NeuroMolecular Medicine

, Volume 10, Issue 2, pp 59–66 | Cite as

Physical Activity and the Regulation of Neurogenesis in the Adult and Aging Brain

  • Klaus Fabel
  • Gerd KempermannEmail author
Original Paper


The discovery that exercise regulates adult hippocampal neurogenesis, that is, the production of new neurons in the adult brain, was surprising news and changed quite fundamentally our view on how physical activity affects the brain. The everyday experience that not all athletes are necessarily smarter than more sedentary fellows and the scientific insight that adult hippocampal neurogenesis is actually a process that ranges on a very small scale raised important questions on the relevance of this finding. We propose that the exercise-related regulation of adult hippocampal neurogenesis is a qualitative rather than a quantitative event and that it is a particularly prominent and suggestive example of activity-dependent cellular plasticity. For rodents, the animals, in which most of this research has been done, cognition is almost inseparable from locomotion. Physical activity, especially exerted over longer periods of time, might indicate to the brain an increased chance of experience those situations rich in complexity and novelty that presumably benefit from more new neurons. We thus propose that it is not isolated physical activity that is “good for the brain”, but physical activity in the context of cognitive challenges. This would also explain why few new neurons could be beneficial for successful aging. We here review the current stage of the knowledge how this exercise-induced regulation of neurogenesis might work.


