NeuroMolecular Medicine

, Volume 10, Issue 2, pp 128–140 | Cite as

Neurogenesis and Exercise: Past and Future Directions

  • Henriette van PraagEmail author
Review Paper


Research in humans and animals has shown that exercise improves mood and cognition. Physical activity also causes a robust increase in neurogenesis in the dentate gyrus of the hippocampus, a brain area important for learning and memory. The positive correlation between running and neurogenesis has raised the hypothesis that the new hippocampal neurons may mediate, in part, improved learning associated with exercise. The present review gives an overview of research pertaining to exercise-induced cell genesis, its possible relevance to memory function and the cellular mechanisms that may be involved in this process.


 Neurogenesis Exercise Hippocampus Learning and memory Growth factors Angiogenesis 



This review was supported by the Intramural Research Program of the NIH, National Institute on Aging. I thank Conwell Ottenritter for excellent administrative assistance.


  1. Aberg, M. A., Aberg, N. D., Hedbacker, H., Oscarsson, J., & Eriksson, P. S. (2000). Peripheral infusion of IGF-I selectively induces neurogenesis in the adult rat hippocampus. Journal of Neuroscience, 20, 2896–2903.PubMedGoogle Scholar
  2. Adlard, P. A., Perreau, V. M., Pop, V., & Cotman, C. W. (2005). Voluntary exercise decreases amyloid load in a transgenic model of Alzheimer's disease. Journal of Neuroscience, 25, 4217–4221.PubMedGoogle Scholar
  3. Allen, D. M., van Praag, H., Ray, J., Weaver, Z., Winrow, C. J., Carter, T. A., Braquet, R., Harrington, E., Ried, T., Brown, K. D., Gage, F. H., & Barlow, C. (2001). Ataxia telangiectasia mutated is essential during adult neurogenesis. Genes & Development, 15, 554–566.Google Scholar
  4. Allison, D. B., Fontaine, K. R., Manson, J. E., Stevens, J., & VanItallie, T. B. (1999). Annual deaths attributable to obesity in the United States. Journal of the American Medical Association, 282, 1530–1538.PubMedGoogle Scholar
  5. Altman, J. (1962). Are new neurons formed in the brains of adult mammals? Science, 135, 1127–1128.PubMedGoogle Scholar
  6. Altman, J., & Das, G. D. (1964). Autoradiographic examination of the effects of enriched environment on the rate of glial multiplication in the adult rat brain. Nature, 204, 1161–1163.PubMedGoogle Scholar
  7. Anderson, B. J., Eckburg, P. B., & Relucio, K. I. (2002). Alterations in the thickness of motor cortical subregions after motor-skill learning and exercise. Learning & Memory, 9, 1–9.Google Scholar
  8. Anderson, B. J., Rapp, D. N., Baek, D. H., McCloskey, D. P., Coburn-Litvak, P. S., & Robinson, J. K. (2000). Exercise influences spatial learning in the radial arm maze. Physiology & Behavior, 70, 425–429.Google Scholar
  9. Ang, E. T., Dawe, G. S., Wong, P. T., Moochhala, S., & Ng, Y. K. (2006). Alterations in spatial learning and memory after forced exercise. Brain Research, 1113, 186–193.PubMedGoogle Scholar
  10. Babyak, M., Blumenthal, J. A., Herman, S., Khatri, P., Doriaswamy, M., Moore, K., Craighead, W. E., Baldewicz, T. T., & Krishnan, K. R. (2000). Exercise treatment for major depression: Maintenance of therapeutic benefit at 10 months. Psychosomatic Medicine, 62, 633–638.PubMedGoogle Scholar
  11. Baruch, D. E., Swain, R. A., & Helmstetter, F. J. (2004). Effects of exercise on Pavlovian fear conditioning. Behavioral Neuroscience, 118, 1123–1127.PubMedGoogle Scholar
  12. Bizon, J. L., & Gallagher, M. (2003). Production of new cells in the rat dentate gyrus over the lifespan: Relation to cognitive decline. European Journal of Neuroscience, 18, 215–219.PubMedGoogle Scholar
  13. Black, J. E., Isaacs, K. R., Anderson, B. J., Alcantara, A. A., & Greenough, W. T. (1990). Learning causes synaptogenesis, whereas motor activity causes angiogenesis, in cerebellar cortex of adult rats. Proceedings of the National Academy of Sciences of the United States of America, 87, 5568–5572.PubMedGoogle Scholar
  14. Bliss, T. V., & Collingridge, G. L. (1993). A synaptic model of memory: Long-term potentiation in the hippocampus. Nature, 361(6407), 31–39.PubMedGoogle Scholar
  15. Boekhoorn, K., Joels, M., & Lucassen, P. J. (2006). Increased proliferation reflects glial and vascular-associated changes, but not neurogenesis in the presenile Alzheimer hippocampus. Neurobiology of Disease, 24, 1–14.PubMedGoogle Scholar
  16. Bohannon, R. W. (1993). Physical rehabilitation in neurologic diseases. Current Opinion in Neurology, 6, 765–772.PubMedGoogle Scholar
  17. Booth, F. W., Chakravarthy, M. V., Gordon, S. E., & Spangenburg, E. E. (2002). Waging war on physical inactivity: Using modern molecular ammunition against an ancient enemy. Journal of Applied Physiology, 93, 3–30.PubMedGoogle Scholar
  18. Bronzino, J. D., Abu-Hasaballah, K., Austin-LaFrance, R. J., & Morgane, P. J. (1994). Maturation of long-term potentiation in the hippocampal dentate gyrus of the freely moving rat. Hippocampus, 4(4), 439–446.PubMedGoogle Scholar
  19. Brown, J., Cooper-Kuhn, C. M., Kempermann, G., van Praag, H., Winkler, J., Gage, F. H., & Kuhn, H. G. (2003). Enriched environment and physical activity stimulate hippocampal but not olfactory bulb neurogenesis. European Journal of Neuroscience, 17, 2042–2046.PubMedGoogle Scholar
