Advertisement

Targeted Anti-IL-5 Therapies and Future Therapeutics for Hypereosinophilic Syndrome and Rare Eosinophilic Conditions

  • Aasha HarishEmail author
  • Stanley A. Schwartz
Article

Abstract

Eosinophilic inflammation is a component of many atopic diseases such as asthma, and biologics targeting eosinophils have been shown to be effective in subsets of these patients. However, there also are conditions in which eosinophils are the key inflammatory cells responsible for driving tissue damage. In these eosinophilic diseases such as hyper-eosinophilic syndrome, eosinophilic esophagitis, and eosinophilic granulomatosis with polyangiitis (EGPA), the development of biologics inhibiting eosinophilic inflammation have offered targeted therapeutic strategies for patients that have not responded well to typical first line drugs, which often have significant adverse side effects with poor disease modification or recurrent relapse with significant morbidity. IL-5 has long been recognized as the key inflammatory cytokine involved in the priming and survival of eosinophils and their proliferation and maturation in eosinophilic disease. There are a number of trials and case series demonstrating the immunomodulatory benefits of anti-IL-5 therapies in these diseases with good clinical responses. Yet, due to the heterogeneity and rarity of these conditions, anti-IL-5 therapies have not resulted in disease remission for all patients. Clearly, further research into the use of anti-IL-5 therapies in various eosinophilic diseases is needed and ongoing investigation into other immune mechanisms underlying chronic eosinophilic diseases may provide alternative therapies for these challenging conditions.

Keywords

Benralizumab Mepolizumab Reslizumab Siglec-8 Hypereosinophilic syndrome Eosinophilic esophagitis Eosinophilic granulomatosis with polyangiitis Dermatitis Eosinophilia IL-5 IL-4 IL-13 

Notes

Compliance with Ethical Standards

Conflict of Interest

Author Aasha Harish, MD, MPH declares that she does not have any conflict of interest. Author Stanley Schwartz, MD, PhD received a speaker honorarium from Takeda Pharmaceutical Co and CSL Behring and owns stock in Pfizer Pharmaceutical Co and Merck Pharmaceutical Co.

Research with animals and human subjects: This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent: This authors of this article were not involved in the enrollment of subjects used of studies reported. Informed consent was obtained from all individual participants included in the study.

