Exercising Our Brains: How Physical Activity Impacts Synaptic Plasticity in the Dentate Gyrus

  • Brian R. Christie
  • Brennan D. Eadie
  • Timal S. Kannangara
  • Julie M. Robillard
  • James Shin
  • Andrea K. Titterness
Original Paper


Exercise that engages the cardiovascular system has a myriad of effects on the body; however, we usually do not give much consideration to the benefits it may have for our minds. An increasing body of evidence suggests that exercise can have some remarkable effects on the brain. In this article, we will introduce how exercise can impact the capacity for neurons in the brain to communicate with one another. To properly convey this information, we will first briefly introduce the field of synaptic plasticity and then examine how the introduction of exercise to the experimental setting can actually alter the basic properties of synaptic plasticity in the brain. Next, we will examine some of the candidate physiological processes that might underlay these alterations. Finally, we will close by noting that, taken together, this data points toward our brains being dynamic systems that are in a continual state of flux and that physical exercise may help us to maximize the performance of both our body and our minds.


Exercise Neurogenesis Synaptic plasticity Vasculature Neurotrophins NMDA Serotonin 



This work was funded by grants from NSERC, CIHR, and ABMRF to BRC. BRC is a Michael Smith Foundation Senior Scholar. BDE is a CIHR graduate scholarship recipient. JS is a UVIC graduate scholarship recipient. AKT holds a University Graduate Fellowship, a Pacifica Family Addiction Foundation Geoffrey Lane Nanson Scholarship and The Pacific Century Graduate Scholarship at UBC.


  1. Abraham, W. C., Logan, B., Greenwood, J. M., & Dragunow, M. (2002). Induction and experience-dependent consolidation of stable long-term potentiation lasting months in the hippocampus. Journal of Neuroscience, 22, 9626–9634.PubMedGoogle Scholar
  2. Adlard, P. A., & Cotman, C. W. (2004). Voluntary exercise protects against stress-induced decreases in brain-derived neurotrophic factor protein expression. Neuroscience, 124, 985–992.PubMedGoogle Scholar
  3. Alfarez, D. N., Joels, M., & Krugers, H. J. (2003). Chronic unpredictable stress impairs long-term potentiation in rat hippocampal CA1 area and dentate gyrus in vitro. The European Journal of Neuroscience, 17, 1928–1934.PubMedGoogle Scholar
  4. Avital, A., Segal, M., & Richter-Levin, G. (2006). Contrasting roles of corticosteroid receptors in hippocampal plasticity. Journal of Neuroscience, 26, 9130–9134.PubMedGoogle Scholar
  5. Black, J. E., Isaacs, K. R., Anderson, B. J., Alcantara, A. A., & Greenough, W. T. (1990). Learning causes synaptogenesis, whereas motor activity causes angiogenesis, in cerebellar cortex of adult rats. Proceedings of the National Academy of Sciences of the United States of America, 87, 5568–5572.PubMedGoogle Scholar
  6. Bliss, T., Collingridge, G., & Morris, R. (2007). Synaptic Plasticity in the Hippocampus. In P. Andersen, R. Morris, D. Amaral, T. Bliss, & J. O'Keefe (Eds.), The hippocampus book (pp. 343–474). New York: Oxford University Press.Google Scholar
  7. Bliss, T. V., & Gardner-Medwin, A. R. (1973). Long-lasting potentiation of synaptic transmission in the dentate area of the unanaestetized rabbit following stimulation of the perforant path. Journal of Physiology, 232, 357–374.PubMedGoogle Scholar
  8. Bliss, T. V., & Lomo, T. (1973). Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. Journal of Physiology, 232, 331–356.PubMedGoogle Scholar
  9. Caldeira, M. V., Melo, C. V., Pereira, D. B., et al. (2007). Brain-derived neurotrophic factor regulates the expression and synaptic delivery of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor subunits in hippocampal neurons. Journal of Biological Chemistry, 282, 12619–12628.PubMedGoogle Scholar