  20. Burghardt, P. R., Pasumarthi, R. K., Wilson, M. A., & Fadel, J. (2006). Alterations in fear conditioning and amygdalar activation following chronic wheel running in rats. Pharmacology, Biochemistry, and Behavior, 84, 306–312.PubMedGoogle Scholar
  21. Calof, A. L. (1995). Intrinsic and extrinsic factors regulating vertebrate neurogenesis. Current Opinion in Neurobiology, 5, 19–27.PubMedGoogle Scholar
  22. Cao, L., Jiao, X., Zuzga, D. S., Liu, Y., Fong, D. M., Young, D., & During, M. J. (2004). VEGF links hippocampal activity with neurogenesis, learning and memory. Nature Genetics, 36, 827–835.PubMedGoogle Scholar
  23. Carleton, A., Petreanu, L. T., Lansford, R., Alvarez-Buylla, A., & Lledo, P. M. (2003). Becoming a new neuron in the adult olfactory bulb. Nature Neuroscience, 6(5), 507–518.PubMedGoogle Scholar
  24. Carro, E., Nuñez, A., Busiguina, S., & Torres-Aleman, I. (2000). Circulating insulin-like growth factor I mediates effects of exercise on the brain. Journal of Neuroscience, 20, 2926–2933.PubMedGoogle Scholar
  25. Chaouloff, F. (1989). Physical exercise and brain monoamines: A review. Acta Physiologica Scandinavica, 137, 1–13.PubMedGoogle Scholar
  26. Chevallier, N. L., Soriano, S., Kang, D. E., Masliah, E., Hu, G., & Koo, E. H. (2005). Perturbed neurogenesis in the adult hippocampus associated with presenilin-1 A246E mutation. American Journal of Pathology, 167, 151–159.PubMedGoogle Scholar
  27. Colcombe, S. J., Erickson, K. I., Raz, N., Webb, A. G., Cohen, N. J., McAuley, E., & Kramer, A. F. (2003). Aerobic fitness reduces brain tissue loss in aging humans. Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 58, 176–180.Google Scholar
  28. Collin, T., Arvidsson, A., Kokaia, Z., & Lindvall, O. (2005). Quantitative analysis of the generation of different striatal neuronal subtypes in the adult brain following excitotoxic injury. Experimental Neurology, 195, 71–80.PubMedGoogle Scholar
  29. Costa, D. A., Cracchiolo, J. R., Bachstetter, A. D., Hughes, T. F., Bales, K. R., Paul, S. M., Mervis, R. F., Arendash, G. W., & Potter, H. (2007). Enrichment improves cognition in AD mice by amyloid-related and unrelated mechanisms. Neurobiology of Aging, 28, 831–844.PubMedGoogle Scholar
  30. Cracchiolo, J. R., Mori, T., Nazian, S. J., Tan, J., Potter, H., & Arendash, G. W. (2007). Enhanced cognitive activity—over and above social or physical activity—is required to protect Alzheimer's mice against cognitive impairment, reduce Abeta deposition, & increase synaptic immunoreactivity. Neurobiology of Learning and Memory, 88, 277–294.PubMedGoogle Scholar
  31. Craig, C. G., Tropepe, V., Morshead, C. M., Reynolds, B. A., Weiss, S., & van der Kooy, D. (1996). In vivo growth factor expansion of endogenous subependymal neural precursor cell populations in the adult mouse brain. Journal of Neuroscience, 16, 2649–2658.PubMedGoogle Scholar
  32. Curtis, M. A., Penney, E. B., Pearson, A. G., van Roon-Mom, W. M., Butterworth, N. J., Dragunow, M., Connor, B., & Faull, R. L. (2003). Increased cell proliferation and neurogenesis in the adult human Huntington's disease brain. Proceedings of the National Academy of Sciences of the United States of America, 100, 9023–9027.PubMedGoogle Scholar
  33. Dayer, A. G., Cleaver, K. M., Abouantoun, T., & Cameron, H. A. (2005). New GABAergic interneurons in the adult neocortex and striatum are generated from different precursors. Journal of Cell Biology, 168, 415–427.PubMedGoogle Scholar
  34. Ding, Q., Vaynman, S., Akhavan, M., Ying, Z., & Gomez-Pinilla, F. (2006a). Insulin-like growth factor I interfaces with brain-derived neurotrophic factor-mediated synaptic plasticity to modulate aspects of exercise-induced cognitive function. Neuroscience, 140, 823–833.PubMedGoogle Scholar
  35. Ding, Y. H., Li, J., Zhou, Y., Rafols, J. A., Clark, J. C., & Ding, Y. (2006b). Cerebral angiogenesis and expression of angiogenic factors in aging rats after exercise. Current Neurovascular Research, 3, 15–23.PubMedGoogle Scholar
  36. Dong, H., Goico, B., Martin, M., Csernansky, C. A., Bertchume, A., & Csernansky, J. G. (2004). Modulation of hippocampal cell proliferation, memory, and amyloid plaque deposition in APPsw (Tg2576). mutant mice by isolation stress. Neuroscience, 127, 601–609.PubMedGoogle Scholar
  37. Donovan, M. H., Yazdani, U., Norris, R. D., Games, D., German, D. C., & Eisch, A. J. (2006). Decreased adult hippocampal neurogenesis in the PDAPP mouse model of Alzheimer's disease. Journal of the American Medical Association, 495, 70–83.Google Scholar
  38. Drapeau, E., Mayo, W., Aurousseau, C., Le Moal, M., Piazza, P. V., & Abrous, D. N. (2003). Spatial memory performances of aged rats in the water maze predict levels of hippocampal neurogenesis. Proceedings of the National Academy of Sciences of the United States of America, 100, 14385–14390.PubMedGoogle Scholar
  39. Duan, W., et al. (2003). Dietary restriction normalizes glucose metabolism and BDNF levels, slows disease progression, and increases survival in huntingtin mutant mice. Proceedings of the National Academy of Sciences of the United States of America, 100, 2911–2916.PubMedGoogle Scholar
