human 5-lipoxygenase. Journal of Lipid Research, 47(11), 2462–2474.PubMedCrossRefGoogle Scholar
  31. Calder, P. C. (2006). n-3 Polyunsaturated fatty acids, inflammation, and inflammatory diseases. American Journal of Clinical Nutrition, 83(6 Suppl), 1505S–1519S.PubMedGoogle Scholar
  32. Calon, F., Lim, G. P., Morihara, T., Yang, F., Ubeda, O., Salem, N., Jr., et al. (2005). Dietary n-3 polyunsaturated fatty acid depletion activates caspases and decreases NMDA receptors in the brain of a transgenic mouse model of Alzheimer’s disease. European Journal of Neuroscience, 22(3), 617–626.PubMedCrossRefGoogle Scholar
  33. Calon, F., Lim, G. P., Yang, F., Morihara, T., Teter, B., Ubeda, O., et al. (2004). Docosahexaenoic acid protects from dendritic pathology in an Alzheimer’s disease mouse model. Neuron, 43, 633–645.PubMedCrossRefGoogle Scholar
  34. Calon, F., Tahar, A. H., Blanchet, P. J., Morissette, M., Grondin, R., Goulet, M., et al. (2000). Dopamine-receptor stimulation: Biobehavioral and biochemical consequences. Trends in Neurosciences, 23, S92–S100.PubMedCrossRefGoogle Scholar
  35. Cao, J., Schwichtenberg, K. A., Hanson, N. Q., & Tsai, M. Y. (2006). Incorporation and clearance of omega-3 fatty acids in erythrocyte membranes and plasma phospholipids. Clinical Chemistry, 52(12), 2265–2272.PubMedCrossRefGoogle Scholar
  36. Carver, J. D., Benford, V. J., Han, B., & Cantor, A. B. (2001). The relationship between age and the fatty acid composition of cerebral cortex and erythrocytes in human subjects. Brain Research Bulletin, 56(2), 79–85.PubMedCrossRefGoogle Scholar
  37. Cassarino, D. S., & Bennet, J. P., Jr. (1999). An evaluation of the role of mitochondria in neurodegenerative disease: Mitochondrial mutations and oxidative pathology, protective nuclear responses, and cell death in neurodegeneration. Brain Research Reviews, 29, 1–25.PubMedCrossRefGoogle Scholar
  38. Chalon, S., Delion-Vancassel, S., Belzung, C., Guilloteau, D., Leguisquet, A.-M., Besnard, J.-C., et al. (1998). Dietary fish oil affects monoaminergic neurotransmission and behaviour in rats. Journal of Nutrition, 128, 2512–2519.PubMedGoogle Scholar
  39. Chambrier, C., Bastard, J. P., Rieusset, J., Chevillotte, E., Bonnefont-Rousselot, D., Therond, P., et al. (2002). Eicosapentaenoic acid induces mRNA expression of peroxisome proliferator-activated receptor gamma. Obesity Research, 10(6), 518–525.PubMedCrossRefGoogle Scholar
  40. Chen, H., Zhang, S. M., Hernán, M. A., Willett, W. C., & Ascherio, A. (2003). Dietary intakes of fat and risk of Parkinson’s disease. American Journal of Epidemiology, 157, 1007–1014.PubMedCrossRefGoogle Scholar
  41. Choi-Kwon, S., Park, K. A., Lee, H. J., Park, M. S., Lee, J. H., Jeon, S. E., et al. (2004). Temporal changes in cerebral antioxidant enzyme activities after ischemia and reperfusion in a rat focal brain ischemia model: Effect of dietary fish oil. Brain Research. Developmental Brain Research, 152(1), 11–18.PubMedCrossRefGoogle Scholar
  42. Clayton, D. A., Grosshans, D. R., & Browning, M. D. (2002). Aging and surface expression of hippocampal NMDA receptors. Journal of Biological Chemistry, 277(17), 14367–14369.PubMedCrossRefGoogle Scholar
  43. Clifford, J. J., Drago, J., Natoli, A. L., Wong, J. Y. F., Kinsella, A., Waddington, J. L., et al. (2002). Essential fatty acids given from conception prevent topographies of motor deficit in a transgenic model of Huntington’s disease. Neuroscience, 109(1), 81–88.PubMedCrossRefGoogle Scholar
  44. Corrigan, F. M., Horrobin, D. F., Skinner, E. R., Besson, J. A. O., & Cooper, M. B. (1998). Abnormal content of n-6 and n-3 long-chain unsaturated fatty acids in the phosphoglycerides and cholesterol esters of parahippocampal cortex from Alzheimer’s disease patients and its relationship to acetyl CoA content. The International Journal of Biochemistry & Cell Biology, 30(2), 197–207.CrossRefGoogle Scholar
  45. Corwin, J., Dean, I., Reginald, L., Bartus, R. T., Rotrosen, J., & Watkins, D. L. (1985). Behavioural effects of phosphatidylserine in the aged Fischer 344 rat: Amelioration of passive avoidance deficits without changes in psychomotor task performance. Neurobiology of Aging, 6(1), 11–15.PubMedCrossRefGoogle Scholar
  46. Cunnane, S. C., Ho, S. Y., Dore-Duffy, P., Ells, K. R., & Horrobin, D. F. (1989). Essential fatty acid and lipid profiles in plasma and erythrocytes in patients with multiple sclerosis. American Journal of Clinical Nutrition, 50, 801–806.PubMedGoogle Scholar
  47. de Lau, L. M., Bornebroek, M., Witteman, J. C., Hofman, A., Koudstaal, P. J., & Breteler, M. M. (2005). Dietary fatty acids and the risk of Parkinson disease: The Rotterdam study. Neurology, 64(12), 2040–2045.PubMedCrossRefGoogle Scholar
  48. de Rijk, M. C., Breteler, M. M., Graveland, G. A., Ott, A., Grobbee, D. E., & van der Meche, F. G. (1995). Prevalence of Parkinson’s disease in the elderly: The Rotterdam Study. Neurology, 45, 2143–2146.PubMedGoogle Scholar
