Advertisement

NeuroMolecular Medicine

, Volume 10, Issue 3, pp 157–168 | Cite as

Neurotrophic Factors in Autonomic Nervous System Plasticity and Dysfunction

  • Mark P. MattsonEmail author
  • Ruiqian Wan
Review Paper

Abstract

During development, neurotrophic factors are known to play important roles in regulating the survival of neurons in the autonomic nervous system (ANS) and the formation of their synaptic connectivity with their peripheral targets in the cardiovascular, digestive, and other organ systems. Emerging findings suggest that neurotrophic factors may also affect the functionality of the ANS during adult life and may, in part, mediate the effects of environmental factors such as exercise and dietary energy intake on ANS neurons and target cells. In this article, we describe the evidence that ANS neurons express receptors for multiple neurotrophic factors, and data suggesting that activation of those receptors can modify plasticity in the ANS. Neurotrophic factors that may regulate ANS function include brain-derived neurotrophic factor, nerve growth factor, insulin-like growth factors, and ciliary neurotrophic factor. The possibility that perturbed neurotrophic factor signaling is involved in the pathogenesis of ANS dysfunction in some neurological disorders is considered, together with implications for neurotrophic factor-based therapeutic interventions.

Keywords

BDNF NGF CNTF Sympathetic Parasympathetic Parkinson’s disease Alzheimer’s disease 

Notes

Acknowledgement

This research was supported by the Intramural Research Program of the National Institute on Aging, NIH.

References

  1. Aharon-Peretz, J., Harel, T., Revach, M., & Ben-Haim, S. A. (1992). Increased sympathetic and decreased parasympathetic cardiac innervation in patients with Alzheimer’s disease. Archives of Neurology, 49, 919–922PubMedGoogle Scholar
  2. Ahmet, I., Wan, R., Mattson, M. P., Lakatta, E. G., & Talan, M. (2005). Cardioprotection by intermittent fasting in rats. Circulation, 112, 3115–3121.PubMedGoogle Scholar
  3. Airaksinen, M. S., Holm, L., & Hatinen, T. (2006). Evolution of the GDNF family ligands and receptors. Brain Behavior and Evolution, 68, 181–190.Google Scholar
  4. Algotsson, A., Viitanen, M., Winblad, B., & Solders, G. (1995). Autonomic dysfunction in Alzheimer’s disease. Acta Neurologica Scandinavica, 91, 14–18.PubMedGoogle Scholar
  5. Allan, L. M., Ballard, C. G., Allen, J., Murray, A., Davidson, A. W., McKeith, I. G., & Kenny, R. A. (2007). Autonomic dysfunction in dementia. Journal of Neurology, Neurosurgery, and Psychiatry, 78, 671–677.PubMedGoogle Scholar
  6. Andrich, J., Schmitz, T., Saft, C., Postert, T., Kraus, P., Epplen, J. T., Przuntek, H., & Agelink, M. W. (2002). Autonomic nervous system function in Huntington’s disease. Journal of Neurology, Neurosurgery, and Psychiatry, 72, 726–731.PubMedGoogle Scholar
  7. Anitha, M., Gondha, C., Sutliff, R., Parsadanian, A., Mwangi, S., Sitaraman, S. V., & Srinivasan, S. (2006). GDNF rescues hyperglycemia-induced diabetic enteric neuropathy through activation of the PI3K/Akt pathway. Journal of Clinical Investigation, 116, 344–356.PubMedGoogle Scholar
  8. Arsenijevic, Y., & Weiss, S. (1998). Insulin-like growth factor-I is a differentiation factor for postmitotic CNS stem cell-derived neuronal precursors: Distinct actions from those of brain-derived neurotrophic factor. Journal of Neuroscience, 18, 2118–2128.PubMedGoogle Scholar
  9. Asai, N., Fukuda, T., Wu, Z., Enomoto, A., Pachnis, V., Takahashi, M., & Costantini, F. (2006). Targeted mutation of serine 697 in the Ret tyrosine kinase causes migration defect of enteric neural crest cells. Development, 133, 4507–4516.PubMedGoogle Scholar
  10. Awerbuch, G. I., & Sandyk, R. (1994). Autonomic functions in the early stages of Parkinson’s disease. The International Journal of Neuroscience, 74, 9–16.PubMedGoogle Scholar
  11. Baloh, R. H., Enomoto, H., Johnson, E. M., Jr., & Milbrandt, J. (2000). The GDNF family ligands and receptors—implications for neural development. Current Opinions in Neurobiology, 10, 103–110.Google Scholar
  12. Barbacid, M. (1995). Structural and functional properties of the TRK family of neurotrophin receptors. Annals of the New York Academy of Sciences, 766, 442–458.PubMedGoogle Scholar
  13. Bariohay, B., Lebrun, B., Moyse, E., & Jean, A. (2005). Brain-derived neurotrophic factor plays a role as an anorexigenic factor in the dorsal vagal complex. Endocrinology, 146, 5612–5620.PubMedGoogle Scholar
  14. Berretta, S. (2005). Cortico-amygdala circuits: Role in the conditioned stress response. Stress, 8, 221–232.PubMedCrossRefGoogle Scholar
  15. Bharmal, S., Slonimsky, J. D., Mead, J. N., Sampson, C. P., Tolkovsky, A. M., Yang, B., Bargman, R., & Birren, S. J. (2001). Target cells promote the development and functional maturation of neurons derived from a sympathetic precursor cell line. Developmental Neuroscience, 23, 153–164.PubMedGoogle Scholar