  40. Ehninger, D., & Kempermann, G. (2003). Regional effects of wheel running and environmental enrichment on cell genesis and microglia proliferation in the adult murine neocortex. Cerebral Cortex, 13, 845–851.PubMedGoogle Scholar
  41. Eisch, A. J., Barrot, M., Schad, C. A., Self D.W., & Nestler, E. J. (2000). Opiates inhibit neurogenesis in the adult rat hippocampus. Proceedings of the National Academy of Sciences of the United States of America, 97, 7579–7584.PubMedGoogle Scholar
  42. Encinas, J. M., Vaahtokari, A., & Enikolopov, G. (2006). Fluoxetine targets early progenitor cells in the adult brain. Proceedings of the National Academy of Sciences of the United States of America, 103, 8233–8238.PubMedGoogle Scholar
  43. Ernst, C., Olson, A. K., Pinel, J. P., Lam, R. W., & Christie, B. R. (2006). Antidepressant effects of exercise: Evidence for an adult-neurogenesis hypothesis? Journal of Psychiatry & Neuroscience, 31, 84–92.Google Scholar
  44. Fabel, K., Tam, B., Kaufer, D., Baiker, A., Simmons, N., Kuo, C. J., & Palmer, T. D. (2003). VEGF is necessary for exercise-induced adult hippocampal neurogenesis. European Journal of Neuroscience, 18, 2803–2812.PubMedGoogle Scholar
  45. Farmer, J., Zhao, X., van Praag, H., Wodtke, K., Gage, F. H., & Christie, B. R. (2004). Effects of voluntary exercise on synaptic plasticity and gene expression in the dentate gyrus of adult male Sprague-Dawley rats in vivo. Neuroscience, 124, 71–79.PubMedGoogle Scholar
  46. Fischer, W., Sirevaag, A., Wiegand, S. J., Lindsay, R. M., & Björklund, A. (1994). Reversal of spatial memory impairments in aged rats by nerve growth factor and neurotrophins 3 and 4/5 but not by brain-derived neurotrophic factor. Proceedings of the National Academy of Sciences of the United States of America, 91, 8607–8011.PubMedGoogle Scholar
  47. Fordyce, D. E., & Farrar, R. P. (1991). Enhancement of spatial learning in F344 rats by physical activity and related learning-associated alterations in hippocampal and cortical cholinergic functioning. Behavioural Brain Research, 46, 123–133.PubMedGoogle Scholar
  48. Fordyce, D. E., & Wehner, J. M. (1993). Physical activity enhances spatial learning performance with an associated alteration in hippocampal protein kinase C activity in C57BL/6 and DBA/2 mice. Brain Research, 619, 111–119.PubMedGoogle Scholar
  49. Friedland, R. P., Fritsch, T., Smyth, K. A., Koss, E., Lerner, A. J., Chen, C. H., Petot, G. J., & Debanne, S. M. (2001). Patients with Alzheimer’s disease have reduced activities in midlife compared with healthy control-group members. Proceedings of the National Academy of Sciences of the United States of America, 98, 3440–3445.PubMedGoogle Scholar
  50. Garcia, A. D., Doan, N. B., Imura, T., Bush, T. G., & Sofroniew, M. V. (2004). GFAP-expressing progenitors are the principal source of constitutive neurogenesis in adult mouse forebrain. Nature Neuroscience, 7(11), 1233–1241.PubMedGoogle Scholar
  51. Ge, S., Goh, E. L., Sailor, K. A., Kitabatake, Y., Ming, G. L., & Song, H. (2006). GABA regulates synaptic integration of newly generated neurons in the adult brain. Nature, 439(7076), 589–593.PubMedGoogle Scholar
  52. Ge, S., Yang, C. H., Hsu, K. S., Ming, G. L., & Song, H. (2007). A critical period for enhanced synaptic plasticity in newly generated neurons of the adult brain. Neuron, 54(4), 559–566.PubMedGoogle Scholar
  53. Gil, J. M., Mohapel, P., Araújo, I. M., Popovic, N., Li, J. Y., Brundin, P., & Petersén, A. (2005). Reduced hippocampal neurogenesis in R6/2 transgenic Huntington's disease mice. Neurobiology of Disease, 20, 744–751.PubMedGoogle Scholar
  54. Gobbo, O. L., & O’Mara, S. M. (2005). Exercise, but not environmental enrichment, improves learning after kainic acid-induced hippocampal neurodegeneration in association with an increase in brain-derived neurotrophic factor. Behavioural Brain Research, 159(1), 21–26.PubMedGoogle Scholar
  55. Gomez-Pinilla, F., Dao, L., & So, V. (1997). Physical exercise induces FGF-2 and its mRNA in the hippocampus. Brain Research, 764, 1–8.PubMedGoogle Scholar
  56. Gomez-Pinilla, F., So, V., & Kesslak, J. P. (1998). Spatial learning and physical activity contribute to the induction of fibroblast growth factor: Neural substrates for increased cognition associated with exercise. Neuroscience, 85, 53–61.PubMedGoogle Scholar
  57. Gould, E., Reeves, A. J., Graziano, M. S., & Gross, C. G. (1999). Neurogenesis in the neocortex of adult primates. Science, 286, 548–552.PubMedGoogle Scholar
  58. Gould, E., Woolley, C. S., & McEwen, B. S. (1990). Short-term glucocorticoid manipulations affect neuronal morphology and survival in the adult dentate gyrus. Neuroscience, 37(2), 367–375.PubMedGoogle Scholar
  59. Grealy, M. A., Johnson, D. A., & Rushton, S. K. (1999). Improving cognitive function after brain injury: The use of exercise and virtual reality. Archives of Physical Medicine and Rehabilitation, 80, 661–667.PubMedGoogle Scholar
  60. Grote, H. E., Bull, N. D., Howard, M. L., van Dellen, A., Blakemore, C., Bartlett, P. F., & Hannan, A. J. (2005). Cognitive disorders and neurogenesis deficits in Huntington's disease mice are rescued by fluoxetine. European Journal of Neuroscience, 22, 2081–2088.PubMedGoogle Scholar