  49. de Rijk, M. C., Rocca, W. A., Anderson, D. W., Melcon, M. O., Breteler, M. M., & Maraganore, D. M. (1997). A population perspective on diagnostic criteria for Parkinson’s disease. Neurology, 48, 1277–1281.PubMedGoogle Scholar
  50. de Urquiza, A. M., Liu, S., Sjoberg, M., Zetterstrom, R. H., Griffiths, W., Sjovall, J., et al. (2000). Docosahexaenoic acid, a ligand for the retinoid X receptor in mouse brain. Science, 290(5499), 2140–2144.PubMedCrossRefGoogle Scholar
  51. Delion, S., Chalon, S., Guilloteau, D., Besnard, J. C., & Durand, G. (1996). Alpha-Linolenic acid dietary deficiency alters age-related changes of dopaminergic and serotoninergic neurotransmission in the rat frontal cortex. Journal of Neurochemistry, 66(4), 1582–1591.PubMedGoogle Scholar
  52. Delion, S., Chalon, S., Herault, J., Guilloteau, D., Besnard, J.-C., & Durand, G. (1994). Chronic dietary α-linolenic acid deficiency alters dopaminergic and serotoninergic neurotransmission in rats. Journal of Nutrition, 124, 2466–2476.PubMedGoogle Scholar
  53. Duplus, E., & Forest, C. (2002). Is there a single mechanism for fatty acid regulation of gene transcription? Biochemical Pharmacology, 64, 893–901.PubMedCrossRefGoogle Scholar
  54. Dyall, S. C., Michael, G. J., Whelpton, R., Scott, A. G., & Michael-Titus, A. T. (2007). Dietary enrichment with omega-3 polyunsaturated fatty acids reverses age-related decreases in the GluR2 and NR2B glutamate receptor subunits in rat forebrain. Neurobiology of Aging, 28(3), 424–439.PubMedCrossRefGoogle Scholar
  55. Dyerberg, J. (1993). Epidemiology of n-3 fatty acids and disease. In R. De Caterina, S. Endres, S. D. Kristensen, & E. B. Schmidt (Eds.), n-3 Fatty acids and vascular disease (pp. 3–10). London: Springer-Verlag.Google Scholar
  56. Favreliere, S., Stadelmann-Ingrand, S., Huguet, F., De Javel, D., Piriou, A., Tallineau, C., et al. (2000). Age-related changes in ethanolamine glycerophospholipids fatty acid levels in rat frontal cortex and hippocampus. Neurobiology of Aging, 21, 653–660.CrossRefGoogle Scholar
  57. Fontani, G., Corradeschi, F., Felici, A., Alfatti, F., Migliorini, S., & Lodi, L. (2005). Cognitive and physiological effects of Omega-3 polyunsaturated fatty acid supplementation in healthy subjects. European Journal of Clinical Investigation, 35(11), 691–699.PubMedCrossRefGoogle Scholar
  58. Foster, T. C., & Kumar, A. (2002). Calcium dysregulation in the aging brain. Neuroscientist, 8(4), 297–301.PubMedGoogle Scholar
  59. Franks, N. P., & Honoré, E. (2004). The TREK K2P channels and their role in general anaesthesia and neuroprotection. Trends in Pharmacological Sciences, 25(11), 601–608.PubMedCrossRefGoogle Scholar
  60. Freund-Levi, Y., Eriksdotter-Jonhagen, M., Cederholm, T., Basun, H., Faxen-Irving, G., Garlind, A., et al. (2006). Omega-3 fatty acid treatment in 174 patients with mild to moderate Alzheimer disease: OmegAD study: A randomized double-blind trial. Archives of Neurology, 63(10), 1402–1408.PubMedCrossRefGoogle Scholar
  61. Frohman, E. M., Filippi, M., Stuve, O., Waxman, S. G., Corboy, J., Phillips, J. T., et al. (2005). Characterizing the mechanisms of progression in multiple sclerosis: Evidence and new hypotheses for future directions. Archives in Neurology, 62, 1345–1356.CrossRefGoogle Scholar
  62. Gerster, H. (1998). Can adults adequately convert alpha-linolenic acid (18:3n-3) to eicosapentaenoic acid (20:5n-3) and docosahexaenoic acid (22:6n-3)? International Journal for Vitamin and Nutrition Research, 68(3), 159–173.PubMedGoogle Scholar
  63. Glozman, S., Green, P., & Yavin, E. (1998). Intraamniotic ethyl docosahexaenoate administration protects fetal rat brain from ischemic stress. Journal of Neurochemistry, 70(6), 2484–2491.PubMedCrossRefGoogle Scholar
  64. Green, K. N., Martinez-Coria, H., Khashwji, H., Hall, E. B., Yurko-Mauro, K. A., Ellis, L., et al. (2007). Dietary docosahexaenoic acid and docosapentaenoic acid ameliorate amyloid-beta and tau pathology via a mechanism involving presenilin 1 levels. Journal of Neuroscience, 27(16), 4385–4395.PubMedCrossRefGoogle Scholar
  65. Hall, E. D., & Braughler, J. M. (1986). Role of lipid peroxidation in post-traumatic spinal cord degeneration: A review. Central Nervous System Trauma, 3(4), 281–294.PubMedGoogle Scholar
  66. Hall, E. D., & Springer, J. E. (2004). Neuroprotection and acute spinal cord injury: A reappraisal. NeuroRX, 1(1), 80–100.PubMedCrossRefGoogle Scholar
  67. Hamilton, J., Greiner, R. S., Salem, N., Jr., & Kim, H.-Y. (2000). n-3 Fatty acid deficiency decreases phosphatidylserine accumulation selectively in neuronal tissues. Lipids, 35, 863–869.PubMedCrossRefGoogle Scholar