  16. Birkhofer, A., Schmidt, G., & Forstl, H. (2005). Heart and brain—the influence of psychiatric disorders and their therapy on the heart rate variability. Fortschritte der Neurologie-Psychiatrie, 73, 192–205.PubMedGoogle Scholar
  17. Boesmans, W., Gomes, P., Janssens, J., Tack, J., & Vanden Berghe, P. (2007). Brain-derived neurotrophic factor amplifies neurotransmitter responses and promotes synaptic communication in the enteric nervous system. Gut (Epub ahead of print).Google Scholar
  18. Braak, H., Del Tredici, K., Rub, U., de Vos, R. A., Jansen Steur, E. N., & Braak, E. (2003). Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiology of Aging, 24, 197–211.PubMedGoogle Scholar
  19. Braak, H., Sastre, M., Bohl, J. R., de Vos, R. A., & Del Tredici, K. (2007). Parkinson’s disease: Lesions in dorsal horn layer I, involvement of parasympathetic and sympathetic pre- and postganglionic neurons. Acta Neuropathologica (Berl), 113, 421–429.Google Scholar
  20. Buj-Bello, A., Buchman, V. L., Horton, A., Rosenthal, A., & Davies, A. M. (1995). GDNF is an age-specific survival factor for sensory and autonomic neurons. Neuron, 15, 821–828.PubMedGoogle Scholar
  21. Causing, C. G., Gloster, A., Aloyz, R., Bamji, S. X., Chang, E., Fawcett, J., Kuchel, G., & Miller, F. D. (1997). Synaptic innervation density is regulated by neuron-derived BDNF. Neuron, 18, 257–267.PubMedGoogle Scholar
  22. Casscells, W., Speir, E., Sasse, J., Klagsbrun, M., Allen, P., Lee, M., Calvo, B., Chiba, M., Haggroth, L., & Folkman, J. (1990). Isolation, characterization, and localization of heparin-binding growth factors in the heart. Journal of Clinical Investigation, 85, 433–441.PubMedGoogle Scholar
  23. Chalazonitis, A. (2004). Neurotrophin-3 in the development of the enteric nervous system. Progress in Brain Research, 146, 243–263.PubMedGoogle Scholar
  24. Cheng, B., & Mattson, M. P. (1991). NGF and bFGF protect rat hippocampal and human cortical neurons against hypoglycemic damage by stabilizing calcium homeostasis. Neuron, 7, 1031–1041.PubMedGoogle Scholar
  25. Cheng, B., McMahon, D. G., & Mattson, M. P. (1993). Modulation of calcium current, intracellular calcium levels and cell survival by glucose deprivation and growth factors in hippocampal neurons. Brain Research, 607, 275–285.PubMedGoogle Scholar
  26. Chun, L. L., & Patterson, P. H. (1977). Role of nerve growth factor in the development of rat sympathetic neurons in vitro. I. Survival, growth, and differentiation of catecholamine production. The Journal of Cell Biology, 75, 694–704.PubMedGoogle Scholar
  27. Claes, S. J. (2004). Corticotropin-releasing hormone (CRH) in psychiatry: From stress to psychopathology. Annals of Medicine, 36, 50–61.PubMedGoogle Scholar
  28. Collins, F., & Dawson, A. (1983). An effect of nerve growth factor on parasympathetic neurite outgrowth. Proceedings of the National Academy of Sciences of the United States of America, 80, 2091–2094.PubMedGoogle Scholar
  29. Connor, B., Young, D., Yan, Q., Faull, R. L., Synek, B., & Dragunow, M. (1997). Brain-derived neurotrophic factor is reduced in Alzheimer’s disease. Molecular Brain Research, 49, 71–81.PubMedGoogle Scholar
  30. Cotman, C. W., Berchtold, N. C., & Christie, L. A. (2007). Exercise builds brain health: Key roles of growth factor cascades and inflammation. Trends in Neuroscience, 30, 464–472.Google Scholar
  31. Craddock, N., & Forty, L. (2006). Genetics of affective (mood) disorders. European Journal of Human Genetics, 14, 660–668.PubMedGoogle Scholar
  32. Crouch, M. F., & Hendry, I. A. (1991). Co-activation of insulin-like growth factor-I receptors and protein kinase C results in parasympathetic neuronal survival. Journal of Neuroscience Research, 28, 115–120.PubMedGoogle Scholar
  33. Crowell, M. D., & Wessinger, S. B. (2007). 5-HT and the brain-gut axis: Opportunities for pharmacologic intervention. Expert Opinion on Investigational Drugs, 16, 761–765.PubMedGoogle Scholar
  34. DeRijk, R., & de Kloet, E. R. (2005). Corticosteroid receptor genetic polymorphisms and stress responsivity. Endocrine, 28, 263–270.PubMedGoogle Scholar
  35. De Rosa, R., Garcia, A. A., Braschi, C., Capsoni, S., Maffei, L., Berardi, N., & Cattaneo, A. (2005). Intranasal administration of nerve growth factor (NGF) rescues recognition memory deficits in AD11 anti-NGF transgenic mice. Proceedings of the National Academy of Sciences of the United States of America, 102, 3811–3816.PubMedGoogle Scholar
  36. Devos, D., Kroumova, M., Bordet, R., Vodougnon, H., Guieu, J. D., Libersa, C., & Destee, A. (2003). Heart rate variability and Parkinson’s disease severity. Journal of Neural Transmission, 110, 997–1011.PubMedGoogle Scholar
  37. Dewey, R. B., Jr. (2004). Autonomic dysfunction in Parkinson’s disease. Neurologic Clinics, 22, S127–139.PubMedGoogle Scholar
  38. DiCicco-Bloom, E., & Black, I. B. (1988). Insulin growth factors regulate the mitotic cycle in cultured rat sympathetic neuroblasts. Proceedings of the National Academy of Sciences of the United States of America, 85, 4066–4070.PubMedGoogle Scholar