  61. Halagappa, V. K., et al. (2007). Intermittent fasting and caloric restriction ameliorate age-related behavioral deficits in the triple-transgenic mouse model of Alzheimer's disease. Neurobiology of Disease, 26, 212–220.PubMedGoogle Scholar
  62. Harburg, G. C., Hall, F. S., Harrist, A. V., Sora, I., Uhl, G. R., & Eisch, A. J. (2007). Knockout of the mu opioid receptor enhances the survival of adult-generated hippocampal granule cell neurons. Neuroscience, 144, 77–87.PubMedGoogle Scholar
  63. Haughey, N. J., Nath, A., Chan, S. L., Borchard, A. C., Rao, M. S., & Mattson, M. P. (2002). Disruption of neurogenesis by amyloid beta-peptide, and perturbed neural progenitor cell homeostasis, in models of Alzheimer's disease. Journal of Neurochemistry, 83(6), 1509–1524.PubMedGoogle Scholar
  64. Hernández-Rabaza V., Barcia J. A., Llorens-Martín M., Trejo J. L., & Canales, J. J. (2007). Spared place and object-place learning but limited spatial working memory capacity in rats with selective lesions of the dentate gyrus. Brain Research Bulletin, 72(4–6), 315–323.PubMedGoogle Scholar
  65. Holick, K. A., Lee, D. C., Hen, R., & Dulawa, S. C. (2008). Behavioral effects of chronic fluoxetine in BALB/cJ mice do not require adult hippocampal neurogenesis or the serotonin 1A receptor. Neuropsychopharmacology, 33, 406–417.PubMedGoogle Scholar
  66. Holmes, M. M., Galea, L. A., Mistlberger, R. E., & Kempermann, G. (2004). Adult hippocampal neurogenesis and voluntary running activity: Circadian and dose-dependent effects. Journal of Neuroscience Research, 76, 216–222.PubMedGoogle Scholar
  67. Jacobs, B. L., van Praag, H., & Gage, F. H. (2000). Adult brain neurogenesis and psychiatry: A novel theory of depression. Molecular Psychiatry, 5, 262–569.PubMedGoogle Scholar
  68. Jankowsky, J. L., et al. (2005). Environmental enrichment mitigates cognitive deficits in a mouse model of Alzheimer's disease. Journal of Neuroscience, 25, 5217–5224.PubMedGoogle Scholar
  69. Jansen, J. F., Shamblott, M. J., van Zijl, P. C., Lehtimäki, K. K., Bulte, J. W., Gearhart, J. D., Hakumäki, J. M. (2006). Stem cell profiling by nuclear magnetic resonance spectroscopy. Magnetic Resonance in Medicine, 56(3), 666–670.PubMedGoogle Scholar
  70. Jin, K., Galvan, V., Xie, L., Mao, X. O., Gorostiza, O. F., Bredesen, D. E., & Greenberg, D. A. (2004a). Enhanced neurogenesis in Alzheimer's disease transgenic (PDGF-APPSw,Ind) mice. Proceedings of the National Academy of Sciences of the United States of America, 101, 13363–13367.PubMedGoogle Scholar
  71. Jin, K., Peel, A. L., Mao, X. O., Xie, L., Cottrell, B. A., Henshall, D. C., & Greenberg, D. A. (2004b). Increased hippocampal neurogenesis in Alzheimer's disease. Proceedings of the National Academy of Sciences of the United States of America, 101, 343–347.PubMedGoogle Scholar
  72. Jin, K., Zhu, K., Sun, Y., Mao, X. O., Xie, L., & Greenberg, D. A. (2002). Vascular endothelial growth factor (VEGF). stimulates neurogenesis in vitro and in vivo. Proceedings of the National Academy of Sciences of the United States of America, 99, 11946–11950.PubMedGoogle Scholar
  73. Kang, H., & Schuman, E. M. (1995). Long-lasting neurotrophin-induced enhancement of synaptic transmission in the adult hippocampus. Science, 267, 1658–1662.PubMedGoogle Scholar
  74. Kaspar, B. K., Frost, L. M., Christian, L., Umapathi, P., & Gage, F. H. (2005). Synergy of insulin-like growth factor-1 and exercise in amyotrophic lateral sclerosis. Annals of Neurology, 57, 649–655.PubMedGoogle Scholar
  75. Kempermann, G., Kuhn, H. G., & Gage, F. H. (1997). More hippocampal neurons in adult mice living in an enriched environment. Nature, 386, 493–495.PubMedGoogle Scholar
  76. Kempermann, G., Kuhn, H. G., & Gage, F. H. (1998). Experience-induced neurogenesis in the senescent dentate gyrus. Journal of Neuroscience, 18, 3206–3212.PubMedGoogle Scholar
  77. Kesner, R. P. (2007). A behavioral analysis of dentate gyrus function. Progress in Brain Research, 163, 567–576.PubMedCrossRefGoogle Scholar
  78. Kitamura, T., Mishina, M., & Sugiyama, H. (2003). Enhancement of neurogenesis by running wheel exercises is suppressed in mice lacking NMDA receptor epsilon 1 subunit. Neuroscience Research, 47, 55–63.PubMedGoogle Scholar
  79. Kleim, J. A., Cooper, N. R., & VandenBerg, P. M. (2002). Exercise induces angiogenesis but does not alter movement representations within rat motor cortex. Brain Research, 934, 1–6.PubMedGoogle Scholar
  80. Koehl, M., Meerlo, P., Gonzales, D., Rontal, A., Turek, F. W., & Abrous, D. N. (2008). Exercise-induced promotion of hippocampal cell proliferation requires β-endorphin. FASEB Journal [Epub ahead of print].Google Scholar
  81. Kohl, Z., Kandasamy, M., Winner, B., Aigner, R., Gross, C., Coullard-Despres, S., Bogdahn, U., Aigner, L., & Winkler, J. (2007). Physical activity fails to rescue hippocampal neurogenesis deficits in the R6/2 mouse model of Huntington's disease. Brain Research, 1155, 24–33.PubMedGoogle Scholar
  82. Kornack, D. R., & Rakic, P. (2001). Cell proliferation without neurogenesis in adult primate neocortex. Science, 294, 2127–2130.PubMedGoogle Scholar