  68. Hashimoto, M., Hossain, S., Shimada, T., & Shido, O. (2006). Docosahexaenoic acid-induced protective effect against impaired learning in amyloid beta-infused rats is associated with increased synaptosomal membrane fluidity. Clinical and Experimental Pharmacology and Physiology, 33(10), 934–939.PubMedCrossRefGoogle Scholar
  69. Hashimoto, M., Hossain, S., Shimada, T., Sugioka, K., Yamasaki, H., Fujii, Y., et al. (2002). Docosahexaenoic acid provides protection from impairment of learning ability in Alzheimer’s disease model rats. Journal of Neurochemistry, 81(5), 1084–1091.PubMedCrossRefGoogle Scholar
  70. Hering, H., & Sheng, M. (2001). Denritic spines: Structure, dynamics and regulation. Nature Reviews Neuroscience, 2, 880–888.PubMedCrossRefGoogle Scholar
  71. Heude, B., Ducimetiere, P., & Berr, C. (2003). Cognitive decline and fatty acid composition of erythrocyte membranes – The EVA Study. American Journal of Clinical Nutrition, 77(4), 803–808.PubMedGoogle Scholar
  72. Heurteaux, C., Guy, N., Laigle, C., Blondeau, N., Duprat, F., Mazzuca, M., Lang-Lazdunski, L., Widmann, C., Zanzouri, M., Romey, G., Lazdunski, M. (2004). TREK-1, a K+ channel involved in neuroprotection and general anesthesia. EMBO Journal, 23(13), 2684–2695.Google Scholar
  73. Hof, P. R., Duan, H., Page, T. L., Einstein, M., Wicinski, B., He, Y., et al. (2002). Age-related changes in GluR2 and NMDAR1 glutamate receptor subunit protein immunoreactivity in corticocortically projecting neurons in macaque and patas monkeys. Brain Research, 928(1–2), 175–186.PubMedCrossRefGoogle Scholar
  74. Hong, S., Gronert, K., Devchand, P. R., Moussignac, R. L., & Serhan, C. N. (2003). Novel docosatrienes and 17S-resolvins generated from docosahexaenoic acid in murine brain, human blood, and glial cells. Autacoids in anti-inflammation. Journal of Biological Chemistry, 278(17), 14677–14687.PubMedCrossRefGoogle Scholar
  75. Hong, M. P., Kim, H. I., Shin, Y. K., Lee, C. S., Park, M., & Song, J. H. (2004). Effects of free fatty acids on sodium currents in rat dorsal root ganglion neurons. Brain Research, 1008(1), 81–91.PubMedCrossRefGoogle Scholar
  76. Horrobin, D. F., & Bennet, C. N. (1999). New gene targets related to schizophrenia and other psychiatric disorders: Enzymes, binding proteins and transport proteins involved in phospholipid and fatty acid metabolism. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 60(3), 141–167.PubMedCrossRefGoogle Scholar
  77. Horrocks, L. A., & Yeo, Y. K. (1999). Health benefits of docosahexaenoic acid (DHA). Pharmacological Research, 40(3), 211–225.PubMedCrossRefGoogle Scholar
  78. Huang, W. L., King, V. R., Curran, O. E., Dyall, S. C., Ward, R. E., Lal, N., et al. (2007). A combination of intravenous and dietary docosahexaenoic acid significantly improves outcome after spinal cord injury. Brain, 130, 3004–3019.PubMedCrossRefGoogle Scholar
  79. Infante, J. P., & Huszagh, V. A. (1998). Analysis of the putative role of 24-carbon polyunsaturated fatty acids in the biosynthesis of docosapentaenoic (22:5n-6) and docosahexaenoic (22:6n-3) acids. FEBS Letters, 431, 1–6.PubMedCrossRefGoogle Scholar
  80. Jacobs, B., Driscoll, L., & Schall, M. (1997). Life-span dendritic and spine changes in areas 10 and 18 of human cortex: Quantitative Golgi study. Journal of Comparative Neurology, 386, 661–680.PubMedCrossRefGoogle Scholar
  81. Jenner, P. (2001). Parkinson’s disease, pesticides and mitochondrial dysfunction. Trends in Neurosciences, 24, 245–247.PubMedCrossRefGoogle Scholar
  82. Johnson, E. J., & Schaefer, E. J. (2006). Potential role of dietary n-3 fatty acids in the prevention of dementia and macular degeneration. American Journal of Clinical Nutrition, 83(6 Suppl), 1494S–1498S.PubMedGoogle Scholar
  83. Julien, C., Berthiaume, L., Hadj-Tahar, A., Rajput, A. H., & Bedard, T. (2006). Postmortem brain fatty acid profile of levodopa-treated Parkinson disease patients and parkinsonian monkeys. Neurochemistry International, 48, 404–414.PubMedCrossRefGoogle Scholar
  84. Jump, D. B. (2002). The biochemistry of n-3 polyunsaturated fatty acids. Journal of Biological Chemistry, 277, 8755–8758.PubMedCrossRefGoogle Scholar
  85. Kalmijn, S., Launer, L. J., Ott, A., Witteman, J. C., Hofman, A., & Breteler, M. M. (1997). Dietary fat intake and the risk of incident dementia in the Rotterdam Study. Annals of Neurology, 42(5), 776–782.PubMedCrossRefGoogle Scholar
  86. Kalmijn, S., van Boxtel, M. P., Ocke, M., Verschuren, W. M., Kromhout, D., & Launer, L. J. (2004). Dietary intake of fatty acids and fish in relation to cognitive performance at middle age. Neurology, 62(2), 275–280.PubMedGoogle Scholar
  87. Kasai, H., Chung, M. H., Jones, D. S., Inoue, H., Ishikawa, H., Kamiya, H., et al. (1991). 8-Hydroxyguanine, a DNA adduct formed by oxygen radicals: Its implication on oxygen radical-involved mutagenesis/carcinogenesis. Journal of Toxicological Sciences, 16(Suppl 1), 95–105.PubMedGoogle Scholar