  39. Distasi, C., Torre, M., Antoniotti, S., Munaron, L., & Lovisolo, D. (1998). Neuronal survival and calcium influx induced by basic fibroblast growth factor in chick ciliary ganglion neurons. European Journal of Neuroscience, 10, 2276–2286.PubMedGoogle Scholar
  40. Doering, L. C., Roder, J. C., & Henderson, J. T. (1995). Ciliary neurotrophic factor promotes the terminal differentiation of v-myc immortalized sympathoadrenal progenitor cells in vivo. Developmental Brain Research, 89, 56–66.PubMedGoogle Scholar
  41. Dono, R., Texido, G., Dussel, R., Ehmke, H., & Zeller, R. (1998). Impaired cerebral cortex development and blood pressure regulation in FGF-2-deficient mice. EMBO Journal, 17, 4213–4225.PubMedGoogle Scholar
  42. Duan, W., Guo, Z., Jiang, H., Ware, M., & Mattson, M. P. (2003a). Reversal of behavioral and metabolic abnormalities, and insulin resistance syndrome, by dietary restriction in mice deficient in brain-derived neurotrophic factor. Endocrinology, 144, 2446–2453.PubMedGoogle Scholar
  43. Duan, W., Guo, Z., Jiang, H., Ware, M., Li, X. J., & Mattson, M. P. (2003b). Dietary restriction normalizes glucose metabolism and BDNF levels, slows disease progression, and increases survival in huntingtin mutant mice. Proceedings of the National Academy of Sciences of the United States of America, 100, 2911–2916.PubMedGoogle Scholar
  44. Ebendal, T., Tomac, A., Hoffer, B. J., & Olson, L. (1995). Glial cell line-derived neurotrophic factor stimulates fiber formation and survival in cultured neurons from peripheral autonomic ganglia. Journal of Neuroscience Research, 40, 276–284.PubMedGoogle Scholar
  45. Edgar, D., Barde, Y. A., & Thoenen, H. (1981). Subpopulations of cultured chick sympathetic neurones differ in their requirements for survival factors. Nature 289, 294–295.PubMedGoogle Scholar
  46. Ekblad, E., & Bauer, A. J. (2004). Role of vasoactive intestinal peptide and inflammatory mediators in enteric neuronal plasticity. Neurogastroenterology and Motility, 16, S123–128.Google Scholar
  47. Enomoto, H., Araki, T., Jackman, A., Heuckeroth, R. O., Snider, W. D., Johnson, E. M., Jr., & Milbrandt, J. (1998). GFR alpha1-deficient mice have deficits in the enteric nervous system and kidneys. Neuron, 21, 317–324.PubMedGoogle Scholar
  48. Eswarakumar, V. P., Lax, I., & Schlessinger, J. (2005). Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Reviews, 16, 139–149.PubMedGoogle Scholar
  49. Ferrer, I., Goutan, E., Marin, C., Rey, M. J., & Ribalta, T. (2000). Brain-derived neurotrophic factor in Huntington disease. Brain Research, 866, 257–261.PubMedGoogle Scholar
  50. Ferrer, I., Marin, C., Rey, M. J., Ribalta, T., Goutan, E., Blanco, R., Tolosa, E., & Marti, E. (1999). BDNF and full-length and truncated TrkB expression in Alzheimer disease. Implications in therapeutic strategies. Journal of Neuropathology and Experimental Neurology, 58, 729–739.PubMedGoogle Scholar
  51. Francke, U. (2006). Mechanisms of disease: Neurogenetics of MeCP2 deficiency. Nature Clinical Practice Neurology, 2, 212–221.PubMedGoogle Scholar
  52. Ginsberg, S. D., Che, S., Wuu, J., Counts, S. E., & Mufson, E. J. (2006). Down regulation of trk but not p75NTR gene expression in single cholinergic basal forebrain neurons mark the progression of Alzheimer’s disease. Journal of Neurochemistry, 97, 475–487.PubMedGoogle Scholar
  53. Giubilei, F., Strano, S., Imbimbo, B. P., Tisei, P., Calcagnini, G., Lino, S., Frontoni, M., Santini, M., & Fieschi, C. (1998). Cardiac autonomic dysfunction in patients with Alzheimer disease: Possible pathogenetic mechanisms. Alzheimer Disease and Associated Disorders, 12, 356–361.PubMedCrossRefGoogle Scholar
  54. Gorman, J. M., & Sloan, R. P. (2000). Heart rate variability in depressive and anxiety disorders. American Heart Journal, 40, 77–83.Google Scholar
  55. Halagappa, V. K., Guo, Z., Pearson, M., Matsuoka, Y., Cutler, R. G., Laferla, F. M., & Mattson, M. P. (2007). Intermittent fasting and caloric restriction ameliorate age-related behavioral deficits in the triple-transgenic mouse model of Alzheimer’s disease. Neurobiology of Disease, 26, 212–220.PubMedGoogle Scholar
  56. Hasan, W., & Smith, P. G. (2000). Nerve growth factor expression in parasympathetic neurons: Regulation by sympathetic innervation. European Journal of Neuroscience, 12, 4391–4397.PubMedGoogle Scholar
  57. Hazari, M. S., Pan, J. H., & Myers, A. C. (2007). Nerve growth factor acutely potentiates synaptic transmission in vitro and induces dendritic growth in vivo on adult neurons in airway parasympathetic ganglia. American Journal of Physiology. Lung Cellular and Molecular Physiology, 292, L992–1001.PubMedGoogle Scholar
  58. Helke, C. J., Adryan, K. M., Fedorowicz, J., Zhuo, H., Park, J. S., Curtis, R., Radley, H. E., & Distefano, P. S. (1998). Axonal transport of neurotrophins by visceral afferent and efferent neurons of the vagus nerve of the rat. The Journal of Comparitive Neurology, 393, 102–117.Google Scholar
  59. Hock, C., Heese, K., Muller-Spahn, F., Hulette, C., Rosenberg, C., & Otten, U. (1998). Decreased trkA neurotrophin receptor expression in the parietal cortex of patients with Alzheimer’s disease. Neuroscience Letters, 241, 151–154.PubMedGoogle Scholar