  83. Kramer, A. F., Hahn, S., Cohen, N. J., Banich, M. T., McAuley, E., Harrison, C. R., Chason, J., Vakil, E., Bardell, L., Boileau, R. A., & Colcombe, A. (1999). Ageing, fitness and neurocognitive function. Nature, 400, 418–419.PubMedGoogle Scholar
  84. Kronenberg, G., Bick-Sander, A., Bunk, E., Wolf, E., Ehninger, D., & Kempermann, G. (2006). Physical exercise prevents age-related decline in precursor cell activity in the mouse dentate gyrus. Neurobiology of Aging, 27, 1505–1513.PubMedGoogle Scholar
  85. Kuhn, H. G., Dickinson-Anson, H., & Gage, F. H. (1996). Neurogenesis in the dentate gyrus of the adult rat: Age-related decrease of neuronal progenitor proliferation. Journal of Neuroscience, 16, 2027–2033.PubMedGoogle Scholar
  86. Kuhn, H. G., Winkler, J., Kemptermann, G., Thal, L. J., & Gage, F. H. (1997). Epidermal growth factor and fibroblast growth factor-2 have different effects on neural progenitors in the adult rat brain. Journal of Neuroscience, 17, 5820–5829.PubMedGoogle Scholar
  87. Laurin, D., Verreault, R., Lindsay, J., MacPherson, K., & Rockwood, K. (2001). Physical activity and risk of cognitive impairment and dementia in elderly persons. Archives of Neurology, 58, 498–504.PubMedGoogle Scholar
  88. Lawlor, D. A., & Hopker, S. W. (2001). The effectiveness of exercise as an intervention in the management of depression: Systematic review and meta-regression analysis of randomised controlled trials. BMJ, 322, 763–767.PubMedGoogle Scholar
  89. Lazarov, O., et al. (2005). Environmental enrichment reduces A levels and amyloid deposition in transgenic mice. Cell, 120, 701–713.PubMedGoogle Scholar
  90. Lazic, S. E., Grote, H., Armstrong, R. J., Blakemore, C., Hannan, A. J., van Dellen, A., & Barker, R. A. (2004). Decreased hippocampal cell proliferation in R6/1 Huntington's mice. Neuroreport, 15, 811–813.PubMedGoogle Scholar
  91. Lazic, S. E., Grote, H. E., Blakemore, C., Hannan, A. J., van Dellen, A., Phillips, W., & Barker, R. A. (2006). Neurogenesis in the R6/1 transgenic mouse model of Huntington's disease: Effects of environmental enrichment. European Journal of Neuroscience, 23, 1829–1838.PubMedGoogle Scholar
  92. Leuner, B., Kozorovitskiy, Y., Gross, C. G., & Gould, E. (2007). Diminished adult neurogenesis in the marmoset brain precedes old age. Proceedings of the National Academy of Sciences of the United States of America, 104, 17169–17173.PubMedGoogle Scholar
  93. Lichtenwalner, R., Forbes, M., Bennett, S., Lynch, C., Sonntag, W., Riddle, D. (2001). Intracerebroventricular infusion of insulin-like growth factor-1 ameliorates the age-related decline in hippocampal neurogenesis. Neuroscience, 107, 606–613.Google Scholar
  94. Lopez-Lopez, C., LeRoith, T., & Torres-Aleman, I. (2004). Insulin-like growth factor I is required for vessel remodeling in the adult brain. Proceedings of the National Academy of Sciences of the United States of America, 101, 9833–9838.PubMedGoogle Scholar
  95. Lucas, G., Rymar, V. V., Du, J., Mnie-Filali, O., Bisgaard, C., Manta, S., Lambas-Senas, L., Wiborg, O., Haddjeri, N., Piñeyro, G., Sadikot, A. F., & Debonnel, G. (2007). Serotonin(4). (5-HT(4)) receptor agonists are putative antidepressants with a rapid onset of action. Neuron, 55, 712–725.PubMedGoogle Scholar
  96. Magavi, S. S., Leavitt, B. R., & Macklis, J. D. (2000). Induction of neurogenesis in the neocortex of adult mice. Nature, 405, 951–955.PubMedGoogle Scholar
  97. Malberg, J. E., Eisch, A. J., Nestler, E. J., & Duman, R. S. (2000). Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. Journal of Neuroscience, 20, 9104–9110.PubMedGoogle Scholar
  98. Mandyam, C. D., Wee, S., Eisch, A. J., Richardson, H. N., & Koob, G. F. (2007). Methamphetamine self-administration and voluntary exercise have opposing effects on medial prefrontal cortex gliogenesis. Journal of Neuroscience, 27, 11442–11450.PubMedGoogle Scholar
  99. Manganas, L. N., Zhang, X., Li, Y., Hazel, R. D., Smith, S. D., Wagshul, M. E., Henn, F., Benveniste, H., Djuric, P. M., Enikolopov, G., & Maletic-Savatic, M. (2007). Magnetic resonance spectroscopy identifies neural progenitor cells in the live human brain. Science, 318, 980–985.PubMedGoogle Scholar
  100. Mangiarini, L, Sathasivam, K., Seller, M., Cozens, B., Harper, A., Hetherington, C., Lawton, M., Trotteir, Y., Lehrach, H., Davies, S. W., & Bates, G. P. (1996). Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell, 87, 493–506.PubMedGoogle Scholar
  101. McHugh, T. J., Jones, M. W., Quinn, J. J., Balthasar, N., Coppari, R., Elmquist, J. K., Lowell, B. B., Fanselow, M. S., Wilson, M. A., & Tonegawa, S. (2007). Dentate gyrus NMDA receptors mediate rapid pattern separation in the hippocampal network. Science, 317(5834), 94–99 (July 6).PubMedGoogle Scholar
  102. Menalled, L. B., & Chesselet, M. F. (2002). Mouse models of Huntington’s disease. Trends in Pharmacological Sciences, 23, 32–39.PubMedGoogle Scholar
  103. Merrill, D. A., Karim, R., Darraq, M., Chiba, A. A., & Tuszynski, M. H. (2003). Hippocampal cell genesis does not correlate with spatial learning ability in aged rats. Journal of the American Medical Association, 459, 201–207.Google Scholar