  88. Kim, H. Y. (2007). Novel metabolism of docosahexaenoic acid in neural cells. Journal of Biological Chemistry, 282(26), 18661–18665.PubMedCrossRefGoogle Scholar
  89. King, V. R., Huang, W. L., Dyall, S. C., Curran, O. E., Priestley, J. V., & Michael-Titus, A. T. (2006). Omega-3 fatty acids improve recovery, whereas omega-6 fatty acids worsen outcome, after spinal cord injury in the adult rat. Journal of Neuroscience, 26(17), 4672–4680.PubMedCrossRefGoogle Scholar
  90. Kitajka, K., Puskas, L. G., Zvara, A., Hackle, L., Jr., Barcelo-Cobijn, G., Yeo, Y. K., et al. (2002). The role of n-3 polyunsaturated fatty acids in brain: Modulation of rat brain gene expression by dietary n-3 fatty acids. Proceedings of the National Academy of Sciences of the United States of America, 99(5), 2619–2624.PubMedCrossRefGoogle Scholar
  91. Kocak, H., Oner, P., & Oztas, B. (2000). Comparison of the activities of Na+, K+-ATPase in brains of rats at different ages. Gerontology, 48, 279–281.Google Scholar
  92. Koch, M., Ramsaransing, G. S. M., Fokkema, M. R., Heersema, D. J., & De Keyser, J. (2006). Erythrocyte membrane fatty acids in benign and progressive forms of multiple sclerosis. Journal of the Neurological Sciences, 244, 123–126.PubMedCrossRefGoogle Scholar
  93. Kodas, E., Galineau, L., Bodard, S., Vancassel, S., Guilloteau, D., Besnard, J. C., et al. (2004). Serotoninergic neurotransmission is affected by n-3 polyunsaturated fatty acids in the rat. Journal of Neurochemistry, 89, 695–702.PubMedCrossRefGoogle Scholar
  94. Kotchabhakdi, N., Tipyasang, R., Thangnipon, W., Jutapukdeekun, N., & Jindaduangratn, C. (2003). Effects of different dosages of docosahexanoic acid (DHA) intake on maze-learning ability and densities of dendritic spines in rats, Washington, DC, Abstract Viewer/Itinerary Planner. Washington, DC: Society for Neuroscience, 2003. Online. Program No. 941.17Google Scholar
  95. Kyle, D. J., Schaefer, E., Patton, G., & Beiser, A. (1999). Low serum docosahexaenoic acid is a significant risk factor for Alzheimer’s dementia. Lipids, 34(Suppl), S245.PubMedCrossRefGoogle Scholar
  96. Lane, M. A., & Bailey, S. J. (2005). Role of retinoid signalling in the adult brain. Progress in Neurobiology, 75, 275–293.PubMedCrossRefGoogle Scholar
  97. Lang-Lazdunski, L., Blondeau, N., Jarretou, G., Lazdunski, M., & Heurteaux, C. (2003). Linolenic acid prevents neuronal cell death and paraplegia after transient spinal cord ischemia in rats. Journal of Vascular Surgery, 38(3), 564–575.PubMedCrossRefGoogle Scholar
  98. Lauritzen, I., Blondeau, N., Heurteaux, C., Widman, C., Romey, G., & Lazdunski, M. (2000). Polyunsaturated fatty acids are potent neuroprotectors. EMBO Journal, 19, 1784–1793.PubMedCrossRefGoogle Scholar
  99. Lauterbach, E. C., Cummings, J. L., Duffy, J., Coffey, C. E., Kaufer, D., Lovell, M. M., et al. (1998). Neuropsychiatric correlates and treatment of lenticulostriatal diseases: A review of the literature and overview of research opportunities in Huntington’s, Wilson’s, and Fahr’s diseases. Journal of Neuropsychiatry and Clinical Neurosciences, 10, 249–266.PubMedGoogle Scholar
  100. Lengqvist, J., Mata De Urquiza, A., Bergman, A. C., Willson, T. M., Sjovall, J., Perlmann, T., et al. (2004). Polyunsaturated fatty acids including docosahexaenoic and arachidonic acid bind to the retinoid X receptor alpha ligand-binding domain. Molecular and Cellular Proteomics, 3(7), 692–703.PubMedCrossRefGoogle Scholar
  101. Lim, G. P., Calon, F., Morihara, T., Yang, F., Teter, B., Ubeda, O., et al. (2005). A diet enriched with the omega-3 fatty acid docosahexaenoic acid reduces amyloid burden in an aged Alzheimer mouse model. Journal of Neuroscience, 25(12), 3032–3040.PubMedCrossRefGoogle Scholar
  102. Link, C. D. (1995). Expression of human beta-amyloid peptide in transgenic Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America, 92, 9368–9372.PubMedCrossRefGoogle Scholar
  103. Lopez, G. H., Ilincheta de Boschero, M. G., Castagnet, P. I., & Giusto, N. M. (1995). Age-associated changes in the content and fatty acid composition of brain glycerophospholipids. Comparative Biochemistry and Physiology, 112B(2), 331–343.Google Scholar
  104. Lukiw, W. J., Cui, J. G., Marcheselli, V. L., Bodker, M., Botkjaer, A., Gotlinger, K., et al. (2005). A role for docosahexaenoic acid-derived neuroprotectin D1 in neural cell survival and Alzheimer disease. Journal of Clinical Investigation, 115(10), 2774–2783.PubMedCrossRefGoogle Scholar
  105. Lynch, M. A. (2004). Long-term potentiation and memory. Physiological Reviews, 84(1), 87–136.PubMedCrossRefGoogle Scholar
  106. Ma, Q.-L., Teter, B., Ubeda, O. J., Morihara, T., Dhoot, D., Nyby, M. D., et al. (2007). Omega-3 fatty acid docosahexaenoic acid increases SorLA/LR11, a sorting protein with reduced expression in sporadic Alzheimer’s Disease (AD): Relevance to AD prevention. Journal of Neuroscience, 27(52), 14299–14307.PubMedCrossRefGoogle Scholar