  60. Hottenrott, K., Hoos, O., & Esperer, H. D. (2006). Heart rate variability and physical exercise. Current status. Herz, 31, 544–552.PubMedGoogle Scholar
  61. Hou, R. H., Samuels, E. R., Raisi, M., Langley, R. W., Szabadi, E., & Bradshaw, C. M. (2006). Why patients with Alzheimer’s disease may show increased sensitivity to tropicamide eye drops: Role of locus coeruleus. Psychopharmacology (Berl), 184, 95–106.Google Scholar
  62. Hurelbrink, C. B., & Barker, R. A. (2001). Prospects for the treatment of Parkinson’s disease using neurotrophic factors. Expert Opinion on Pharmacotherapy, 2, 1531–1543.PubMedGoogle Scholar
  63. Ip, N. Y., Boulton, T. G., Li, Y., Verdi, J. M., Birren, S. J., Anderson, D. J., & Yancopoulos, G. D. (1994). NTF, FGF, and NGF collaborate to drive the terminal differentiation of MAH cells into postmitotic neurons. Neuron, 13, 443–455.PubMedGoogle Scholar
  64. Johnson, J. B., Summer, W., Cutler, R. G., Martin, B., Hyun, D. H., Dixit, V. D., Pearson, M., Nassar, M., Tellejohan, R., Maudsley, S., Carlson, O., John, S., Laub, D. R., & Mattson, M. P. (2007). Alternate day calorie restriction improves clinical findings and reduces markers of oxidative stress and inflammation in overweight adults with moderate asthma. Free Radical Biology & Medicine, 42, 665–674.Google Scholar
  65. Jordan, D. (2005). Vagal control of the heart: Central serotonergic (5-HT). mechanisms. Experimental Physiology, 90, 175–181.PubMedGoogle Scholar
  66. Kallio, M., Haapaniemi, T., Turkka, J., Suominen, K., Tolonen, U., Sotaniemi, K., Heikkila, V. P., & Myllyla, V. (2000). Heart rate variability in patients with untreated Parkinson’s disease. European Journal of Neurology, 7, 667–672.PubMedGoogle Scholar
  67. Karagiannis, S. N., King, R. H., & Thomas, P. K. (1997). Colocalisation of insulin and IGF-1 receptors in cultured rat sensory and sympathetic ganglion cells. Journal of Anatomy, 191, 431–440.PubMedGoogle Scholar
  68. Kasselman, L. J., Sideris, A., Bruno, C., Perez, W. R., Cai, N., Nicoletti, J. N., Wiegand, S. J., & Croll, S. D. (2006). BDNF: A missing link between sympathetic dysfunction and inflammatory disease? Journal of Neuroimmunology, 175, 118–127.PubMedGoogle Scholar
  69. Kelly-Spratt, K. S., Klesse, L. J., & Parada, L. F. (2002). BDNF activated TrkB/IRR receptor chimera promotes survival of sympathetic neurons through Ras and PI-3 kinase signaling. Journal of Neuroscience Research, 69, 151–159.PubMedGoogle Scholar
  70. Kessler, J. A., & Black, I. B. (1980). The effects of nerve growth factor (NGF). and antiserum to NGF on the development of embryonic sympathetic neurons in vivo. Brain Research, 189, 157–168.PubMedGoogle Scholar
  71. Klimaschewski, L., Meisinger, C., & Grothe, C. (1999). Localization and regulation of basic fibroblast growth factor (FGF-2) and FGF receptor-1 in rat superior cervical ganglion after axotomy. Journal of Neurobiology, 38, 499–506.PubMedGoogle Scholar
  72. Kobal, J., Meglic, B., Mesec, A., & Peterlin, B. (2004). Early sympathetic hyperactivity in Huntington’s disease. European Journal of Neurology, 11, 842–848.PubMedGoogle Scholar
  73. Kwon, B. K., Liu, J., Lam, C., Plunet, W., Oschipok, L. W., Hauswirth, W., Di Polo, A., Blesch, A., & Tetzlaff, W. (2007). Brain-derived neurotrophic factor gene transfer with adeno-associated viral and lentiviral vectors prevents rubrospinal neuronal atrophy and stimulates regeneration-associated gene expression after acute cervical spinal cord injury. Spine, 32, 1164–1173.PubMedGoogle Scholar
  74. Kyrou, I., & Tsigos, C. (2007). Stress mechanisms and metabolic complications. Hormone and Metabolic Research, 39, 430–438.PubMedGoogle Scholar
  75. Laustsen, P. G., Russell, S. J., Cui, L., Entingh-Pearsall, A., Holzenberger, M., Liao, R., & Kahn, C. R. (2007). Essential role of insulin and insulin-like growth factor 1 receptor signaling in cardiac development and function. Molecular Cell Biology, 27, 1649–1664.Google Scholar
  76. Lechin, F., van der Dijs, B., Orozco, B., Lechin, A. E., Baez, S., Lechin, M. E., Rada, I., Acosta, E., Arocha, L., Jimenez, V., et al. (1995). Plasma neurotransmitters, blood pressure, and heart rate during supine resting, orthostasis, and moderate exercise in dysthymic depressed patients. Biological Psychiatry, 37, 884–891.PubMedGoogle Scholar
  77. Lee, J., Duan, W., & Mattson, M. P. (2002b). Evidence that brain-derived neurotrophic factor is required for basal neurogenesis and mediates, in part, the enhancement of neurogenesis by dietary restriction in the hippocampus of adult mice. Journal of Neurochemistry, 82, 1367–1375.PubMedGoogle Scholar
  78. Lee, P. G., Hohman, T. C., Cai, F., Regalia, J., & Helke, C. J. (2001). Streptozotocin-induced diabetes causes metabolic changes and alterations in neurotrophin content and retrograde transport in the cervical vagus nerve. Experimental Neurology, 170, 149–161.PubMedGoogle Scholar