References

  1. 1.
    Woodruff PG, Modrek B et al (2009) T-helper type 2 driven inflammation defines major subphenotypes of asthma. Am J Crit Care Med 180:388–395CrossRefGoogle Scholar
  2. 2.
    De Ferrari I, Chiappori A et al (2016) Molecular phenotyping and biomarker development: are we on our way towards targeted therapy for severe asthma? Expert Rev Respir Med 10:9–38CrossRefGoogle Scholar
  3. 3.
    Foster PS, Hogan SP, Ramsay AJ, Matthaei KI, Young IG (1996) Interleukin 5 deficiency abolishes eosinophilia, airways hyperactivity, and lung damage in a mouse asthma model. J Exp Med 183(1):195–201PubMedCrossRefGoogle Scholar
  4. 4.
    Shi HZ, Xiao CQ, Zhong D, Qin SM, Liu Y, Liang GR, Xu H, Chen YQ, Long XM, Xie ZF (1998) Effect of inhaled interleukin-5 on airway hyperreactivity and eosinophilia in asthmatics. Am J Respir Crit Care Med 157(1):204–209PubMedCrossRefGoogle Scholar
  5. 5.
    Abonia JP, Putnam PE (2001) Mepolizumab in eosinophilic disorders. Expert Rev Clin Immunol 74(4):411–417CrossRefGoogle Scholar
  6. 6.
    Bagnasco D, Ferrando M, Varrichi G et al (2017) Anti-interleukin 5 (IL-5) and IL-5Ra biological drugs: efficacy, safety, future perspectives in severe eosinophilic asthma. Frontiers in Medicine 4:1–10CrossRefGoogle Scholar
  7. 7.
    Laviolette M, Gossage DL, Gauvreau G, Leigh R, Olivenstein R, Katial R et al (2013) Effects of benralizumab on airway eosinophils in asthmatic patients with sputum eosinophilia. J Allergy Clin Immunol 132(5):1086–96.e5PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Kolbeck R, Kozhich A, Koike M, Peng L et al (2010) MEDI-563, a humanized anti-IL-5 receptor alpha mAb with enhanced antibody-dependent cell-mediated cytotoxicity function. J Allergy Clin Immunol 125:1344–1353PubMedCrossRefGoogle Scholar
  9. 9.
    Ghazi A, Trikha A, Calhoun WJ (2011) Benralizumab—a humanized mAb to IL-5Rα with enhanced antibody-dependent cell-mediated cytotoxicity—a novel approach for the treatment of asthma. Expert Opin Biol Ther 12(1):113–118PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Legrand F, Klion A (2015) Biologic therapies targeting eosinophils: current status and future prospects. J Allergy Clin Immunol: In Practice 3(2):167–174CrossRefGoogle Scholar
  11. 11.
    Velent P, Klion AD et al (2012) Contemporary consensus proposal on criteria and classification of eosinophilic disorders and related syndromes. J Allergy Clin Immunol 130(3):607CrossRefGoogle Scholar
  12. 12.
    Mouthon L, Donogue B et al (2014) Diagnosis and classification of eosinophilic granulomatosis with polyangiitis (formerly named as Churg Strauss syndrome). J Autoimmun 48-49:99–103PubMedCrossRefGoogle Scholar
  13. 13.
    Masi AT, Hunder GG et al (1990) The American College of Rheumatology 1990 criteria for the classification of Churg-Strauss syndrome (allergic granulomatosis and angiitis). Arthritis Rheum 33(8):1094PubMedCrossRefGoogle Scholar
  14. 14.
    Rothenburg ME et al (2008) Treatment of patients with hypereosinophilic syndrome with mepolizumab. N Engl J Med 358(12):1215–1228CrossRefGoogle Scholar
  15. 15.
    Roufosse F, de Lavareille A, Schandené L, Cogan E, Georgelas A, Wagner L, Xi L, Raffeld M, Goldman M, Gleich GJ, Klion A (2010) Mepolizumab as a corticosteroid sparing agent in lymphocytic variant hypereosinophilic syndrome. J Allergy Clin Immunol 126(4):828–835PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Roufosse FE et al (2013) Long-term safety mepolizumab for treatment of hypereosinophilic syndrome. J Allergy Clin Immunol 131(2):461–467PubMedCrossRefGoogle Scholar
  17. 17.