  10. Carro, E., Trejo, J. L., Busiguina, S., & Torres-Aleman, I. (2001). Circulating insulin-like growth factor I mediates the protective effects of physical exercise against brain insults of different etiology and anatomy. Journal of Neuroscience, 21, 5678–5684.PubMedGoogle Scholar
  11. Chao, H. M., Choo, P. H., & McEwen, B. S. (1989). Glucocorticoid and mineralocorticoid receptor mRNA expression in rat brain. Neuroendocrinology, 50, 365–371.PubMedGoogle Scholar
  12. Chao, H. M., Sakai, R. R., Ma, L. Y., & McEwen, B. S. (1998). Adrenal steroid regulation of neurotrophic factor expression in the rat hippocampus. Endocrinology, 139, 3112–3118.PubMedGoogle Scholar
  13. Chaudhury, D., Wang, L. M., & Colwell, C. S. (2005). Circadian regulation of hippocampal long-term potentiation. Journal of Biological Rhythms, 20, 225–236.PubMedGoogle Scholar
  14. Chen, M. J., Ivy, A. S., & Russo-Neustadt, A. A. (2006). Nitric oxide synthesis is required for exercise-induced increases in hippocampal BDNF and phosphatidylinositol 3′ kinase expression. Brain Research Bulletin, 68, 257–268.PubMedGoogle Scholar
  15. Christie, B. R., & Abraham, W. C. (1992a). Priming of associative long-term depression in the dentate gyrus by theta frequency synaptic activity. Neuron, 9, 79–84.PubMedGoogle Scholar
  16. Christie, B. R., & Abraham, W. C. (1992b). NMDA-dependent heterosynaptic long-term depression in the dentate gyrus of anaesthetized rats. Synapse, 10, 1–6.PubMedGoogle Scholar
  17. Christie, B. R., Kerr, D. S., & Abraham, W. C. (1994). Flip side of synaptic plasticity: Long-term depression mechanisms in the hippocampus. Hippocampus, 4, 127–135.PubMedGoogle Scholar
  18. Christie, B. R., Swann, S. E., Fox, C. J., et al. (2005). Voluntary exercise rescues deficits in spatial memory and long-term potentiation in prenatal ethanol-exposed male rats. European Journal of Neuroscience, 21, 1719–1726.PubMedCrossRefGoogle Scholar
  19. Claflin, D. I., Hennessy, M. B., & Jensen, S. J. (2005). Sex-specific effects of corticosterone on hippocampally mediated learning in young rats. Physiology & Behaviour, 85, 159–166.Google Scholar
  20. Conrad, C. D., Jackson, J. L., Wieczorek, L., et al. (2004). Acute stress impairs spatial memory in male but not female rats: influence of estrous cycle. Pharmacology, Biochemistry and Behavior, 78, 569–579.Google Scholar
  21. De Kloet, E. R., Vreugdenhil, E., Oitzl, M. S., & Joels, M. (1998). Brain corticosteroid receptor balance in health and disease. Endocrine Reviews, 19, 269–301.PubMedGoogle Scholar
  22. Dechant, G., & Barde, Y. A. (2002). The neurotrophin receptor p75(NTR): novel functions and implications for diseases of the nervous system. Nature Neuroscience, 5, 1131–1136.PubMedGoogle Scholar
  23. Dey, S., Singh, R. H., & Dey, P. K. (1992). Exercise training: significance of regional alterations in serotonin metabolism of rat brain in relation to antidepressant effect of exercise. Physiology & Behaviour, 52, 1095–1099.Google Scholar
  24. Dougherty, K. D., & Milner, T. A. (1999). p75NTR immunoreactivity in the rat dentate gyrus is mostly within presynaptic profiles but is also found in some astrocytic and postsynaptic profiles. Journal of Comparative Neurology, 407, 77–91.PubMedGoogle Scholar
  25. Douglas, R. M., & Goddard, G. V. (1975). Long-term potentiation of the perforant path-granule cell synapse in the rat hippocampus. Brain Research, 86, 205–215.PubMedGoogle Scholar
  26. Droste, S. K., Gesing, A., Ulbricht, S., Muller, M. B., Linthorst, A. C., & Reul, J. M. (2003). Effects of long-term voluntary exercise on the mouse hypothalamic–pituitary–adrenocortical axis. Endocrinology, 144, 3012–3023.PubMedGoogle Scholar
  27. Dudek, S. M., & Bear, M. F. (1992). Homosynaptic long-term depression in area CA1 of hippocampus and effects of N-methyl-D-aspartate receptor blockade. Proceedings of the National Academy of Sciences of the United States of America, 89, 4363–4367.PubMedGoogle Scholar