  107. Magnusson, K. R. (1998). The aging of the NMDA receptor complex. Frontiers in Bioscience, 3, e70–e80.PubMedGoogle Scholar
  108. Marcheselli, V. L., Hong, S., Lukiw, W. J., Hua, T. X., Gronert, K., Musto, A., et al. (2003). Novel docosanoids inhibit brain ischemia-reperfusion-mediated leukocyte infiltration and pro-informatory gene expression. Journal of Biological Chemistry, 278(44), 43807–43817.PubMedCrossRefGoogle Scholar
  109. Margulies, J. E., Cohen, R. W., Levine, M. S., & Watson, J. B. (1993). Decreased GluR2(B) receptor subunit mRNA expression in cerebellar neurons at risk for degeneration. Developmental Neuroscience, 15(2), 110–120.PubMedCrossRefGoogle Scholar
  110. Markesbery, W. R. (1997). Oxidative stress hypothesis in Alzheimer’s disease. Free Radical Biology and Medicine, 23(1), 134–147.PubMedCrossRefGoogle Scholar
  111. Markham, J. A., & Juraska, J. M. (2002). Aging and sex influence the anatomy of the rat anterior cingulate cortex. Neurobiology of Aging, 23, 579–588.PubMedCrossRefGoogle Scholar
  112. Marsden, C. D. (1994). Problems with long-term levodopa therapy for Parkinson’s disease. Clinical Neuropharmacology, 17(suppl 2), S32–S44.PubMedGoogle Scholar
  113. Marteinsdottir, I., Horrobin, D. F., Stenfors, C., Theodorsson, E., & Mathe, A. A. (1998). Changes in dietary fatty acids alter phospholipid fatty acid composition in selected regions of rat brain. Progress in Neuro-psychopharmacology, 22, 1007–1021.CrossRefGoogle Scholar
  114. Martin, D. S., Spencer, P., Horrobin, D. F., & Lynch, M. A. (2002). Long-term potentiation in aged rats is restored when the age-related decrease in polyunsaturated fatty acid concentration is reversed. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 67(2–3), 121–130.PubMedCrossRefGoogle Scholar
  115. Martinez, M., Vazquez, E., Garcia-Silva, M. T., Manzanares, J., Bertran, J. M., Castello, F., et al. (2000). Therapeutic effects of docosahexaenoic acid ethyl ester in patients with generalized peroxisomal disorders. American Journal of Clinical Nutrition, 71(1), 376S–175.PubMedGoogle Scholar
  116. McGahon, B. M., Martin, D. S., Horrobin, D. F., & Lynch, M. A. (1999). Age-related changes in synaptic function: Analysis of the effect of dietary supplementation with omega-3 fatty acids. Neuroscience, 94(1), 305–314.PubMedCrossRefGoogle Scholar
  117. McGeer, P. L., Yasojima, K., & McGeer, E. G. (2001). Inflammation in Parkinson’s disease. Advances in Neurology, 86, 83–89.PubMedGoogle Scholar
  118. Mesches, M. H., Gemma, C., Veng, L. M., Allgeier, C., Young, D. A., Browning, M. D., et al. (2004). Sulindac improves memory and increases NMDA receptor subunits in aged Fischer 344 rats. Neurobiology of Aging, 25(3), 315–324.PubMedCrossRefGoogle Scholar
  119. Mirnikjoo, B., Brown, S. E., Kim, F. S., Marangell, L. B., Sweatt, D. J., & Weeber, E. J. (2001). Protein kinase inhibition by omega-3 fatty acids. Journal of Biological Chemistry, 276(14), 10888–10896.PubMedCrossRefGoogle Scholar
  120. Mishina, M., Sakimura, K., Mori, H., Kushiya, E., Harabayashi, M., Uchino, S., et al. (1991). A single amino acid residue determines the Ca2+ permeability of AMPA-selective glutamate receptor channels. Biochemical and Biophysical Research Communications, 180(2), 813–821.PubMedCrossRefGoogle Scholar
  121. Morris, M. C., Evans, D. A., Bienias, J. L., Tangney, C. C., Bennett, D. A., Wilson, R. S., et al. (2003). Consumption of fish and n-3 fatty acids and risk of incident Alzheimer disease. Archives of Neurology, 60(7), 940–946.PubMedCrossRefGoogle Scholar
  122. Mukherjee, P. K., Marcheselli, V. L., Serhan, C. N., & Bazan, N. G. (2004). Neuroprotectin D1: A docosahexaenoic acid-derived docosatriene protects human retinal pigment epithelial cells from oxidative stress. Proceedings of the National Academy of Sciences of the United States of America, 101(22), 8491–8496.PubMedCrossRefGoogle Scholar
  123. Murck, H., & Manku, M. (2007). Ethyl-EPA in Huntington disease: Potentially relevant mechanism of action. Brain Research Bulletin, 72(2–3), 159–164.PubMedCrossRefGoogle Scholar
  124. Murphy, M. F., Sramek, J. J., Kurtz, N. M., Carta, A., & Cutler, N. R. (1998). Alzheimer’s Disease: Optimizing the development of the next generation of therapeutic compounds. London: Greenwich Medical Media Ltd.Google Scholar
  125. Murray, T. J. (2006). Diagnosis and treatment of multiple sclerosis. British Medical Journal, 332, 525–527.PubMedCrossRefGoogle Scholar
  126. Nadler, J. V., Perry, B. W., & Cotman, C. W. (1978). Intraventricular kainic acid preferentially destroys hippocampal pyramidal cells. Nature, 271(5646), 676–677.PubMedCrossRefGoogle Scholar
  127. Nakamura, M. T., & Nara, T. Y. (2003). Essential fatty acid synthesis and its regulation in mammals. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 68, 145–150.PubMedCrossRefGoogle Scholar