    Stein ML, Villanueva JM, Buckmeier BK et al (2008) Anti-IL-5 (mepolizumab) therapy reduces eosinophil activation ex vivo and increases IL-5 and IL-5 receptor levels. J Allergy Clin Immunol 121(6):1473–1483PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Mehr S, Rego S, Kakakios A, Kilham H, Kemp A (2009) Treatment of a case of pediatric hypereosinophilic syndrome with anti-IL-5. J Pediatr 155(2):289–291PubMedCrossRefGoogle Scholar
  19. 19.
    ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). July 19, 2016. Identifier NCT02836496. Study 200622: a randomized, double-blind, placebo-controlled study to investigate the efficacy and safety of mepolizumab in the treatment of adolescent and adult subjects with severe hypereosinophilic syndrome
  20. 20.
    Klion AD, Law MA, Noel P, Kim YJ, Haverty TP, Nutman TB (2004) Safety and efficacy of monoclonal IL-5 ab SCH55700 in treatment of patients with hypereosinophilic syndrome. Blood 103(8):2939–2941PubMedCrossRefGoogle Scholar
  21. 21.
    Kuang et al (2019) Benralizumab for PDGFRA-negative hypereosinophilic syndrome. N Engl J Med 380:1336–1346PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Stein M, Collins MH, Villanueva JM, Kushner JP, Putnam PE, Buckmeier BK, Filipovich AH, Assa'ad AH, Rothenberg ME (2006) Anti IL-5 (mepolizumab) therapy for eosinophilic esophagitis. J Allergy Clin Immunol 118(6):1312–1319PubMedCrossRefGoogle Scholar
  23. 23.
    Straumann A, Conus S, Grzonka P, Kita H, Kephart G, Bussmann C, Beglinger C, Smith DA, Patel J, Byrne M, Simon HU (2010) Anti-interleukin 5 antibody treatment (mepolizumab) in active eosinophilic esophagitis: a randomized placebo-controlled double blind trial. Gut 59(1):21–30PubMedCrossRefGoogle Scholar
  24. 24.
    Conus S, Straumann A, Bettler E, Simon HU (2010) Mepolizumab does not alter levels of eosinophils, T cells, and mast cells in the duodenal mucosa in eosinophilic esophagitis. J Allergy Clin Immunol 126(1):175–177PubMedCrossRefGoogle Scholar
  25. 25.
    Assa’ad AH et al (2011) An antibody against IL-5 reduces numbers of esophageal intraepithelial eosinophils in children with eosinophilic esophagitis. Gastroenterology 141(5):1593–15604PubMedCrossRefGoogle Scholar
  26. 26.
    Otani M et al (2013) Anti-IL-5 therapy rescues mast cell and IL-9 cell numbers in pediatric patients with eosinophilic esophagitis. J Allergy Clin Immunol 131(6):1576–1582PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Spergel JM et al (2012) Reslizumab in children and adolescents with eosinophilic esophagitis: results of a double blind randomized placebo-controlled trial. J Allergy Clin Immunol 129(2):4CrossRefGoogle Scholar
  28. 28.
    Kahn JE, Grandpeix-Guyodo C, Marroun I, Catherinot E, Mellot F, Roufosse F, Blétry O (2010) Sustained response to mepolizumab in refractory Churg Strauss syndrome. J Allergy Clin Immunol 125(1):267–270PubMedCrossRefGoogle Scholar
  29. 29.
    Kim S, Marigowda G, Oren E, Israel E, Wechsler ME (2010) Mepolizumab as steroid sparing treatment option in patient with Churg Strauss syndrome. J Allergy Clin Immunol 125(6):1336–1343PubMedCrossRefGoogle Scholar
  30. 30.
    Moosig F, Gross WL, Herrmann K, Bremer JP, Hellmich B (2011) Targeting interleukin 5 in refractory and relapsing Churg Strauss syndrome. Ann Intern Med 155(5):341–343PubMedCrossRefGoogle Scholar
  31. 31.
    Hermann K et al (2012) Extended follow-up after stopping mepolizumab in relapsing/refractory Churg Strauss syndrome. Clin Exp Rheumatol 20(1 supp 70):s62–s65Google Scholar
  32. 32.
    Weschler ME et al (2017) Mepolizumab or placebo for eosinophilic granulomatosis with polyangiitis. N Engl J Med 376(20):1921–1932CrossRefGoogle Scholar
  33. 33.
    ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). 2016 October 28. Identifier NCT02947945. Reslizumab in the treatment of Eosinophilic Granulomatosis with Polyangiitis (EGPA) Study