  28. Dugich-Djordjevic, M. M., Tocco, G., Lapchak, P. A., et al. (1992). Regionally specific and rapid increases in brain-derived neurotrophic factor messenger RNA in the adult rat brain following seizures induced by systemic administration of kainic acid. Neuroscience, 47, 303–315.PubMedGoogle Scholar
  29. Eadie, B. D., Redila, V. A., & Christie, B. R. (2005). Voluntary exercise alters the cytoarchitecture of the adult dentate gyrus by increasing cellular proliferation, dendritic complexity, and spine density. Journal of Comparative Neurology, 486, 39–47.PubMedGoogle Scholar
  30. Engesser-Cesar, C., Ichiyama, R. M., Nefas, A. L., et al. (2007). Wheel running following spinal cord injury improves locomotor recovery and stimulates serotonergic fiber growth. European Journal of Neuroscience, 25, 1931–1939.PubMedGoogle Scholar
  31. Farmer, J., Zhao, X., van Praag, H., Wodtke, K., Gage, F. H., & Christie, B. R. (2004). Effects of voluntary exercise on synaptic plasticity and gene expression in the dentate gyrus of adult male Sprague–Dawley rats in vivo. Neuroscience, 124, 71–79.PubMedGoogle Scholar
  32. Fediuc, S., Campbell, J. E., & Riddell, M. C. (2006). Effect of voluntary wheel running on circadian corticosterone release and on HPA axis responsiveness to restraint stress in Sprague–Dawley rats. Journal of Applied Physiology, 100, 1867–1875.PubMedGoogle Scholar
  33. Ferreira, A., Chin, L. S., Li, L., Lanier, L. M., Kosik, K. S., & Greengard, P. (1998). Distinct roles of synapsin I and synapsin II during neuronal development. Molecular Medicine, 4, 22–28.PubMedGoogle Scholar
  34. Figurov, A., Pozzo-Miller, L. D., Olafsson, P., Wang, T., & Lu, B. (1996). Regulation of synaptic responses to high-frequency stimulation and LTP by neurotrophins in the hippocampus. Nature, 381, 706–709.PubMedGoogle Scholar
  35. Fox, C. J., Russell, K., Titterness, A. K., Wang, Y. T., & Christie, B. R. (2007). Tyrosine phosphorylation of the GluR2 subunit is required for long-term depression of synaptic efficacy in young animals in vivo. Hippocampus, 17, 600–605.PubMedGoogle Scholar
  36. Foy, M. R., Stanton, M. E., Levine, S., & Thompson, R. F. (1987). Behavioral stress impairs long-term potentiation in rodent hippocampus. Behavioral and Neural Biology, 48, 138–149.PubMedGoogle Scholar
  37. Fukazawa, Y., Saitoh, Y., Ozawa, F., Ohta, Y., Mizuno, K., & Inokuchi, K. (2003). Hippocampal LTP is accompanied by enhanced F-actin content within the dendritic spine that is essential for late LTP maintenance in vivo. Neuron, 38, 447–460.PubMedGoogle Scholar
  38. Gerin, C., Legrand, A., & Privat, A. (1994). Study of 5-HT release with a chronically implanted microdialysis probe in the ventral horn of the spinal cord of unrestrained rats during exercise on a treadmill. Journal of Neuroscience Methods, 52, 129–141.PubMedGoogle Scholar
  39. Glazner, G. W., & Mattson, M. P. (2000). Differential effects of BDNF, ADNF9, and TNFalpha on levels of NMDA receptor subunits, calcium homeostasis, and neuronal vulnerability to excitotoxicity. Experimental Neurology, 161, 442–452.PubMedGoogle Scholar
  40. Gomez-Merino, D., Bequet, F., Berthelot, M., Chennaoui, M., & Guezennec, C. Y. (2001). Site-dependent effects of an acute intensive exercise on extracellular 5-HT and 5-HIAA levels in rat brain. Neuroscience Letters, 301, 143–146.PubMedGoogle Scholar
  41. Gomez-Pinilla, F., Dao, L., & So, V. (1997). Physical exercise induces FGF-2 and its mRNA in the hippocampus. Brain Research, 764, 1–8.PubMedGoogle Scholar
  42. Hebb, C. O., & Konzett, H. (1949). The effect of certain analgesic drugs on synaptic transmission as observed in the perfused superior cervical ganglion of the cat. Quaterly Journal of Experimental Physiology and Cognate Medical Sciences, 35, 213–217.Google Scholar