Mouse Learning and memory Stem cells Dentate gyrus Hippocampus Gerontology 


  1. Adlard, P. A., & Cotman, C. W. (2004). Voluntary exercise protects against stress-induced decreases in brain-derived neurotrophic factor protein expression. Neuroscience, 124, 985–992.PubMedCrossRefGoogle Scholar
  2. Adlard, P. A., Perreau, V. M., & Cotman, C. W. (2005). The exercise-induced expression of BDNF within the hippocampus varies across life-span. Neurobiology of Aging, 26, 511–520.PubMedCrossRefGoogle Scholar
  3. Altman, J., & Das, G. D. (1965). Autoradiographic and histologic evidence of postnatal neurogenesis in rats. Journal of Comparative Neurology, 124, 319–335.PubMedCrossRefGoogle Scholar
  4. Banerjee, S. B., Rajendran, R., Dias, B. G., et al. (2005). Recruitment of the Sonic hedgehog signalling cascade in electroconvulsive seizure-mediated regulation of adult rat hippocampal neurogenesis. European Journal of Neuroscience, 22, 1570–1580.PubMedCrossRefGoogle Scholar
  5. Biebl, M., Cooper, C. M., Winkler, J., et al. (2000). Analysis of neurogenesis and programmed cell death reveals a self- renewing capacity in the adult rat brain. Neuroscience Letters, 291, 17–20.PubMedCrossRefGoogle Scholar
  6. Bjornebekk, A., Mathe, A. A., & Brene, S. (2006). Running has differential effects on NPY, opiates, and cell proliferation in an animal model of depression and controls. Neuropsychopharmacology, 31, 256–264.PubMedCrossRefGoogle Scholar
  7. Bland, B. H., & Vanderwolf, C. H. (1972). Electrical stimulation of the hippocampal formation: Behavioral and bioloectrical effects. Brain Research, 43, 89–106.PubMedCrossRefGoogle Scholar
  8. Brandt, M. D., Jessberger, S., Steiner, B., et al. (2003). Transient calretinin expression defines early postmitotic step of neuronal differentiation in adult hippocampal neurogenesis of mice. Molecular and Cellular Neurosciences, 24, 603–613.PubMedCrossRefGoogle Scholar
  9. Brown, J., Cooper-Kuhn, C. M., Kempermann, G., et al. (2003). Enriched environment and physical activity stimulate hippocampal but not olfactory bulb neurogenesis. European Journal of Neuroscience, 17, 2042–2046.PubMedCrossRefGoogle Scholar
  10. Cameron, H. A., & McKay, R. D. (1999). Restoring production of hippocampal neurons in old age. Nature Neuroscience, 2, 894–897.PubMedCrossRefGoogle Scholar
  11. Carro, E., Nunez, A., Busiguina, S., et al. (2000). Circulating insulin-like growth factor I mediates effects of exercise on the brain. Journal of Neuroscience, 20, 2926–2933.PubMedGoogle Scholar
  12. Dobrossy, M. D., Drapeau, E., Aurousseau, C., et al. (2003). Differential effects of learning on neurogenesis: learning increases or decreases the number of newly born cells depending on their birth date. Molecular Psychiatry, 8, 974–982.PubMedCrossRefGoogle Scholar
  13. D’Sa, C., & Duman, R. S. (2002). Antidepressants and neuroplasticity. Bipolar Disorders, 4, 183–194.PubMedCrossRefGoogle Scholar
  14. Encinas, J. M., Vaahtokari, A., & Enikolopov, G. (2006). Fluoxetine targets early progenitor cells in the adult brain. Proceedings of the National Academy of Sciences of the United States of America, 103, 8233–8238.PubMedCrossRefGoogle Scholar
  15. Eriksson, P. S., Perfilieva, E., Bjork-Eriksson, T., et al. (1998). Neurogenesis in the adult human hippocampus. Nature Medicine, 4, 1313–1317.PubMedCrossRefGoogle Scholar
  16. Ernst, C., Olson, A. K., Pinel, J. P., et al. (2006). Antidepressant effects of exercise: Evidence for an adult-neurogenesis hypothesis? Journal of Psychiatry & Neuroscience, 31, 84–92.Google Scholar
  17. Fabel, K., Fabel, K., Tam, B., et al. (2003a). VEGF is necessary for exercise-induced adult hippocampal neurogenesis. European Journal of Neuroscience, 18, 2803–2812.PubMedCrossRefGoogle Scholar
  18. Fabel, K., Toda, H., & Palmer, T. (2003b). Copernican stem cells: regulatory constellations in adult hippocampal neurogenesis. Journal of Cellular Biochemistry, 88, 41–50.PubMedCrossRefGoogle Scholar