  128. Niu, S. L., Mitchell, D. C., Lim, S. Y., Wen, Z. M., Kim, H. Y., Salem, N., Jr., et al. (2004). Reduced G protein-coupled signaling efficiency in retinal rod outer segments in response to n-3 fatty acid deficiency. Journal of Biological Chemistry, 279(30), 31098–31104.PubMedCrossRefGoogle Scholar
  129. Nordvik, I., Myhr, K.-M., Nyland, H., & Bjerve, K. S. (2000). Effect of dietary advice and n-3 supplementation in newly diagnosed MS patients. Acta Neurologica Scandinavica, 102, 143–149.PubMedCrossRefGoogle Scholar
  130. Offe, K., Dodson, S. E., Shoemaker, J. T., Fritz, J. J., Gearing, M., Levey, A. I., et al. (2006). The lipoprotein receptor LR11 regulates amyloid beta production and amyloid precursor protein traffic in endosomal compartments. Journal of Neuroscience, 26(5), 1596–1603.PubMedCrossRefGoogle Scholar
  131. Pagliusi, S. R., Gerrard, P., Abdallah, M., Talabot, D., & Catsicas, S. (1994). Age-related changes in expression of AMPA-selective glutamate receptor subunits: Is calcium-permeability altered in hippocampal neurons? Neuroscience, 61(3), 429–433.PubMedCrossRefGoogle Scholar
  132. Passafaro, M., Nakagawa, T., Sala, C., & Sheng, M. (2003). Induction of dendritic spines by an extracellular domain of AMPA receptor subunit GluR2. Nature, 424(6949), 677–681.PubMedCrossRefGoogle Scholar
  133. Pawlosky, R. J., Hibbeln, J. R., Novotny, J. A., & Salem, N., Jr. (2001). Physiological compartmental analysis of α-linolenic acid metabolism in adult humans. Journal of Lipid Research, 42, 1257–1265.PubMedGoogle Scholar
  134. Peet, M. (2002). Essential fatty acids: Theoretical aspects and treatment implications for schizophrenia and depression. Advances in Psychiatric Treatment, 8, 223–229.CrossRefGoogle Scholar
  135. Peet, M., Murphy, B., Shay, J., & Horrobin, D. F. (1998). Depletion of omega-3 fatty acid levels in red blood cell membranes of depressive patients. Biological Psychiatry, 43, 315–319.PubMedCrossRefGoogle Scholar
  136. Petroni, A., Bertagnolio, B., La Spada, P., Blasevich, M., Papini, N., Govoni, S., et al. (1998). The β-oxidation of arachidonic acid and the synthesis of docosahexaenoic acid are selectively and consistently altered in skin fibroblasts from three Zellweger patients versus X-adrenoleukodystrophy, Alzheimer and control subjects. Neuroscience Letters, 250, 145–148.PubMedCrossRefGoogle Scholar
  137. Profyris, C., Cheema, S. S., Zang, D., Azari, M. F., Boyle, K., Petratos, S. (2004). Degenerative and regenerative mechanisms governing spinal cord injury. Neurobiology of Disease, 15, 415–436.Google Scholar
  138. Prolla, T. A., & Mattson, M. P. (2001). Molecular mechanisms of brain aging and neurodegenerative disorders: Lessons from dietary restriction. Trends in Neurosciences, 24(11), S21–S31.PubMedCrossRefGoogle Scholar
  139. Puri, B. K., Bydder, G. M., Counsell, S. J., Corridan, B. J., Richardson, A. J., Hajnal, J. V., et al. (2003). MRI and neuropsychological improvement in Huntington disease following ethyl-EPA treatment. NeuroReport, 13(1), 123–126.CrossRefGoogle Scholar
  140. Puri, B. K., Leavitt, B. R., Hayden, M. R., Ross, C. A., Rosenblatt, A., Greenamyre, J. T., et al. (2005). Ethyl-EPA in Huntington disease: A double-blind, randomized, placebo-controlled trial. Neurology India, 65(2), 286–292.CrossRefGoogle Scholar
  141. Relton, J. K., Strijbos, P. J. L. M., Cooper, A. L., & Rothwell, N. J. (1993). Dietary N-3 fatty acids inhibit ischaemic and excitotoxic brain damage in the rat. Brain Research Bulletin, 32(3), 223–226.PubMedCrossRefGoogle Scholar
  142. Rodriguez de Turco, E. B., Belayev, L., Liu, Y., Busto, R., Parkins, N., Bazan, N. G., et al. (2002). Systemic fatty acid responses to transient focal cerebral ischemia: Influence of neuroprotectant therapy with human albumin. Journal of Neurochemistry, 83(3), 515–524.PubMedCrossRefGoogle Scholar
  143. Rose, D. P., & Connolly, J. M. (1999). Omega-3 fatty acids as cancer chemopreventive agents. Pharmacology and Therapeutics, 83, 217–244.PubMedCrossRefGoogle Scholar
  144. Ross, B., Seguin, J., & Sieswerda, L. (2007). Omega-3 fatty acids as treatments for mental illness: Which disorder and which fatty acid? Lipids in Health and Disease, 6(1), 21.PubMedCrossRefGoogle Scholar
  145. Salvati, S., Natali, F., Attorri, L., Di Benedetto, R., Leonardi, F., Di Biase, A., et al. (2008). Eicosapentaenoic acid stimulates the expression of myelin proteins in rat brain. Journal of Neuroscience Research, 86(4), 776–784.PubMedCrossRefGoogle Scholar
  146. Samadi, P., Gregoire, L., Rouillard, C., Bedard, P. J., Di Paolo, T., & Levesque, D. (2006). Docosahexaenoic acid reduces Levodopa-induced dyskinesias in 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine monkeys. Annals of Neurology, 59, 282–288.PubMedCrossRefGoogle Scholar