  43. Herman, J. P., Patel, P. D., Akil, H., & Watson, S. J. (1989). Localization and regulation of glucocorticoid and mineralocorticoid receptor messenger RNAs in the hippocampal formation of the rat. Molecular Endocrinology, 3, 1886–1894.PubMedGoogle Scholar
  44. Herman, J. P., Prewitt, C. M., & Cullinan, W. E. (1996). Neuronal circuit regulation of the hypothalamo–pituitary–adrenocortical stress axis. Critical Reviews in Neurobiology, 10, 371–394.PubMedGoogle Scholar
  45. Hopper, R. A., & Garthwaite, J. (2006). Tonic and phasic nitric oxide signals in hippocampal long-term potentiation. Journal of Neuroscience, 26, 11513–11521.PubMedGoogle Scholar
  46. Ikegaya, Y., Ishizaka, Y., & Matsuki, N. (2002). BDNF attenuates hippocampal LTD via activation of phospholipase C: Implications for a vertical shift in the frequency-response curve of synaptic plasticity. European Journal of Neuroscience, 16, 145–148.PubMedGoogle Scholar
  47. Isaacs, K. R., Anderson, B. J., Alcantara, A. A., Black, J. E., & Greenough, W. T. (1992). Exercise and the brain: Angiogenesis in the adult rat cerebellum after vigorous physical activity and motor skill learning. Journal of Cerebral Blood Flow Metabolism, 12, 110–119.PubMedGoogle Scholar
  48. Ivy, A. S., Rodriguez, F. G., Garcia, C., Chen, M. J., & Russo-Neustadt, A. A. (2003). Noradrenergic and serotonergic blockade inhibits BDNF mRNA activation following exercise and antidepressant. Pharmacology, Biochemistry and Behavior, 75, 81–88.Google Scholar
  49. Jacobsen, J. P., & Mork, A. (2006). Chronic corticosterone decreases brain-derived neurotrophic factor (BDNF) mRNA and protein in the hippocampus, but not in the frontal cortex, of the rat. Brain Research, 1110, 221–225.PubMedGoogle Scholar
  50. Jacobson, L., & Sapolsky, R. (1991). The role of the hippocampus in feedback regulation of the hypothalamic–pituitary–adrenocortical axis. Endocrine Reviews, 12, 118–134.PubMedGoogle Scholar
  51. Kim, J. J., Foy, M. R., & Thompson, R. F. (1996). Behavioral stress modifies hippocampal plasticity through N-methyl-D-aspartate receptor activation. Proceedings of the National Academy of Sciences of the United States of America, 93, 4750–4753.PubMedGoogle Scholar
  52. Kitraki, E., Kremmyda, O., Youlatos, D., Alexis, M. N., & Kittas, C. (2004). Gender-dependent alterations in corticosteroid receptor status and spatial performance following 21 days of restraint stress. Neuroscience, 125, 47–55.PubMedGoogle Scholar
  53. Kohr, G., Jensen, V., Koester, H. J., et al. (2003). Intracellular domains of NMDA receptor subtypes are determinants for long-term potentiation induction. Journal of Neuroscience, 23, 10791–10799.PubMedGoogle Scholar
  54. Korte, M., Carroll, P., Wolf, E., Brem, G., Thoenen, H., & Bonhoeffer, T. (1995). Hippocampal long-term potentiation is impaired in mice lacking brain-derived neurotrophic factor. Proceedings of the National Academy of Sciences of the United States of America, 92, 8856–8860.PubMedGoogle Scholar
  55. Korte, M., Griesbeck, O., Gravel, C., et al. (1996). Virus-mediated gene transfer into hippocampal CA1 region restores long-term potentiation in brain-derived neurotrophic factor mutant mice. Proceedings of the National Academy of Sciences of the United States of America, 93, 12547–12552.PubMedGoogle Scholar
  56. Korz, V., & Frey, J. U. (2003). Stress-related modulation of hippocampal long-term potentiation in rats: Involvement of adrenal steroid receptors. Journal of Neuroscience, 23, 7281–7287.PubMedGoogle Scholar
  57. Kovalchuk, Y., Hanse, E., Kafitz, K. W., & Konnerth, A. (2002). Postsynaptic induction of BDNF-mediated long-term potentiation. Science, 295, 1729–1734.PubMedGoogle Scholar
  58. Kozorovitskiy, Y., & Gould, E. (2004). Dominance hierarchy influences adult neurogenesis in the dentate gyrus. Journal of Neuroscience, 24, 6755–6759.PubMedGoogle Scholar