  19. Fediuc, S., Campbell, J. E., & Riddell, M. C. (2006). Effect of voluntary wheel running on circadian corticosterone release and on HPA axis responsiveness to restraint stress in Sprague-Dawley rats. Journal of Applied Physiology, 100, 1867–1875.PubMedCrossRefGoogle Scholar
  20. Filippov, V., Kronenberg, G., Pivneva, T., et al. (2003). Subpopulation of nestin-expressing progenitor cells in the adult murine hippocampus shows electrophysiological and morphological characteristics of astrocytes. Molecular and Cellular Neurosciences, 23, 373–382.PubMedCrossRefGoogle Scholar
  21. Garcia, A., Steiner, B., Kronenberg, G., et al. (2004). Age-dependent expression of glucocorticoid- and mineralocorticoid receptors on neural precursor cell populations in the adult murine hippocampus. Aging Cell, 3, 363–371.PubMedCrossRefGoogle Scholar
  22. Gomez-Merino, D., Bequet, F., Berthelot, M., et al. (2001). Site-dependent effects of an acute intensive exercise on extracellular 5-HT and 5-HIAA levels in rat brain. Neuroscience Letters, 301, 143–146.PubMedCrossRefGoogle Scholar
  23. Gomez-Pinilla, F., Dao, L., & So, V. (1997). Physical exercise induces FGF-2 and its mRNA in the hippocampus. Brain Research, 764, 1–8.PubMedCrossRefGoogle Scholar
  24. Gould, E., Beylin, A., Tanapat, P., et al. (1999). Learning enhances adult neurogenesis in the hippoampal formation. Nature Neuroscience, 2, 260–265.PubMedCrossRefGoogle Scholar
  25. Heiss, J. D., Papavassiliou, E., Merrill, M. J., et al. (1996). Mechanism of dexamethasone suppression of brain tumor-associated vascular permeability in rats. Involvement of the glucocorticoid receptor and vascular permeability factor. Journal of Clinical Investigation, 98, 1400–1408.PubMedCrossRefGoogle Scholar
  26. Huang, T. L., Lee, C. T., & Liu, Y. L. (2007). Serum brain-derived neurotrophic factor levels in patients with major depression: Effects of antidepressants. Journal of Psychiatric Research. Ahead of print, PMID: 17585940.Google Scholar
  27. Huttmann, K., Sadgrove, M., Wallraff, A., et al. (2003). Seizures preferentially stimulate proliferation of radial glia-like astrocytes in the adult dentate gyrus: functional and immunocytochemical analysis. European Journal of Neuroscience, 18, 2769–2778.PubMedCrossRefGoogle Scholar
  28. Ivy, A. S., Rodriguez, F. G., Garcia, C., et al. (2003). Noradrenergic and serotonergic blockade inhibits BDNF mRNA activation following exercise and antidepressant. Pharmacology Biochemistry and Behavior, 75, 81–88.CrossRefGoogle Scholar
  29. Jessberger, S., Romer, B., Babu, H., et al. (2005). Seizures induce proliferation and dispersion of doublecortin-positive hippocampal progenitor cells. Experimental Neurology, 196, 342–351.PubMedCrossRefGoogle Scholar
  30. Johnson, R. A., & Mitchell, G. S. (2003). Exercise-induced changes in hippocampal brain-derived neurotrophic factor and neurotrophin-3: Effects of rat strain. Brain Research, 983, 108–114.PubMedCrossRefGoogle Scholar
  31. Kempermann, G. (2002). Why new neurons? Possible functions for adult hippocampal neurogenesis. Journal of Neuroscience, 22, 635–638.PubMedGoogle Scholar
  32. Kempermann, G., Chesler, E. J., Lu, L., et al. (2006). Natural variation and genetic covariance in adult hippocampal neurogenesis. Proceedings of the National Academy of Sciences of the United States of America, 103, 780–785.PubMedCrossRefGoogle Scholar
  33. Kempermann, G., Gast, D., Kronenberg, G., et al. (2003). Early determination and long-term persistence of adult-generated new neurons in the hippocampus of mice. Development, 130, 391–399.PubMedCrossRefGoogle Scholar
  34. Kempermann, G., Jessberger, S., Steiner, B., et al. (2004). Milestones of neuronal development in the adult hippocampus. Trends in Neurosciences, 27, 447–452.PubMedCrossRefGoogle Scholar