  147. Sanders, T. A. (2000). Polyunsaturated fatty acids in the food chain in Europe. American Journal of Clinical Nutrition, 71(1), 176S–178S.PubMedGoogle Scholar
  148. Schaefer, E., Bongard, V., Beiser, A., Lamon-Fava, S., Robins, S. J., Au, R., et al. (2006). Plasma phosphatidylcholine docosahexaenoic acid content and risk of dementia and Alzheimer disease: The Framingham Heart Study. Archives in Neurology, 63, 1545–1550.CrossRefGoogle Scholar
  149. Segovia, G., Porras, A., Del Arco, A., & Mora, F. (2001). Glutamatergic neurotransmission in aging: A critical perspective. Mechanisms of Ageing and Development, 122(1), 1–29.PubMedCrossRefGoogle Scholar
  150. Selkoe, D. J. (2001). Alzheimer’s disease: Genes, proteins, and therapy. Physiological Reviews, 81, 741–766.PubMedGoogle Scholar
  151. Serhan, C. N., Hong, S., Gronert, K., Colgan, S. P., Devchand, P. R., Mirick, G., et al. (2002). Resolvins: A family of bioactive products of omega-3 fatty acid transformation circuits initiated by aspirin treatment that counter proinflammation signals. Journal of Experimental Medicine, 196(8), 1025–1037.PubMedCrossRefGoogle Scholar
  152. Serot, J.-M., Christmann, D., Dubost, T., & Couturier, M. (1997). Cerebrospinal fluid transthyretin: Aging and late onset Alzheimer’s disease. Journal of Neurology, Neurosurgery and Psychiatry, 63, 506–508.CrossRefGoogle Scholar
  153. Seung Kim, H. F., Weeber, E. J., Sweatt, D. J., Stoll, A. L., & Marangell, L. B. (2001). Inhibitory effects of omega-3 fatty acids on protein kinase C activity. Molecular Psychiatry, 6, 246–248.PubMedCrossRefGoogle Scholar
  154. Shapiro, H. (2003). Could n-3 polyunsaturated fatty acids reduce pathological pain by direct actions on the nervous system? Prostaglandins, Leukotrienes, and Essential Fatty Acids, 68, 219–224.PubMedCrossRefGoogle Scholar
  155. Sharon, R., Bar-Joseph, I., Frosch, M. P., Walsh, D. M., Hamilton, J. A., & Selkoe, D. J. (2003). The formation of highly soluble oligomers of alpha-synuclein is regulated by fatty acids and enhanced in Parkinson’s disease. Neuron, 37(4), 583–595.PubMedCrossRefGoogle Scholar
  156. Simopoulos, A. P. (1999). Evolutionary aspects of omega-3 fatty acids in the food supply. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 60(5–6), 421–429.PubMedCrossRefGoogle Scholar
  157. Sinclair, H. M. (1956). Deficiency of essential fatty acids and atherosclerosis, etcetera. Lancet, i, 381–383.Google Scholar
  158. Sinclair, H. M. (1990). History of essential fatty acids. In D. F. Horrobin (Ed.), Omega-6 essential fatty acids. Pathophysiology and roles in clinical medicine (pp. 1–20). New York: Wiley-Liss.Google Scholar
  159. Skinner, E. R., Watt, C., Besson, J. A. O., & Best, P. V. (1989). Lipid composition of different regions of the brain in patients with Alzheimer’s disease. Biochemical Society Transactions, 17, 213–214.Google Scholar
  160. Soderberg, M., Edlund, C., Kristensson, K., & Dallner, G. (1991). Fatty acid composition of brain phospholipids in aging and Alzheimer’s disease. Lipids, 26(6), 421–425.PubMedCrossRefGoogle Scholar
  161. Sonntag, W. E., Bennett, S. A., Khan, A. S., Thornton, P. L., Xu, X., Ingram, R. L., et al. (2000). Age and insulin-like growth factor-1 modulate N-methyl-D-aspartate receptor subtype expression in rats. Brain Research Bulletin, 51(4), 331–338.PubMedCrossRefGoogle Scholar
  162. Sprecher, H. (2000). Metabolism of highly unsaturated n-3 and n-6 fatty acids. Biochimica et Biophysica Acta, 1486, 219–231.PubMedGoogle Scholar
  163. Su, H.-M., Moser, A. B., Moser, H. W., & Watkins, P. A. (2001). Peroxisomal straight-chain acyl CoA oxidase and D-bifunctional protein are essential for the retroconversion step in docosahexaenoic acid synthesis. Journal of Biological Chemistry, 276(41), 38115–38120.PubMedGoogle Scholar
  164. Svenningsson, P., Nishi, A., Fisone, G., Girault, J. A., Nairn, A. C., & Greengard, P. (2004). DARPP-32: An integrator of neurotransmission. Annual Review of Pharmacology and Toxicology, 44, 269–296.PubMedCrossRefGoogle Scholar
  165. Swank, R. L., Lerstad, O., Strom, A., & Backer, J. (1952). Multiple sclerosis in rural Norway: Its geographic and occupational incidence in relation to nutrition. New England Journal of Medicine, 246, 721–728.Google Scholar
  166. Tang, Y. P., Shimizu, E., Dube, G. R., Rampon, C., Kerchner, G. A., Zhuo, M., et al. (1999). Genetic enhancement of learning and memory in mice. Nature, 401(6748), 63–69.PubMedCrossRefGoogle Scholar
  167. Tapiero, H., Nguyen Ba, G., Couvreur, P., & Tew, K. D. (2002). Polyunsaturated fatty acids (PUFA) and eicosanoids in human health and pathologies. Biomedicine & Pharmacotherapy, 56(5), 215–222.CrossRefGoogle Scholar
  168. Thomas, B., & Flint Beal, M. (2007). Parkinson’s disease. Human Molecular Genetics, 16, R183–R194.PubMedCrossRefGoogle Scholar