  59. Kramar, E. A., Lin, B., Rex, C. S., Gall, C. M., & Lynch, G. (2006). Integrin-driven actin polymerization consolidates long-term potentiation. Proceedings of the National Academy of Sciences of the United States of America, 103, 5579–5584.PubMedGoogle Scholar
  60. Lahteinen, S., Pitkanen, A., Saarelainen, T., Nissinen, J., Koponen, E., & Castren, E. (2002). Decreased BDNF signalling in transgenic mice reduces epileptogenesis. European Journal of Neuroscience, 15, 721–734.PubMedGoogle Scholar
  61. Larmet, Y., Reibel, S., Carnahan, J., Nawa, H., Marescaux, C., & Depaulis, A. (1995). Protective effects of brain-derived neurotrophic factor on the development of hippocampal kindling in the rat. Neuroreport, 6, 1937–1941.PubMedGoogle Scholar
  62. Lee, R., Kermani, P., Teng, K. K., & Hempstead, B. L. (2001). Regulation of cell survival by secreted proneurotrophins. Science, 294, 1945–1948.PubMedGoogle Scholar
  63. Lee, H. K., Min, S. S., Gallagher, M., & Kirkwood, A. (2005). NMDA receptor-independent long-term depression correlates with successful aging in rats. Nature Neuroscience, 8, 1657–1659.PubMedGoogle Scholar
  64. Lessmann, V., Gottmann, K., & Malcangio, M. (2003). Neurotrophin secretion: Current facts and future prospects. Progress in Neurobiology, 69, 341–374.PubMedGoogle Scholar
  65. Lin, S. Y., Wu, K., Levine, E. S., Mount, H. T., Suen, P. C., & Black, I. B. (1998). BDNF acutely increases tyrosine phosphorylation of the NMDA receptor subunit 2B in cortical and hippocampal postsynaptic densities. Brain Research. Molecular Brain Research, 55, 20–27.PubMedGoogle Scholar
  66. Liu, L., Wong, T. P., Pozza, M. F., et al. (2004). Role of NMDA receptor subtypes in governing the direction of hippocampal synaptic plasticity. Science, 304, 1021–1024.PubMedGoogle Scholar
  67. Llorens-Martin, M., Torres-Aleman, I., & Trejo, J. L. (2006). Pronounced individual variation in the response to the stimulatory action of exercise on immature hippocampal neurons. Hippocampus, 16, 480–490.PubMedGoogle Scholar
  68. Malek, Z. S., Sage, D., Pevet, P., & Raison, S. (2007). Daily rhythm of tryptophan hydroxylase-2 messenger ribonucleic acid within raphe neurons is induced by corticoid daily surge and modulated by enhanced locomotor activity. Endocrinology, 148, 5165–5172.PubMedGoogle Scholar
  69. Marin, H., & Menza, M. A. (2005). The management of fatigue in depressed patients. Essential Psychopharmacology, 6, 185–192.PubMedGoogle Scholar
  70. Mattson, M. P., Maudsley, S., & Martin, B. (2004). BDNF and 5-HT: A dynamic duo in age-related neuronal plasticity and neurodegenerative disorders. Trends in Neurosciences, 27, 589–594.PubMedGoogle Scholar
  71. McCloskey, D. P., Adamo, D. S., & Anderson, B. J. (2001). Exercise increases metabolic capacity in the motor cortex and striatum, but not in the hippocampus. Brain Research, 891, 168–175.PubMedGoogle Scholar
  72. McNaughton, B. L., Douglas, R. M., & Goddard, G. V. (1978). Synaptic enhancement in fascia dentata: Cooperativity among coactive afferents. Brain Research, 157, 277–293.PubMedGoogle Scholar
  73. Meeusen, R., Thorre, K., Chaouloff, F., et al. (1996). Effects of tryptophan and/or acute running on extracellular 5-HT and 5-HIAA levels in the hippocampus of food-deprived rats. Brain Research, 740, 245–252.PubMedGoogle Scholar
  74. Mowla, S. J., Farhadi, H. F., Pareek, S., et al. (2001). Biosynthesis and post-translational processing of the precursor to brain-derived neurotrophic factor. Journal of Biological Chemistry, 276, 12660–12666.PubMedGoogle Scholar
  75. Mowla, S. J., Pareek, S., Farhadi, H. F., et al. (1999). Differential sorting of nerve growth factor and brain-derived neurotrophic factor in hippocampal neurons. Journal of Neuroscience, 19, 2069–2080.PubMedGoogle Scholar