  79. Lee, J., Seroogy, K. B., & Mattson, M. P. (2002a). Dietary restriction enhances neurotrophin expression and neurogenesis in the hippocampus of adult mice. Journal of Neurochemistry, 80, 539–547.PubMedGoogle Scholar
  80. LeVatte, M. A., Dekaban, G. A., & Weaver, L. C. (1997). Gene transfer into sympathetic preganglionic neurons in vivo using a non-replicating thymidine kinase-deficient herpes simplex virus type 1. Neuroscience, 80, 893–906.PubMedGoogle Scholar
  81. Levi-Montalcini, R., & Calissano, P. (1979). The nerve-growth factor. Scientific American, 240, 44–53.CrossRefGoogle Scholar
  82. Levivier, M., Przedborski, S., Bencsics, C., & Kang, U. J. (1995). Intrastriatal implantation of fibroblasts genetically engineered to produce brain-derived neurotrophic factor prevents degeneration of dopaminergic neurons in a rat model of Parkinson’s disease. Journal of Neuroscience, 15, 7810–7820.PubMedGoogle Scholar
  83. Lockhart, S. T., Mead, J. N., Pisano, J. M., Slonimsky, J. D., & Birren, S. J. (2000). Nerve growth factor collaborates with myocyte-derived factors to promote development of presynaptic sites in cultured sympathetic neurons. Journal of Neurobiology, 42, 460–476.PubMedGoogle Scholar
  84. Lockhart, S. T., Turrigiano, G. G., & Birren, S. J. (1997). Nerve growth factor modulates synaptic transmission between sympathetic neurons and cardiac myocytes. Journal of Neuroscience, 17, 9573–9582.PubMedGoogle Scholar
  85. Loewenthal, N., Levy, J., Schreiber, R., Pinsk, V., Perry, Z., Shorer, Z., & Hershkovitz, E. (2005). Nerve growth factor-tyrosine kinase A pathway is involved in thermoregulation and adaptation to stress: Studies on patients with hereditary sensory and autonomic neuropathy type IV. Pediatric Research, 57, 587–590.PubMedGoogle Scholar
  86. Lynch, G., Kramar, E. A., Rex, C. S., Jia, Y., Chappas, D., Gall, C. M., & Simmons, D. A. (2007). Brain-derived neurotrophic factor restores synaptic plasticity in a knock-in mouse model of Huntington’s disease. Journal of Neuroscience, 27, 4424–4434.PubMedGoogle Scholar
  87. Mager, D. E., Wan, R., Brown, M., Cheng, A., Wareski, P., Abernethy, D. R., & Mattson, M. P. (2006). Caloric restriction and intermittent fasting alter spectral measures of heart rate and blood pressure variability in rats. FASEB Journal, 20, 631–637.PubMedGoogle Scholar
  88. Malaspina, D., Dalack, G., Leitman, D., Corcoran, C., Amador, X. F., Yale, S., Glassman, A., & Gorman, J. M. (2002). Low heart rate variability is not caused by typical neuroleptics in schizophrenia patients. CNS Spectrums, 7, 53–57.PubMedGoogle Scholar
  89. Martinelli, P. M., Camargos, E. R., Azevedo, A. A., Chiari, E., Morel, G., & Machado, C. R. (2006). Cardiac NGF and GDNF expression during Trypanosoma cruzi infection in rats. Autonomic Neuroscience, 130, 32–40.PubMedGoogle Scholar
  90. Martini, G., Riva, P., Rabbia, F., Molini, V., Ferrero, G. B., Cerutti, F., Carra, R., & Veglio, F. (2001). Heart rate variability in childhood obesity. Clinical Autonomic Research, 11, 87–91.PubMedGoogle Scholar
  91. Martinowich, K., & Lu, B. (2007). Interaction between BDNF and serotonin: role in mood disorders. Neuropsychopharmacology, 33, 73–83.Google Scholar
  92. Mastrocola, C., Vanacore, N., Giovani, A., Locuratolo, N., Vella, C., Alessandri, A., Baratta, L., Tubani, L., & Meco, G. (1999). Twenty-four-hour heart rate variability to assess autonomic function in Parkinson’s disease. Acta Neurologica Scandinavica, 99, 245–247.PubMedGoogle Scholar
  93. Maswood, N., Young, J., Tilmont, E., Zhang, Z., Gash, D. M., Gerhardt, G. A., Grondin, R., Roth, G. S., Mattison, J., Lane, M. A., Carson, R. E., Cohen, R. M., Mouton, P. R., Quigley, C., Mattson, M. P., & Ingram, D. K. (2004). Caloric restriction increases neurotrophic factor levels and attenuates neurochemical and behavioral deficits in a primate model of Parkinson’s disease. Proceedings of the National Academy of Sciences of the United States of America, 101, 18171–18176.PubMedGoogle Scholar
  94. Matsuoka, Y., Gray, A. J., Hirata-Fukae, C., Minami, S. S., Waterhouse, E. G., Mattson, M. P., LaFerla, F. M., Gozes, I., & Aisen, P. S. (2007). Intranasal NAP administration reduces accumulation of amyloid peptide and tau hyperphosphorylation in a transgenic mouse model of Alzheimer’s disease at early pathological stage. Journal of Molecular Neuroscience, 31, 165–170.PubMedGoogle Scholar
  95. Mattson, M. P., & Cheng, A. (2006). Neurohormetic phytochemicals: Low-dose toxins that induce adaptive neuronal stress responses. Trends in Neuroscience, 29, 632–639.Google Scholar
  96. Mattson, M. P., Maudsley, S., & Martin, B. (2004). A neural signaling triumvirate that influences ageing and age-related disease: Insulin/IGF-1, BDNF and serotonin. Ageing Research Reviews, 3, 445–464.PubMedGoogle Scholar
  97. Mattson, M. P., Murrain, M., Guthrie, P. B., & Kater, S. B. (1989). Fibroblast growth factor and glutamate: Opposing roles in the generation and degeneration of hippocampal neuroarchitecture. Journal of Neuroscience, 9, 3728–3740.PubMedGoogle Scholar