  35. Kim, Y. P., Kim, H., Shin, M. S., et al. (2004). Age-dependence of the effect of treadmill exercise on cell proliferation in the dentate gyrus of rats. Neuroscience Letters, 355, 152–154.PubMedCrossRefGoogle Scholar
  36. Klempin, F., & Kempermann, G. (2007). Adult hippocampal neurogenesis and aging. European Archives of Psychiatry and Clinical Neuroscience, 257, 271–280.PubMedCrossRefGoogle Scholar
  37. Kronenberg, G., Bick-Sander, A., Bunk, E., et al. (2006). Physical exercise prevents age-related decline in precursor cell activity in the mouse dentate gyrus. Neurobiology of Aging, 27, 1505–1513.PubMedCrossRefGoogle Scholar
  38. Kronenberg, G., Reuter, K., Steiner, B., et al. (2003). Subpopulations of proliferating cells of the adult hippocampus respond differently to physiologic neurogenic stimuli. Journal of Comparative Neurology, 467, 455–463.PubMedCrossRefGoogle Scholar
  39. Kuhn, H. G., Biebl, M., Wilhelm, D., et al. (2005). Increased generation of granule cells in adult Bcl-2-overexpressing mice: A role for cell death during continued hippocampal neurogenesis. European Journal of Neuroscience, 22, 1907–1915.PubMedCrossRefGoogle Scholar
  40. Kuhn, H. G., Dickinson-Anson, H., & Gage, F. H. (1996). Neurogenesis in the dentate gyrus of the adult rat: Age-related decrease of neuronal progenitor proliferation. Journal of Neuroscience, 16, 2027–2033.PubMedGoogle Scholar
  41. Kunze, A., Grass, S., Witte, O. W., et al. (2006). Proliferative response of distinct hippocampal progenitor cell populations after cortical infarcts in the adult brain. Neurobiology of Disease, 21, 324–332.PubMedCrossRefGoogle Scholar
  42. Lawlor, D. A., & Hopker, S. W. (2001). The effectiveness of exercise as an intervention in the management of depression: Systematic review and meta-regression analysis of randomised controlled trials. British Medical Journal, 322, 763–767.PubMedCrossRefGoogle Scholar
  43. Lim, D. A., Tramontin, A. D., Trevejo, J. M., et al. (2000). Noggin antagonizes BMP signaling to create a niche for adult neurogenesis. Neuron, 28, 713–726.PubMedCrossRefGoogle Scholar
  44. Lucassen, P. J., Fuchs, E., & Czeh, B. (2004). Antidepressant treatment with tianeptine reduces apoptosis in the hippocampal dentate gyrus and temporal cortex. Biological Psychiatry, 55, 789–796.PubMedCrossRefGoogle Scholar
  45. Malberg, J. E., Eisch, A. J., Nestler, E. J., et al. (2000). Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. Journal of Neuroscience, 20, 9104–9110.PubMedGoogle Scholar
  46. Mercier, F., Kitasako, J. T., & Hatton, G. I. (2002). Anatomy of the brain neurogenic zones revisited: Fractones and the fibroblast/macrophage network. Journal of Comparative Neurology, 451, 170–188.PubMedCrossRefGoogle Scholar
  47. Nauck, M., Karakiulakis, G., Perruchoud, A. P., et al. (1998). Corticosteroids inhibit the expression of the vascular endothelial growth factor gene in human vascular smooth muscle cells. European Journal of Clinical Pharmacology, 341, 309–315.CrossRefGoogle Scholar
  48. O’Keefe, J. (1976). Place units in the hippocampus of the freely moving rat. Experimental Neurology, 51, 78–109.PubMedCrossRefGoogle Scholar
  49. Palmer, T. D., Willhoite, A. R., & Gage, F. H. (2000). Vascular niche for adult hippocampal neurogenesis. Journal of Comparative Neurology, 425, 479–494.PubMedCrossRefGoogle Scholar
  50. Park, E., Chan, O., Li, Q., et al. (2005). Changes in basal hypothalamo-pituitary-adrenal activity during exercise training are centrally mediated. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 289, 1360–1371.Google Scholar
  51. Plumpe, T., Ehninger, D., Steiner, B., et al. (2006). Variability of doublecortin-associated dendrite maturation in adult hippocampal neurogenesis is independent of the regulation of precursor cell proliferation. BMC Neuroscience, 7, 77.PubMedCrossRefGoogle Scholar
  52. Pozniak, C. D., & Pleasure, S. J. (2006). A tale of two signals: Wnt and Hedgehog in dentate neurogenesis. Science’s STKE, 5.Google Scholar