  76. Neeper, S. A., Gomez-Pinilla, F., Choi, J., & Cotman, C. (1995). Exercise and brain neurotrophins. Nature, 373, 109.PubMedGoogle Scholar
  77. Neeper, S. A., Gomez-Pinilla, F., Choi, J., & Cotman, C. W. (1996). Physical activity increases mRNA for brain-derived neurotrophic factor and nerve growth factor in rat brain. Brain Research, 726, 49–56.PubMedGoogle Scholar
  78. Oberlander, T. F., Warburton, W., Misri, S., Aghajanian, J., & Hertzman, C. (2006). Neonatal outcomes after prenatal exposure to selective serotonin reuptake inhibitor antidepressants and maternal depression using population-based linked health data. Archives of General Psychiatry, 63, 898–906.PubMedGoogle Scholar
  79. Owens, M. J. (2004). Selectivity of antidepressants: From the monoamine hypothesis of depression to the SSRI revolution and beyond. Journal of Clinical Psychiatry, 65(Suppl 4), 5–10.PubMedGoogle Scholar
  80. Patterson, S. L., Abel, T., Deuel, T. A., Martin, K. C., Rose, J. C., & Kandel, E. R. (1996). Recombinant BDNF rescues deficits in basal synaptic transmission and hippocampal LTP in BDNF knockout mice. Neuron, 16, 1137–1145.PubMedGoogle Scholar
  81. Pavlides, C., Ogawa, S., Kimura, A., & McEwen, B. S. (1996). Role of adrenal steroid mineralocorticoid and glucocorticoid receptors in long-term potentiation in the CA1 field of hippocampal slices. Brain Research, 738, 229–235.PubMedGoogle Scholar
  82. Peris, J., Anderson, K. J., Vickroy, T. W., King, M. A., Hunter, B. E., & Walker, D. W. (1997). Neurochemical basis of disruption of hippocampal long-term potentiation by chronic alcohol exposure. Frontiers in Bioscience, 2, d309–d316.PubMedGoogle Scholar
  83. Pozzo-Miller, L. D., Gottschalk, W., Zhang, L., et al. (1999). Impairments in high-frequency transmission, synaptic vesicle docking, and synaptic protein distribution in the hippocampus of BDNF knockout mice. Journal of Neuroscience, 19, 4972–4983.PubMedGoogle Scholar
  84. Radecki, D. T., Brown, L. M., Martinez, J., & Teyler, T. J. (2005). BDNF protects against stress-induced impairments in spatial learning and memory and LTP. Hippocampus, 15, 246–253.PubMedGoogle Scholar
  85. Redila, V. A., & Christie, B. R. (2006). Exercise-induced changes in dendritic structure and complexity in the adult hippocampal dentate gyrus. Neuroscience, 137, 1299–1307.PubMedGoogle Scholar
  86. Reibel, S., Larmet, Y., Le, B. T., Carnahan, J., Marescaux, C., & Depaulis, A. (2000). Brain-derived neurotrophic factor delays hippocampal kindling in the rat. Neuroscience, 100, 777–788.PubMedGoogle Scholar
  87. Remondes, M., & Schuman, E. M. (2004). Role for a cortical input to hippocampal area CA1 in the consolidation of a long-term memory. Nature, 431, 699–703.PubMedGoogle Scholar
  88. Rex, C. S., Lin, C. Y., Kramar, E. A., Chen, L. Y., Gall, C. M., & Lynch, G. (2007). Brain-derived neurotrophic factor promotes long-term potentiation-related cytoskeletal changes in adult hippocampus. Journal of Neuroscience, 27, 3017–3029.PubMedGoogle Scholar
  89. Schaaf, M. J., de Jong, J., de Kloet, E. R., & Vreugdenhil, E. (1998). Downregulation of BDNF mRNA and protein in the rat hippocampus by corticosterone. Brain Research, 813, 112–120.PubMedGoogle Scholar
  90. Schaaf, M. J., Duurland, R., de Kloet, E. R., & Vreugdenhil, E. (2000). Circadian variation in BDNF mRNA expression in the rat hippocampus. Brain Research. Molecular Brain Research, 75, 342–344.PubMedGoogle Scholar
  91. Schaaf, M. J., Hoetelmans, R. W., de Kloet, E. R., & Vreugdenhil, E. (1997). Corticosterone regulates expression of BDNF and TrkB but not NT-3 and TrkC mRNA in the rat hippocampus. Journal of Neuroscience Research, 48, 334–341.PubMedGoogle Scholar
  92. Shors, T. J., & Thompson, R. F. (1992). Acute stress impairs (or induces) synaptic long-term potentiation (LTP) but does not affect paired-pulse facilitation in the stratum radiatum of rat hippocampus. Synapse, 11, 262–265.PubMedGoogle Scholar