  98. Mattson, M. P., & Wan, R. (2005). Beneficial effects of intermittent fasting and caloric restriction on the cardiovascular and cerebrovascular systems. The Journal of Nutritional Biochemistry, 16, 129–137.PubMedGoogle Scholar
  99. Mattson, M. P., Zhang, Y., & Bose, S. (1993). Growth factors prevent mitochondrial dysfunction, loss of calcium homeostasis, and cell injury, but not ATP depletion in hippocampal neurons deprived of glucose. Experimental Neurology, 121, 1–13.PubMedGoogle Scholar
  100. Mijatovic, J., Airavaara, M., Planken, A., Auvinen, P., Raasmaja, A., Piepponen, T. P., Costantini, F., Ahtee, L., & Saarma, M. (2007). Constitutive Ret activity in knock-in multiple endocrine neoplasia type B mice induces profound elevation of brain dopamine concentration via enhanced synthesis and increases the number of TH-positive cells in the substantia nigra. Journal of Neurosciences, 27, 4799–4809.Google Scholar
  101. Mogi, M., Togari, A., Kondo, T., Mizuno, Y., Komure, O., Kuno, S., Ichinose, H., & Nagatsu, T. (1999). Brain-derived growth factor and nerve growth factor concentrations are decreased in the substantia nigra in Parkinson’s disease. Neurosci Letters, 270, 45–48.Google Scholar
  102. Mohan, R. M., Golding, S., Heaton, D. A., Danson, E. J., & Paterson, D. J. (2004). Targeting neuronal nitric oxide synthase with gene transfer to modulate cardiac autonomic function. Progress in Biophysics and Molecular Biology, 84, 321–344.PubMedGoogle Scholar
  103. Mufson, E. J., Lavine, N., Jaffar, S., Kordower, J. H., Quirion, R., & Saragovi, H. U. (1997). Reduction in p140-TrkA receptor protein within the nucleus basalis and cortex in Alzheimer’s disease. Experimental Neurology, 146, 91–103.PubMedGoogle Scholar
  104. Nakagawa, T., Ono-Kishino, M., Sugaru, E., Yamanaka, M., Taiji, M., & Noguchi, H. (2002). Brain-derived neurotrophic factor (BDNF) regulates glucose and energy metabolism in diabetic mice. Diabetes Metabolism Research Reviews., 18, 185–191.Google Scholar
  105. Neeper, S. A., Gomez-Pinilla, F., Choi, J., & Cotman, C. W. (1996). Physical activity increases mRNA for brain-derived neurotrophic factor and nerve growth factor in rat brain. Brain Research, 726, 49–56.PubMedGoogle Scholar
  106. Nelson, R. L., Guo, Z., Halagappa, V. M., Pearson, M., Gray, A. J., Matsuoka, Y., Brown, M., Martin, B., Iyun, T., Maudsley, S., Clark, R. F., & Mattson, M. P. (2007). Prophylactic treatment with paroxetine ameliorates behavioral deficits and retards the development of amyloid and tau pathologies in 3×TgAD mice. Experimental Neurology, 205, 166–176.PubMedGoogle Scholar
  107. Nomura, Y., Kimura, K., Arai, H., & Segawa, M. (1997). Involvement of the autonomic nervous system in the pathophysiology of Rett syndrome. European Child Adolescent Psychiatry, 6, S42–46.Google Scholar
  108. Oka, H., Mochio, S., Onouchi, K., Morita, M., Yoshioka, M., & Inoue, K. (2006). Cardiovascular dysautonomia in de novo Parkinson’s disease. Journal of Neurological Sciences, 241, 59–65.Google Scholar
  109. Parain, K., Murer, M. G., Yan, Q., Faucheux, B., Agid, Y., Hirsch, E., & Raisman-Vozari, R. (1999). Reduced expression of brain-derived neurotrophic factor protein in Parkinson’s disease substantia nigra. Neuroreport, 10, 557–561.PubMedGoogle Scholar
  110. Paterson, D. S., Thompson, E. G., Belliveau, R. A., Antalffy, B. A., Trachtenberg, F. L., Armstrong, D. D., & Kinney, H. C. (2005). Serotonin transporter abnormality in the dorsal motor nucleus of the vagus in Rett syndrome: potential implications for clinical autonomic dysfunction. Journal of Neuropathology and Experimental Neurology, 64, 1018–1027.PubMedGoogle Scholar
  111. Peiris, T. S., Machaalani, R., & Waters, K. A. (2004). Brain-derived neurotrophic factor mRNA and protein in the piglet brainstem and effects of intermittent hypercapnic hypoxia. Brain Research, 1029, 11–23.PubMedGoogle Scholar
  112. Phillips, H. S., Hains, J. M., Armanini, M., Laramee, G. R., Johnson, S. A., & Winslow, J. W. (1991). BDNF mRNA is decreased in the hippocampus of individuals with Alzheimer’s disease. Neuron, 7, 695–702.PubMedGoogle Scholar
  113. Puri, P., & Shinkai, T. (2004). Pathogenesis of Hirschsprung’s disease and its variants: Recent progress. Seminars in Pediatric Surgery, 13, 18–24.PubMedGoogle Scholar
  114. Pursiainen, V., Korpelainen, J. T., Huikuri, H. V., Sotaniemi, K. A., & Myllyla, V. V. (2002). Circadian heart rate variability in Parkinson’s disease. Journal of Neurology, 249, 1535–1540.PubMedGoogle Scholar
  115. Reichardt, L. F. (2006). Neurotrophin-regulated signalling pathways. Philosophical Transactions of the Royal Society of London Series B Biological Sciences, 361, 1545–1564.Google Scholar
  116. Reimer, M. K., Mokshagundam, S. P., Wyler, K., Sundler, F., Ahren, B., & Stagner, J. I. (2003). Local growth factors are beneficial for the autonomic reinnervation of transplanted islets in rats. Pancreas, 26, 392–397.PubMedGoogle Scholar
  117. Reiss, K., Kajstura, J., Zhang, X., Li, P., Szoke, E., Olivetti, G., & Anversa, P. (1994). Acute myocardial infarction leads to upregulation of the IGF-1 autocrine system, DNA replication, and nuclear mitotic division in the remaining viable cardiac myocytes. Experimental Cell Research, 213, 463–472.PubMedGoogle Scholar