  53. Rochefort, C., Gheusi, G., Vincent, J. D., et al. (2002). Enriched odor exposure increases the number of newborn neurons in the adult olfactory bulb and improves odor memory. Journal of Neuroscience, 22, 2679–2689.PubMedGoogle Scholar
  54. Russo-Neustadt, A., Beard, R. C., & Cotman, C. W. (1999). Exercise, antidepressant medications, and enhanced brain derived neurotrophic factor expression. Neuropsychopharmacology, 21, 679–682.PubMedCrossRefGoogle Scholar
  55. Samorajski, T., Rolsten, C., Przykorska, A., et al. (1987). Voluntary wheel running exercise and monoamine levels in brain, heart and adrenal glands of aging mice. Experimental Gerontology, 22, 421–431.PubMedCrossRefGoogle Scholar
  56. Santarelli, L., Saxe, M., Gross, C., et al. (2003). Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science, 301, 805–809.PubMedCrossRefGoogle Scholar
  57. Schanzer, A., Wachs, F. P., Wilhelm, D., et al. (2004). Direct stimulation of adult neural stem cells in vitro and neurogenesis in vivo by vascular endothelial growth factor. Brain Pathology, 14, 237–248.PubMedCrossRefGoogle Scholar
  58. Seki, T., & Arai, Y. (1995). Age-related production of new granule cells in the adult dentate gyrus. Neuroreport, 6, 2479–2482.PubMedCrossRefGoogle Scholar
  59. Snyder, J. S., Hong, N. S., McDonald, R. J., et al. (2005). A role for adult neurogenesis in spatial long-term memory. Neuroscience, 130, 843–852.PubMedCrossRefGoogle Scholar
  60. Soares, D. D., Coimbra, C. C., & Marubayashi, U. (2007). Tryptophan-induced central fatigue in exercising rats is related to serotonin content in preoptic area. Neuroscience Letters, 415, 274–278.PubMedCrossRefGoogle Scholar
  61. Steiner, B., Klempin, F., Wang, L., et al. (2006). Type-2 cells as link between glial and neuronal lineage in adult hippocampal neurogenesis. Glia, 54, 805–814.PubMedCrossRefGoogle Scholar
  62. Steiner, B., Kronenberg, G., Jessberger, S., et al. (2004). Differential regulation of gliogenesis in the context of adult hippocampal neurogenesis in mice. Glia, 46, 41–52.PubMedCrossRefGoogle Scholar
  63. Stranahan, A. M., Khalil, D., & Gould, E. (2006). Social isolation delays the positive effects of running on adult neurogenesis. Nature Neuroscience, 9, 526–533.PubMedCrossRefGoogle Scholar
  64. Trejo, J. L., Carro, E., & Torres-Aleman, I. (2001). Circulating insulin-like growth factor I mediates exercise-induced increases in the number of new neurons in the adult hippocampus. Journal of Neuroscience, 21, 1628–1634.PubMedGoogle Scholar
  65. Uda, M., Ishido, M., Kami, K., et al. (2006). Effects of chronic treadmill running on neurogenesis in the dentate gyrus of the hippocampus of adult rat. Brain Research, 1104, 64–72.PubMedCrossRefGoogle Scholar
  66. Van Praag, H., Christie, B. R., Sejnowski, T. J., et al. (1999a). Running enhances neurogenesis, learning and long-term potentiation in mice. Proceedings of the National Academy of Sciences of the United States of America, 96, 13427–13431.PubMedCrossRefGoogle Scholar
  67. Van Praag, H., Kempermann, G., & Gage, F. H. (1999b). Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nature Neuroscience, 2, 266–270.PubMedCrossRefGoogle Scholar
  68. Videbech, P., & Ravnkilde, B. (2004). Hippocampal volume and depression: a meta-analysis of MRI studies. American Journal of Psychiatry, 161, 1957–1966.PubMedCrossRefGoogle Scholar
  69. Zheng, H., Liu, Y., Li, W., et al. (2006). Beneficial effects of exercise and its molecular mechanisms on depression in rats. Behavioural Brain Research, 168, 47–55.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press 2008

Authors and Affiliations

  1. 1.Center for Regenerative Therapies Dresden (CRTD)DFG Forschungszentrum und ExzellenzclusterDresdenGermany
  2. 2.Department of PsychiatryUniversity of DresdenDresdenGermany

Personalised recommendations