  104. Meshi, D., Drew, M. R., Saxe, M., Ansorge, M. S., David, D., Santarelli, L., Malapani, C., Moore, H., & Hen, R. (2006). Hippocampal neurogenesis is not required for behavioral effects of environmental enrichment. Nature Neuroscience, 9, 729–731.PubMedGoogle Scholar
  105. Ming, G. L., & Song, H. (2005). Adult neurogenesis in the mammalian central nervous system. Annual Review of Neuroscience, 28, 223–250.PubMedGoogle Scholar
  106. Molteni, R., Ying, Z., & Gómez-Pinilla, F. (2002). Differential effects of acute and chronic exercise on plasticity-related genes in the rat hippocampus revealed by microarray. European Journal of Neuroscience, 16, 1107–1116.PubMedGoogle Scholar
  107. Morris, R. G., Garrud, P., Rawlins, J. N., & O’Keefe, J. (1982). Place navigation impaired in rats with hippocampal lesions. Nature, 297, 681–683.PubMedGoogle Scholar
  108. Narita, M., Kuzumaki, N., Miyatake, M., Sato, F., Wachi, H., Seyama, Y., & Suzuki, T. (2006). Role of delta-opioid receptor function in neurogenesis and neuroprotection. Journal of Neurochemistry, 97, 1494–1505.PubMedGoogle Scholar
  109. Neeper, S. A., Gómez-Pinilla, F., Choi, J., & Cotman, C. (1995). Exercise and brain neurotrophins. Nature, 373, 109.PubMedGoogle Scholar
  110. Nichol, K. E., Parachikova, A. I., & Cotman, C. W. (2007). Three weeks of running wheel exposure improves cognitive performance in the aged Tg2576 mouse. Behavioural Brain Research, 184, 124–132.PubMedGoogle Scholar
  111. O’Callaghan, R.M., Ohle, R., & Kelly, A. M. (2007). The effects of forced exercise on hippocampal plasticity in the rat: A comparison of LTP, spatial- and non-spatial learning. Behavioural Brain Research, 176, 362–366.PubMedGoogle Scholar
  112. Oddo, S., Caccamo, A., Shepherd, J. D., Murphy, M. P., Golde, T. E., Kayed, R., Metherate, R., Mattson, M. P., Akbari, Y., & LaFerla, F. M. (2003). Triple-transgenic model of Alzheimer's disease with plaques and tangles: Intracellular Abeta and synaptic dysfunction. Neuron, 39, 409–421.PubMedGoogle Scholar
  113. Overstreet, L. S., Hentges, S. T., Bumaschny, V. F., de Souza, F. S., Smart, J. L., Santangelo, A. M., Low, M. J., Westbrook, G. L., & Rubinstein, M. (2004). A transgenic marker for newly born granule cells in dentate gyrus. Journal of Neuroscience, 24, 3251–3259.PubMedGoogle Scholar
  114. Palmer, T. D., Willhoite, A. R., & Gage, F. H. (2000). Vascular niche for adult hippocampal neurogenesis. Journal of Comparative Neurology, 425, 479–494.PubMedGoogle Scholar
  115. Pang, T. Y., Stam, N. C., Nithianantharajah, J., Howard, M. L., & Hannan, A. J. (2006). Differential effects of voluntary physical exercise on behavioral and brain-derived neurotrophic factor expression deficits in Huntington's disease transgenic mice. Neuroscience, 141, 569–584.PubMedGoogle Scholar
  116. Patel, S. N., Clayton, N. S., & Krebs, J. R. (1997). Spatial learning induces neurogenesis in the avian brain. Behavioural Brain Research, 89(1–2), 115–28.PubMedGoogle Scholar
  117. Pencea, V., Bingaman, K. D., Wiegand, S. J., & Luskin, M. B. (2001). Infusion of brain-derived neurotrophic factor into the lateral ventricle of the adult rat leads to new neurons in the parenchyma of the striatum, septum, thalamus, & hypothalamus. Journal of Neuroscience, 21, 6706–6717.PubMedGoogle Scholar
  118. Pereira, A. C., Huddleston, D. E., Brickman, A. M., Susonov, A. A., Hen, R., McKhann, G. M., Sloan, R., Gage, F. H., Brown, T. R., & Small, S. A. (2007). An in vivo correlate of exercise-induced neurogenesis in the adult dentate gyrus. Proceedings of the National Academy of Sciences of the United States of America, 104, 5638–5643.PubMedGoogle Scholar
  119. Persson, A. I., Naylor, A. S., Jonsottir, I. H., Nyberg, F., Eriksson, P. S., & Thorlin, T. (2004). Differential regulation of hippocampal progenitor proliferation by opioid receptor antagonists in running and non-running spontaneously hypertensive rats. European Journal of Neuroscience, 19, 1847–1855.PubMedGoogle Scholar
  120. Persson, A. I., Thorlin, T., Bull, C., & Eriksson, P. S. (2003). Opioid-induced proliferation through the MAPK pathway in cultures of adult hippocampal progenitors. Molecular and Cellular Neurosciences, 23, 360–372.PubMedGoogle Scholar
  121. Powell, K. E., & Blair, S. N. (1994). The public health burdens of sedentary living habits: Theoretical but realistic estimates. Medicine and Science in Sports and Exercise, 26, 851–856.PubMedGoogle Scholar
  122. Radley, J. J., & Jacobs, B. L. (2002). 5-HT1A receptor antagonist administration decreases cell proliferation in the dentate gyrus. Brain Research, 955, 264–267.PubMedGoogle Scholar
  123. Rai, K. S., Hattiangady, B., & Shetty, A. K. (2007). Enhanced production and dendritic growth of new dentate granule cells in the middle-aged hippocampus following intracerebroventricular FGF-2 infusions. European Journal of Neuroscience, 26, 1765–1779.PubMedGoogle Scholar
  124. Redila, V. A., & Christie, B. R. (2006). Exercise-induced changes in dendritic structure and complexity in the adult hippocampal dentate gyrus. Neuroscience, 137, 1299–1307.PubMedGoogle Scholar
  125. Rhodes, J. S., Hosack, G. R., Girard, I., Kelley, A. E., Mitchell, G. S., & Garland T. Jr. (2001). Differential sensitivity to acute administration of cocaine, GBR 12909, & fluoxetine in mice selectively bred for hyperactive wheel-running behavior. Psychopharmacology, 158, 120–131.PubMedGoogle Scholar