  118. Roosen, A., Schober, A., Strelau, J., Bottner, M., Faulhaber, J., Bendner, G., McIlwrath, S. L., Seller, H., Ehmke, H., Lewin, G. R., & Unsicker, K. (2001). Lack of neurotrophin-4 causes selective structural and chemical deficits in sympathetic ganglia and their preganglionic innervation. Journal of Neuroscience, 21, 3073–3084.PubMedGoogle Scholar
  119. Rosenwinkel, E. T., Bloomfield, D. M., Arwady, M. A., & Goldsmith, R. L. (2001). Exercise and autonomic function in health and cardiovascular disease. Cardiology Clinics, 19, 369–387.PubMedGoogle Scholar
  120. Rossi, J., Herzig, K. H., Voikar, V., Hiltunen, P. H., Segerstrale, M., & Airaksinen, M. S. (2003). Alimentary tract innervation deficits and dysfunction in mice lacking GDNF family receptor alpha2. Journal of Clinical Investigation, 112, 707–716.PubMedGoogle Scholar
  121. Sariola, H., & Saarma, M. (2003). Novel functions and signalling pathways for GDNF. Journal of Cell Science, 116, 3855–3862.PubMedGoogle Scholar
  122. Sawada, H., Ibi, M., Kihara, T., Urushitani, M., Nakanishi, M., Akaike, A., & Shimohama, S. (2000). Neuroprotective mechanism of glial cell line-derived neurotrophic factor in mesencephalic neurons. Journal of Neurochemistry, 74, 1175–1184.PubMedGoogle Scholar
  123. Schmidt, R. E., Dorsey, D. A., Beaudet, L. N., Parvin, C. A., & Escandon, E. (2001). Effect of NGF and neurotrophin-3 treatment on experimental diabetic autonomic neuropathy. Journal of Neuropathology and Experimantal Neurology, 60, 263–273.Google Scholar
  124. Schmidt, R. E., Dorsey, D. A., Beaudet, L. N., Plurad, S. B., Parvin, C. A., & Miller, M. S. (1999). Insulin-like growth factor I reverses experimental diabetic autonomic neuropathy. American Journal of Pathology, 155, 1651–1660.PubMedGoogle Scholar
  125. Schober, A., Minichiello, L., Keller, M., Huber, K., Layer, P. G., Roig-Lopez, J. L., Garcia-Arraras, J. E., Klein, R., & Unsicker, K. (1997). Reduced acetylcholinesterase (AChE) activity in adrenal medulla and loss of sympathetic preganglionic neurons in TrkA-deficient, but not TrkB-deficient, mice. Journal of Neuroscience, 17, 891–903.PubMedGoogle Scholar
  126. Schober, A., Wolf, N., Huber, K., Hertel, R., Krieglstein, K., Minichiello, L., Kahane, N., Widenfalk, J., Kalcheim, C., Olson, L., Klein, R., Lewin, G. R., & Unsicker, K. (1998). TrkB and neurotrophin-4 are important for development and maintenance of sympathetic preganglionic neurons innervating the adrenal medulla. Journal of Neuroscience, 18, 7272–7284.PubMedGoogle Scholar
  127. Silani, V., Borasio, G. D., Zhou, F. C., Bernasconi, S., Pizzuti, A., Sampietro, A., & Scarlato, G. (1994). NGF-response of EGF-dependent progenitor cells obtained from human sympathetic ganglia. Neuroreport, 5, 2085–2089.PubMedGoogle Scholar
  128. Sleeman, M. W., Anderson, K. D., Lambert, P. D., Yancopoulos, G. D., & Wiegand, S. J. (2000). The ciliary neurotrophic factor and its receptor, CNTFR alpha. Pharmaceutica Acta Helvetiae, 74, 265–272.PubMedGoogle Scholar
  129. Slevin, J. T., Gash, D. M., Smith, C. D., Gerhardt, G. A., Kryscio, R., Chebrolu, H., Walton, A., Wagner, R., & Young, A. B. (2007). Unilateral intraputamenal glial cell line-derived neurotrophic factor in patients with Parkinson disease: response to 1 year of treatment and 1 year of withdrawal. Journal of Neurosurgery, 106, 614–620.PubMedGoogle Scholar
  130. Slonimsky, J. D., Yang, B., Hinterneder, J. M., Nokes, E. B., & Birren, S. J. (2003). BDNF and CNTF regulate cholinergic properties of sympathetic neurons through independent mechanisms. Molecular and Cellular Neuroscience, 23, 648–660.PubMedGoogle Scholar
  131. Speir, E., Tanner, V., Gonzalez, A. M., Farris, J., Baird, A., & Casscells, W. (1992). Acidic and basic fibroblast growth factors in adult rat heart myocytes. Localization, regulation in culture, and effects on DNA synthesis. Circulation Research, 71, 251–259.PubMedGoogle Scholar
  132. Spires, T. L., Grote, H. E., Varshney, N. K., Cordery, P. M., van Dellen, A., Blakemore, C., & Hannan, A. J. (2004). Environmental enrichment rescues protein deficits in a mouse model of Huntington’s disease, indicating a possible disease mechanism. Journal of Neuroscience, 24, 2270–2276.PubMedGoogle Scholar
  133. Taraviras, S., Marcos-Gutierrez, C. V., Durbec, P., Jani, H., Grigoriou, M., Sukumaran, M., Wang, L. C., Hynes, M., Raisman, G., & Pachnis, V. (1999). Signalling by the RET receptor tyrosine kinase and its role in the development of the mammalian enteric nervous system. Development, 126, 2785–2797.PubMedGoogle Scholar
  134. Thrasivoulou, C., Soubeyre, V., Ridha, H., Giuliani, D., Giaroni, C., Michael, G. J., Saffrey, M. J., & Cowen, T. (2006). Reactive oxygen species, dietary restriction and neurotrophic factors in age-related loss of myenteric neurons. Aging Cell, 5, 247–257.PubMedGoogle Scholar