  34. 34.
    ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). 2017 January 5. Identifier NCT03020436. Benralizumab in the treatment of Eosinophilic Granulomatosis with Polyangiitis (EGPA) Study
  35. 35.
    Dellon ES, Gonsalves N, Hirano I, Furuta GT, Liacouras CA, Katzka DA, American College of Gastroenterology (2013) ACG clinical guideline: evidenced based approach to the diagnosis and management of esophageal eosinophilia and eosinophilic esophagitis (EoE). Am J Gastroenterol 108(5):679–92; quiz 693PubMedCrossRefGoogle Scholar
  36. 36.
    Garrett JK, Jameson SC, Thomson B, Collins MH, Wagoner LE, Freese DK, Beck LA, Boyce JA, Filipovich AH, Villanueva JM, Sutton SA, Assa'ad AH, Rothenberg ME (2004) Anti-interleukin 5 (mepolizumab) therapy for hypereosinophilic syndromes. J Allergy Clin Immunol 113(1):115–119PubMedCrossRefGoogle Scholar
  37. 37.
    Plotz SG et al (2003) Use of anti-IL-5 ab in Hypereosinophilic syndrome with eosinophilic dermatitis. N Engl J Med 349(24):2334–2339PubMedCrossRefGoogle Scholar
  38. 38.
    Volmer T et al (2018) Consequences of long term oral corticosteroid therapy and its side-effect in severe asthma in adults: a focused review of the impact data in the literature. Eur Respir J 52(4):1800703PubMedCrossRefGoogle Scholar
  39. 39.
    Fraiser LH, Kanekal S, Kehrer JP (1991) Cyclophosphamide toxicity. Drugs 42(5):781–795PubMedCrossRefGoogle Scholar
  40. 40.
    Puéchal X et al (2017) Adding azathioprine to remission-induction glucocorticoids for eosinophilic granulomatosis with polyangiitis (Churg-Strauss), microscopic polyangiitis, or polyarteritis nodosa without poor prognosis factors: a randomized. Control Trial Arthritis Rheumatolol 69(11):2175–2186CrossRefGoogle Scholar
  41. 41.
    Klion AD (2007) Approach to the therapy of Hypereosinophilic syndrome. Immunol Allergy Clin N Am 27(3):551–560CrossRefGoogle Scholar
  42. 42.
    Dellon ES et al (2018) Efficacy and Safety of Rpc4046, an anti-interleukin 13 monoclonal antibody, in patients with active eosinophilic esophagitis: analysis of the steroid refractory subgroup from the heroes study. Gastroenterology 154(6):S244CrossRefGoogle Scholar
  43. 43.
    Rothenberg ME, Wen T, Greenberg A, Alpan O, Enav B, Hirano I, Nadeau K, Kaiser S, Peters T, Perez A, Jones I, Arm JP, Strieter RM, Sabo R, Gunawardena KA (2015) Intravenous anti-IL-13 mAb QAX576 for the treatment of eosinophilic esophagitis. J Allergy Clin Immunol 135(2):500–507PubMedCrossRefGoogle Scholar
  44. 44.
    Gleich GJ (2018) Dexpramipexole: a new antieosinophil drug? Blood 132(5):461–462PubMedCrossRefGoogle Scholar
  45. 45.
    Panch SR, Bozik ME, Brown T, Makiya M, Prussin C, Archibald DG, Hebrank GT, Sullivan M, Sun X, Wetzler L, Ware J, Fay MP, Dunbar CE, Dworetzky SI, Khoury P, Maric I, Klion AD (2018) Dexpramipexole as an oral steroid-sparing agent in hypereosinophilic syndromes. Blood 132(5):501–509PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Legrand F, Klion A (2015) Biologic therapies targeting Eosinophils: current status and future prospects. J Allergy Clin Immunol: In Practice 3(2):167–174CrossRefGoogle Scholar
  47. 47.
    ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). 2018 April 12. Identifier NCT03496571. A phase 2, multicenter, randomized, double-blind, placebo-controlled study to evaluate the efficacy, safety, tolerability, and pharmacodynamic effect of AK002 in patients with eosinophilic gastritis and/or eosinophilic gastroenteritis

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Division of Allergy and Immunology, Department of Medicine, Jacobs School of Medicine and Biomedical SciencesUniversity at BuffaloWilliamsvilleUSA

Personalised recommendations