  126. Rhodes, J. S., van Praag, H., Jeffrey, S., Girard, I., Mitchell, G. S., Garland, T. Jr., & Gage, F. H. (2003). Exercise increases hippocampal neurogenesis to high levels but does not improve spatial learning in mice bred for increased voluntary wheel running. Behavioral Neuroscience, 117, 1006–1016.PubMedGoogle Scholar
  127. Rochefort, C., Gheusi, G., Vincent, J. D., Lledo, P. M. (2002). Enriched odor exposure increases the number of newborn neurons in the adult olfactory bulb and improves odor memory. Journal of Neuroscience, 22, 2679–2689.PubMedGoogle Scholar
  128. Rogers, R. L., Meyer, J. S., & Mortel, K. F. (1990). After reaching retirement age physical activity sustains cerebral perfusion and cognition. Journal of the American Geriatrics Society, 38, 123–128.PubMedGoogle Scholar
  129. Rossi, C., Angelucci, A., Costantin, L., Braschi, C., Mazzantini, M., Babbini, F., Fabbri, M. E., Tessarollo, L., Maffei, L., Berardi, N., & Caleo, M. (2006). Brain-derived neurotrophic factor (BDNF) is required for the enhancement of hippocampal neurogenesis following environmental enrichment. European Journal of Neuroscience, 24, 1850–1856.PubMedGoogle Scholar
  130. Santarelli, L., Saxe, M., Gross, C., Surget, A., Battaglia, F., Dulawa, S., Weisstaub, N., Lee, J., Duman, R., Arancio, O., Belzung, C., & Hen, R. (2003). Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science, 301, 805–809.PubMedGoogle Scholar
  131. Schlett, K. (2006). Glutamate as a modulator of embryonic and adult neurogenesis. Current Topics in Medicinal Chemistry, 6, 949–960.PubMedGoogle Scholar
  132. Schmidt-Hieber, C., Jonas, P., & Bischofberger, J. (2004). Enhanced synaptic plasticity in newly generated granule cells of the adult hippocampus. Nature, 429, 184–187.PubMedGoogle Scholar
  133. Seki, T., & Arai, Y. (1995). Age-related production of new granule cells in the adult dentate gyrus. Neuroreport, 6, 2479–2482.PubMedGoogle Scholar
  134. Sforzo, G. A., Seeger, T. F., Pert, C. B., Pert, A., & Dotson, C. O. (1986). In vivo opioid receptor occupation in the rat brain following exercise. Medicine and Science in Sports and Exercise, 18, 380–384.PubMedGoogle Scholar
  135. Shen, Q., Goderie, S. K., Jin, L., Karanth, N., Sun, Y., Abramova, N., Vincent, P., Pumiglia, K., & Temple, S. (2004). Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells. Science, 304, 1338–1340.PubMedGoogle Scholar
  136. Steinmetz, K. A., & Potter, J. D. (1996). Vegetables, fruit, and cancer prevention: A review. Journal of the American Dietetic Association, 96, 1027–1039.PubMedGoogle Scholar
  137. Stranahan, A. M., Khalil, D., & Gould, E. (2006). Social isolation delays the positive effects of running on adult neurogenesis. Nature Neuroscience, 9, 526–533.PubMedGoogle Scholar
  138. Stranahan, A. M., Khalil, D., & Gould, E. (2007). Running induces widespread structural alterations in the hippocampus and entorhinal cortex. Hippocampus, 17, 1017–1022.PubMedGoogle Scholar
  139. Suominen-Troyer, S., Davis, K. J., Ismail, A. H., & Salvendy, G. (1986). Impact of physical fitness on strategy development in decision-making tasks. Perceptual and Motor Skills, 62, 71–77.PubMedGoogle Scholar
  140. Swain, R. A., Harris, A. B., Wiener, E. C., Dutka, M. V., Morris, H. D., Theien, B. E., Konda, S., Engberg, K., Lauterbur, P. C., & Greenough, W. T. (2003). Prolonged exercise induces angiogenesis and increases cerebral blood volume in primary motor cortex of the rat. Neuroscience, 117, 1037–1046.PubMedGoogle Scholar
  141. Tashiro, A., Sandler, V. M., Toni, N., Zhao, C., & Gage, F. H. (2006). NMDA-receptor-mediated, cell-specific integration of new neurons in adult dentate gyrus. Nature, 442, 929–933.PubMedGoogle Scholar
  142. Tattersfield, A. S., Croon, R. J., Liu, Y. W., Kells, A. P., Faull, R. L., & Connor, B. (2004). Neurogenesis in the striatum of the quinolinic acid lesion model of Huntington's disease. Neuroscience, 127, 319–332.PubMedGoogle Scholar
  143. Thored, P., Wood, J., Arvidsson, A., Cammenga, J., Kokaia, Z., & Lindvall, O. (2007). Long-term neuroblast migration along blood vessels in an area with transient angiogenesis and increased vascularization after stroke. Stroke, 38, 3032–3039.PubMedGoogle Scholar
  144. Tillerson, J. L., Caudle, W. M., Reveron, M. E., & Miller, G. W. (2003). Exercise induces behavioral recovery and attenuates neurochemical deficits in rodent models of Parkinson's disease. Neuroscience, 119, 899–911.PubMedGoogle Scholar
  145. Tong, L., Shen, H., Perreau, V. M., Balazs, R., & Cotman, C. W. (2001). Effects of exercise on gene-expression profile in the rat hippocampus. Neurobiology of Disease, 8, 1046–1056.PubMedGoogle Scholar
  146. Trejo, J. L., Carro, E., & Torres-Aleman, I. (2001). Circulating insulin-like growth factor I mediates exercise-induced increases in the number of new neurons in the adult hippocampus. Journal of Neuroscience, 21, 1628–1634.PubMedGoogle Scholar
  147. van Dellen, A., Blakemore, C., Deacon, R., York, D., & Hannan, A. J. (2000). Delaying the onset of Huntington's in mice. Nature, 404, 721–722.PubMedGoogle Scholar