  135. Tucker, P., Beebe, K. L., Burgin, C., Wyatt, D. B., Parker, D. E., Masters, B. K., & Nawar, O. (2004). Paroxetine treatment of depression with posttraumatic stress disorder: Effects on autonomic reactivity and cortisol secretion. Journal of Clinical Psychopharmacology, 24, 131–140.PubMedGoogle Scholar
  136. Tyler, C. M., & Federoff, H. J. (2006). CNS gene therapy and a nexus of complexity: Systems and biology at a crossroads. Cell Transplantation, 15, 267–273.PubMedGoogle Scholar
  137. Vinik, A. I., Maser, R. E., Mitchell, B. D., & Freeman, R. (2003). Diabetic autonomic neuropathy. Diabetes Care, 26, 1553–1579.PubMedGoogle Scholar
  138. von Boyen, G. B., Reinshagen, M., Steinkamp, M., Adler, G., & Kirsch, J. (2002). Enteric nervous plasticity and development: Dependence on neurotrophic factors. Journal of Gastroenterology, 37, 583–588.Google Scholar
  139. Wakabayashi, K., & Takahashi, H. (1997). Neuropathology of autonomic nervous system in Parkinson’s disease. European Neurology, 38, S2–7.Google Scholar
  140. Wan, R., Camandola, S., & Mattson, M. P. (2003a). Intermittent food deprivation improves cardiovascular and neuroendocrine responses to stress in rats. Journal of Nutrition, 133, 1921–1929.PubMedGoogle Scholar
  141. Wan, R., Camandola, S., & Mattson, M. P. (2003b). Intermittent fasting and dietary supplementation with 2-deoxy-d-glucose improve functional and metabolic cardiovascular risk factors in rats. FASEB Journal, 17, 1133–1134.PubMedGoogle Scholar
  142. Wang, X., & Halvorsen, S. W. (1998). Reciprocal regulation of ciliary neurotrophic factor receptors and acetylcholine receptors during synaptogenesis in embryonic chick atria. Journal of Neuroscience, 18, 7372–7380.PubMedGoogle Scholar
  143. Wang, H., & Zhou, X. F. (2002). Injection of brain-derived neurotrophic factor in the rostral ventrolateral medulla increases arterial blood pressure in anaesthetized rats. Neuroscience, 112, 967–975.PubMedGoogle Scholar
  144. Williams, B. J., Eriksdotter-Jonhagen, M., & Granholm, A. C. (2006). Nerve growth factor in treatment and pathogenesis of Alzheimer’s disease. Progress in Neurobiology, 80, 114–128.PubMedGoogle Scholar
  145. Wolf, S. A., Kronenberg, G., Lehmann, K., Blankenship, A., Overall, R., Staufenbiel, M., & Kempermann, G. (2006). Cognitive and physical activity differently modulate disease progression in the amyloid precursor protein (APP)-23 model of Alzheimer’s disease. Biological Psychiatry, 60, 1314–1323.PubMedGoogle Scholar
  146. Wooten, M. W., Vandenplas, M. L., Seibenhener, M. L., Geetha, T., & Diaz-Meco, M. T. (2001). Nerve growth factor stimulates multisite tyrosine phosphorylation and activation of the atypical protein kinase C’s via a src kinase pathway. Molecular Cell Biology, 21, 8414–8427.Google Scholar
  147. Xu, B., Goulding, E. H., Zang, K., Cepoi, D., Cone, R. D., Jones, K. R., Tecott, L. H., & Reichardt, L. F. (2003). Brain-derived neurotrophic factor regulates energy balance downstream of melanocortin-4 receptor. Nature Neuroscience, 6, 736–742.PubMedGoogle Scholar
  148. Yang, B., Slonimsky, J. D., & Birren, S. J. (2002). A rapid switch in sympathetic neurotransmitter release properties mediated by the p75 receptor. Nature Neuroscience, 5, 539–545.PubMedGoogle Scholar
  149. York, R. D., Molliver, D. C., Grewal, S. S., Stenberg, P. E., McCleskey, E. W., & Stork, P. J. (2000). Role of phosphoinositide 3-kinase and endocytosis in nerve growth factor-induced extracellular signal-regulated kinase activation via Ras and Rap1. Molecular Cell Biology, 20, 8069–8083.Google Scholar
  150. Zaidi, S. I., Jafri, A., Doggett, T., & Haxhiu, M. A. (2005). Airway-related vagal preganglionic neurons express brain-derived neurotrophic factor and TrkB receptors: Implications for neuronal plasticity. Brain Research, 1044, 133–143.PubMedGoogle Scholar
  151. Zahn, T. P. (1988). Studies of autonomic psychophysiology and attention in schizophrenia. Schizophrenia Bulletin, 14, 205–208.PubMedGoogle Scholar
  152. Zhou, X., Nai, Q., Chen, M., Dittus, J. D., Howard, M. J., & Margiotta, J. F. (2004). Brain-derived neurotrophic factor and trkB signaling in parasympathetic neurons: relevance to regulating alpha7-containing nicotinic receptors and synaptic function. Journal of Neuroscience, 24, 4340–4350.PubMedGoogle Scholar
  153. Zuccato, C., Ciammola, A., Rigamonti, D., Leavitt, B. R., Goffredo, D., Conti, L., MacDonald, M. E., Friedlander, R. M., Silani, V., Hayden, M. R., Timmusk, T., Sipione, S., & Cattaneo, E. (2001). Loss of huntingtin-mediated BDNF gene transcription in Huntington’s disease. Science, 293, 493–498.PubMedGoogle Scholar
  154. Zulli, R., Nicosia, F., Borroni, B., Agosti, C., Prometti, P., Donati, P., De Vecchi, M., Romanelli, G., Grassi, V., & Padovani, A. (2005). QT dispersion and heart rate variability abnormalities in Alzheimer’s disease and in mild cognitive impairment. Journal of the American Geriatrics Society, 53, 2135–2139.PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  1. 1.Laboratory of NeurosciencesNational Institute on Aging Intramural Research ProgramBaltimoreUSA

Personalised recommendations