  169. Tully, A. M., Roche, H. M., Doyle, R., Fallon, C., Bruce, I., Lawlor, B., et al. (2003). Low serum cholesteryl ester-docosahexaenoic acid levels in Alzheimer’s disease: A case-control study. British Journal of Nutrition, 89(4), 483–489.PubMedCrossRefGoogle Scholar
  170. Vaddadi, K. S., Soosai, E., Chiu, E., & Dingjan, P. (2002). A randomised, placebo-controlled, double blind study of treatment of Huntington’s disease with unsaturated fatty acids. NeuroReport, 13(1), 29–33.PubMedCrossRefGoogle Scholar
  171. van Dellen, A., Welch, J., Dixon, R. M., Cordery, P., York, D., Styles, P., et al. (2000). N-acetylaspartate and DARPP-32 levels decrease in the corpus striatum of Huntington’s disease mice. NeuroReport, 11, 3751–3757.PubMedCrossRefGoogle Scholar
  172. van Gelder, B. M., Tijhuis, M., Kalmijn, S., & Kromhout, D. (2007). Fish consumption, n-3 fatty acids, and subsequent 5-y cognitive decline in elderly men: The Zutphen Elderly Study. American Journal of Clinical Nutrition, 85, 1142–1147.PubMedGoogle Scholar
  173. Van Raamsdonka, J. M., Pearsona, J., Rogersa, D. A., Lua, G., Barakauskasb, V. E., Barrb, A. M., et al. (2005). Ethyl-EPA treatment improves motor dysfunction, but not neurodegeneration in the YAC128 mouse model of Huntington disease. Experimental Neurology, 196, 266–272.CrossRefGoogle Scholar
  174. Vancassel, S., Leman, S., Hanonick, L., Denis, S., Roger, J., Nollet, M., et al. (2008). N-3 polyunsaturated fatty acids supplementation reverses stress-induced modifications on brain monoamine levels in mice. Journal of Lipid Research, 49, 340–348.PubMedCrossRefGoogle Scholar
  175. Viani, P., Cervato, G., Fiorilli, A., & Cestaro, B. (1991). Age-related differences in synaptosomal peroxidative damage and membrane properties. Journal of Neurochemistry, 56, 253–258.PubMedCrossRefGoogle Scholar
  176. Voss, A., Reinhart, M., Sankarappa, S., & Sprecher, H. (1991). The metabolism of 7, 10, 13, 16, 19-docosapentaenoic acid to 4, 7, 10, 13, 16, 19-docosahexaenoic acid in rat liver is independent of a 4-desaturase. Journal of Biological Chemistry, 266(30), 19995–20000.PubMedGoogle Scholar
  177. Vreugdenhil, M., Bruehl, C., Voskuyl, R. A., Kang, J. X., Leaf, A., & Wadman, W. J. (1996). Polyunsaturated fatty acids modulate sodium and calcium currents in CA1 neurons. Proceedings of the National Academy of Sciences of the United States of America, 93(22), 12559–12563.PubMedCrossRefGoogle Scholar
  178. Weinstock-Guttman, B., Baier, M., Park, Y., Feichter, J., Lee-Kwen, P., Gallagher, E., et al. (2005). Lowfat dietary intervention with omega-3 fatty acid supplementation in multiple sclerosis patients. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 73, 397–404.PubMedCrossRefGoogle Scholar
  179. Xu, S. J., Chen, Z., Zhu, L. J., Shen, H. Q., & Luo, J. H. (2005a). Visual recognition memory is related to basic expression level of NMDA receptor NR1/NR2B subtype in hippocampus and striatum of rats. Acta Pharmacologica Sinica, 26(2), 177–180.PubMedCrossRefGoogle Scholar
  180. Xu, W., Chi, L., Xu, R., Ke, Y., Luo, C., Cai, J., et al. (2005b). Increased production of reactive oxygen species contributes to motor neuron death in a compression mouse model of spinal cord injury. Spinal Cord, 43(4), 204–213.PubMedCrossRefGoogle Scholar
  181. Yehuda, S., Rabinovtz, S., Carasso, R. L., & Mostofsky, D. I. (1996). Essential fatty acids preparation (SR-3) improves Alzheimer’s patients quality of life. International Journal of Neuroscience, 87(3–4), 141–149.PubMedCrossRefGoogle Scholar
  182. Yehuda, S., Rabinovitz, S., Carasso, R. L., & Mostofsky, D. I. (2002). The role of polyunsaturated fatty acids in restoring the aging neuronal membrane. Neurobiology of Aging, 23, 843–853.PubMedCrossRefGoogle Scholar
  183. Zhang, J., Perry, G., Smith, M. A., Robertson, D., Olson, S. J., Graham, D. G., et al. (1999). Parkinson’s disease is associated with oxidative damage to cytoplasmic DNA and RNA in substantia nigra neurons. American Journal of Pathology, 154(5), 1423–1429.PubMedGoogle Scholar
  184. Zimmer, L., Delpal, S., Guilloteau, D., Aioun, J., Durand, G., & Chalon, S. (2000). Chronic n-3 polyunsaturated fatty acid deficiency alters dopamine vesicle density in the rat frontal cortex. Neuroscience Letters, 284(1–2), 25–28.PubMedCrossRefGoogle Scholar
  185. Zimmer, L., Hembert, S., Durand, G., Breton, P., Guilloteau, D., Besnard, J. C., et al. (1998). Chronic n-3 polyunsaturated fatty acid diet-deficiency acts on dopamine metabolism in the rat frontal cortex: A microdialysis study. Neuroscience Letters, 240(3), 177–181.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press 2008

Authors and Affiliations

  1. 1.British College of Osteopathic MedicineLondonUK
  2. 2.Neuroscience Centre, Institute of Cell and Molecular Sciences, Barts and the Royal London School of Medicine and DentistryQueen Mary University of LondonWhitechapel, LondonUK

Personalised recommendations