  93. Sjosten, N., & Kivela, S. L. (2006). The effects of physical exercise on depressive symptoms among the aged: A systematic review. International Journal of Geriatric Psychiatry, 21, 410–418.PubMedGoogle Scholar
  94. Smith, M. A., Makino, S., Kvetnansky, R., & Post, R. M. (1995). Stress and glucocorticoids affect the expression of brain-derived neurotrophic factor and neurotrophin-3 mRNAs in the hippocampus. Journal of Neuroscience, 15, 1768–1777.PubMedGoogle Scholar
  95. Spencer, R. L., Kim, P. J., Kalman, B. A., & Cole, M. A. (1998). Evidence for mineralocorticoid receptor facilitation of glucocorticoid receptor-dependent regulation of hypothalamic–pituitary–adrenal axis activity. Endocrinology, 139, 2718–2726.PubMedGoogle Scholar
  96. Spier, S. A., Delp, M. D., Meininger, C. J., Donato, A. J., Ramsey, M. W., & Muller-Delp, J. M. (2004). Effects of ageing and exercise training on endothelium-dependent vasodilatation and structure of rat skeletal muscle arterioles. Journal of Physiology, 556, 947–958.PubMedGoogle Scholar
  97. Stranahan, A. M., Khalil, D., & Gould, E. (2007). Running induces widespread structural alterations in the hippocampus and entorhinal cortex. Hippocampus, 17, 1017–1022.PubMedGoogle Scholar
  98. Struder, H. K., & Weicker, H. (2001). Physiology and pathophysiology of the serotonergic system and its implications on mental and physical performance. Part II. International Journal of Sports Medicine, 22, 482–497.PubMedGoogle Scholar
  99. Stummer, W., Weber, K., Tranmer, B., Baethmann, A., & Kempski, O. (1994). Reduced mortality and brain damage after locomotor activity in gerbil forebrain ischemia. Stroke, 25, 1862–1869.PubMedGoogle Scholar
  100. Swain, R. A., Harris, A. B., Wiener, E. C., et al. (2003). Prolonged exercise induces angiogenesis and increases cerebral blood volume in primary motor cortex of the rat. Neuroscience, 117, 1037–1046.PubMedGoogle Scholar
  101. Thiele, C., Hannah, M. J., Fahrenholz, F., & Huttner, W. B. (2000). Cholesterol binds to synaptophysin and is required for biogenesis of synaptic vesicles. Nature Cell Biology, 2, 42–49.PubMedGoogle Scholar
  102. Thinschmidt, J. S., Walker, D. W., & King, M. A. (2003). Chronic ethanol treatment reduces the magnitude of hippocampal LTD in the adult rat. Synapse, 48, 189–197.PubMedGoogle Scholar
  103. Trejo, J. L., Carro, E., & Torres-Aleman, I. (2001). Circulating insulin-like growth factor I mediates exercise-induced increases in the number of new neurons in the adult hippocampus. Journal of Neuroscience, 21, 1628–1634.PubMedGoogle Scholar
  104. Tyler, W. J., & Pozzo-Miller, L. D. (2001). BDNF enhances quantal neurotransmitter release and increases the number of docked vesicles at the active zones of hippocampal excitatory synapses. Journal of Neuroscience, 21, 4249–4258.PubMedGoogle Scholar
  105. Van Eekelen, J. A., & De Kloet, E. R. (1992). Co-localization of brain corticosteroid receptors in the rat hippocampus. Progress in Histochemistry and Cytochemistry, 26, 250–258.PubMedGoogle Scholar
  106. Van Eekelen, J. A., Jiang, W., De Kloet, E. R., & Bohn, M. C. (1988). Distribution of the mineralocorticoid and the glucocorticoid receptor mRNAs in the rat hippocampus. Journal of Neuroscience Research, 21, 88–94.PubMedGoogle Scholar
  107. van Praag, H., Christie, B. R., Sejnowski, T. J., & Gage, F. H. (1999). Running enhances neurogenesis, learning, and long-term potentiation in mice. Proceedings of the National Academy of Sciences of the United States of America, 96, 13427–13431.PubMedGoogle Scholar
  108. van Praag, H., Schinder, A. F., Christie, B. R., Toni, N., Palmer, T. D., & Gage, F. H. (2002). Functional neurogenesis in the adult hippocampus. Nature, 415, 1030–1034.PubMedGoogle Scholar
  109. van Praag, H., Shubert, T., Zhao, C., & Gage, F. H. (2005). Exercise enhances learning and hippocampal neurogenesis in aged mice. Journal of Neuroscience, 25, 8680–8685.PubMedGoogle Scholar