  148. van der Borght, K., Havekes, R., Bos, T., Eggen, B. J., & van der Zee, E. A. (2007). Exercise improves memory acquisition and retrieval in the Y-maze task: Relationship with hippocampal neurogenesis. Behavioral Neuroscience, 121, 324–334.PubMedGoogle Scholar
  149. van der Borght, K., Ferrari, F., Klauke, K., Roman, V., Havekes, R., Sgoifo, A., van der Zee, E. A., & Meerlo, P. (2006). Hippocampal cell proliferation across the day: Increase by running wheel activity, but no effect of sleep and wakefulness. Behavioural Brain Research, 167, 36–41.PubMedGoogle Scholar
  150. van Praag, H., Christie, B. R., Sejnowski, T. J., & Gage, F. H. (1999a). Running enhances neurogenesis, learning and long-term potentiation in mice. Proceedings of the National Academy of Sciences of the United States of America, 96, 13427–13431.PubMedGoogle Scholar
  151. van Praag, H., Kempermann, G., & Gage, F. H. (1999b). Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nature Neuroscience, 2(3), 266–270.PubMedGoogle Scholar
  152. van Praag, H., Lucero, M. J., Yeo, G. W., Stecker, K., Heivand, N., Zhao, C., Yip, E., Afandor, M., Schroeter, H., Hammerstone, J., & Gage, F. H. (2007). Plant-derived flavanol (-)epicatechin enhances angiogenesis and retention of spatial memory in mice. Journal of Neuroscience, 27, 5869–5878.PubMedGoogle Scholar
  153. van Praag, H., Schinder, A. F., Christie, B. R., Toni, N., Palmer, T. D., Gage, F. H. (2002). Functional neurogenesis in the adult hippocampus. Nature, 415, 1030–1034.PubMedGoogle Scholar
  154. van Praag, H., Shubert, T., Zhao, C., & Gage, F. H. (2005). Exercise enhances learning and hippocampal neurogenesis in aged mice. Journal of Neuroscience, 25, 8680–8685.PubMedGoogle Scholar
  155. Vaynman, S., Ying, Z., & Gomez-Pinilla, F. (2004). Hippocampal BDNF mediates the efficacy of exercise on synaptic plasticity and cognition. European Journal of Neuroscience, 20, 2580–2590.PubMedGoogle Scholar
  156. Verret, L., Jankowsky, J. L., Xu, G. M., Borchelt, D. R., & Rampon, C. (2007). Alzheimer's-type amyloidosis in transgenic mice impairs survival of newborn neurons derived from adult hippocampal neurogenesis. Journal of Neuroscience, 27, 6771–6780.PubMedGoogle Scholar
  157. Vollmayr, B., Mahlstedt, M. M., & Henn, F. A. (2007). Neurogenesis and depression: What animal models tell us about the link. European Archives of Psychiatry and Clinical Neuroscience, 257, 300–303.PubMedGoogle Scholar
  158. Wagner, J. P., Black, I. B., & DiCicco-Bloom, E. (1999). Stimulation of neonatal and adult brain neurogenesis by subcutaneous injection of basic fibroblast growth factor. Journal of Neuroscience, 19, 6006–6016.PubMedGoogle Scholar
  159. Wang, R., Dineley, K. T., Sweatt, J. D., & Zheng, H. (2004). Presenilin 1 familial Alzheimer's disease mutation leads to defective associative learning and impaired adult neurogenesis. Neuroscience, 126, 305–312.PubMedGoogle Scholar
  160. Wang, S., Scott, B. W., & Wojtowicz, J. M. (2000). Heterogenous properties of dentate granule neurons in the adult rat. Journal of Neurobiology, 42(2), 248–257 (Feb 5).PubMedGoogle Scholar
  161. Wen, P. H., Hof, P. R., Chen, X., Gluck, K., Austin, G., Younkin, S. G., Younkin, L. H., DeGasperi, R., Gama Soma, M. A., Robakis, N. K., Haroutunian, V., & Elder, G. A. (2004). The presenilin-1 familial Alzheimer disease mutant P117L impairs neurogenesis in the hippocampus of adult mice. Experimental Neurology, 188, 224–237.PubMedGoogle Scholar
  162. Widenfalk, J., Olson, L., Thoren, P. (1999). Deprived of habitual running, rats downregulate BDNF and TrkB messages in the brain. Neuroscience Research, 34, 125–132.PubMedGoogle Scholar
  163. Winter, B., Breitenstein, C., Mooren, F. C., Voelker, K., Fobker, M., Lechtermann, A., Krueger, K., Fromme, A., Korsukewitz, C., Floel, A., & Knecht, S. (2007). High impact running improves learning. Neurobiology of Learning and Memory, 87, 597–609.PubMedGoogle Scholar
  164. Wolf, S. A., Kronenberg, G., Lehmann, K., Blankenship, A., Overall, R., Staufenbiel, M., & Kempermann, G. (2006). Cognitive and physical activity differently modulate disease progression in the amyloid precursor protein (APP)-23 model of Alzheimer's disease. Biological Psychiatry, 60, 1314–1323.PubMedGoogle Scholar
  165. Yaffe, K., Barnes, D., Nevitt, M., Lui, L. Y., & Covinksy, K. (2001). A prospective study of physical activity and cognitive decline in elderly women: Women who walk. Archives of Internal Medicine, 161, 1703–1708.PubMedGoogle Scholar
  166. Zhao, C., Teng, E. M., Summers, R.G. Jr., Ming, G. L., & Gage, F. H. (2006). Distinct morphological stages of dentate granule neuron maturation in the adult mouse hippocampus. Journal of Neuroscience, 26, 3–11.PubMedGoogle Scholar
  167. Zigova, T., Pencea, V., Wiegand, S. J., & Luskin, M. B. (1998). Intraventricular administration of BDNF increases the number of newly generated neurons in the adult olfactory bulb. Molecular and Cell Neurosciences, 11, 234–245.Google Scholar

Copyright information

© Humana Press 2008

Authors and Affiliations

  1. 1.Section of Neuroplasticity and Behavior, Laboratory of NeurosciencesGRC/NIA/NIHBaltimoreUSA

Personalised recommendations