  110. Vasuta, C., Caunt, C., & James, R., et al. (2007). Effects of exercise on NMDA receptor subunit contributions to bidirectional synaptic plasticity in the mouse dentate gyrus. Hippocampus, 17, 1201–1208.PubMedGoogle Scholar
  111. Vaynman, S. S., Ying, Z., Yin, D., & Gomez-Pinilla, F. (2006). Exercise differentially regulates synaptic proteins associated to the function of BDNF. Brain Research, 1070, 124–130.PubMedGoogle Scholar
  112. Wadley, V. G., McClure, L. A., Howard, V. J., et al. (2007). Cognitive status, stroke symptom reports, and modifiable risk factors among individuals with no diagnosis of stroke or transient ischemic attack in the reasons for geographic and racial differences in stroke (REGARDS) study. Stroke, 38, 1143–1147.PubMedGoogle Scholar
  113. Wilson, W. M., & Marsden, C. A. (1996). In vivo measurement of extracellular serotonin in the ventral hippocampus during treadmill running. Behavioural Pharmacology, 7, 101–104.PubMedGoogle Scholar
  114. Woo, N. H., Teng, H. K., Siao, C. J., et al. (2005). Activation of p75NTR by proBDNF facilitates hippocampal long-term depression. Nature Neuroscience, 8, 1069–1077.PubMedGoogle Scholar
  115. Xiong, W., Wei, H., Xiang, X., et al. (2004). The effect of acute stress on LTP and LTD induction in the hippocampal CA1 region of anesthetized rats at three different ages. Brain Research, 1005, 187–192.PubMedGoogle Scholar
  116. Wu, K., Xu, J. L., Suen, P. C., et al. (1996). Functional TrkB neurotrophin receptors are intrinsic components of the adult brain postsynaptic density. Brain Research. Molecular Brain Research, 43, 286–290.PubMedGoogle Scholar
  117. Xiong, W., Yang, Y., Cao, J., et al. (2003). The stress experience dependent long-term depression disassociated with stress effect on spatial memory task. Neuroscience Research, 46, 415–421.PubMedGoogle Scholar
  118. Xu, L., Anwyl, R., & Rowan, M. J. (1997). Behavioural stress facilitates the induction of long-term depression in the hippocampus. Nature, 387, 497–500.PubMedGoogle Scholar
  119. Xu, L., Holscher, C., Anwyl, R., & Rowan, M. J. (1998). Glucocorticoid receptor and protein/RNA synthesis-dependent mechanisms underlie the control of synaptic plasticity by stress. Proceedings of the National Academy of Sciences of the United States of America, 95, 3204–3208.PubMedGoogle Scholar
  120. Xu, B., Michalski, B., Racine, R. J., & Fahnestock, M. (2004). The effects of brain-derived neurotrophic factor (BDNF) administration on kindling induction, Trk expression and seizure-related morphological changes. Neuroscience, 126, 521–531.PubMedGoogle Scholar
  121. Yancey, S. L., & Overton, J. M. (1993). Cardiovascular responses to voluntary and treadmill exercise in rats. Journal of Applied Physiology, 75, 1334–1340.PubMedGoogle Scholar
  122. Zhou, J., Zhang, F., & Zhang, Y. (2000). Corticosterone inhibits generation of long-term potentiation in rat hippocampal slice: Involvement of brain-derived neurotrophic factor. Brain Research, 885, 182–191.PubMedGoogle Scholar
  123. Zhu, W. J., & Roper, S. N. (2001). Brain-derived neurotrophic factor enhances fast excitatory synaptic transmission in human epileptic dentate gyrus. Annals of Neurology, 50, 188–194.PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2008

Authors and Affiliations

  • Brian R. Christie
    • 1
    • 2
  • Brennan D. Eadie
    • 1
    • 2
  • Timal S. Kannangara
    • 1
    • 2
  • Julie M. Robillard
    • 1
    • 2
  • James Shin
    • 1
    • 2
  • Andrea K. Titterness
    • 1
    • 2
  1. 1.Division of Medical Sciences and Department of BiologyUniversity of VictoriaVictoriaCanada
  2. 2.Neuroscience Program, The Brain Research Centre, Department of Cellular and Physiological SciencesUniversity of British ColumbiaVancouverCanada

Personalised recommendations