Advertisement

Resolvins: Emerging Players in Autoimmune and Inflammatory Diseases

  • Fereshte Abdolmaleki
  • Petri T. Kovanen
  • Rajab Mardani
  • Seyed Mohammad Gheibi-hayat
  • Simona Bo
  • Amirhossein SahebkarEmail author
Article

Abstract

Resolvins, belonging to the group of specialized proresolving mediators (SPMs), are metabolic products of omega-3 polyunsaturated fatty acids (ω-3 PUFAs) and are synthesized during the initial phases of acute inflammatory responses to promote the resolution of inflammation. Resolvins are produced for termination of neutrophil infiltration, stimulation of the clearance of apoptotic cells by macrophages, and promotion of tissue remodeling and homeostasis. Metabolic dysregulation due to either uncontrolled activity of pro-inflammatory responses or to inefficient resolution of inflammation results in chronic inflammation and may also lead to atherosclerosis or other chronic autoimmune diseases such as rheumatoid arthritis, psoriasis, systemic lupus erythematosus, vasculitis, inflammatory bowel diseases, and type 1 diabetes mellitus. The pathogenesis of such diseases involves a complex interplay between the immune system and, environmental factors (non-infectious or infectious), and critically depends on individual susceptibility to such factors. In the present review, resolvins and their roles in the resolution of inflammation, as well as the role of these mediators as potential therapeutic agents to counteract specific chronic autoimmune and inflammatory diseases are discussed.

Keywords

Autoimmune diseases Resolution of inflammation Resolvins Specialized pro-resolving mediators 

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

No informed consent was required to prepare the manuscript.

References

  1. 1.
    Kumar V, Abbas AK, Fausto N, Aster JC (2014) Robbins and Cotran pathologic basis of disease, professional edition e-book. elsevier health sciencesGoogle Scholar
  2. 2.
    Libby P, Ridker PM, Maseri A (2002) Inflammation and atherosclerosis. Circulation 105(9):1135–1143CrossRefGoogle Scholar
  3. 3.
    Hansson GK, Libby P (2006) The immune response in atherosclerosis: a double-edged sword. Nat Rev Immunol 6(7):508–519CrossRefGoogle Scholar
  4. 4.
    Serhan CN, Petasis NA (2011) Resolvins and protectins in inflammation resolution. Chem Rev 111(10):5922–5943.  https://doi.org/10.1021/cr100396c CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Majno G, Joris I (2004) Cells, tissues, and disease: principles of general pathology. Oxford University PressGoogle Scholar
  6. 6.
    Serhan CN, Brain SD, Buckley CD, Gilroy DW, Haslett C, O’Neill LA, Perretti M, Rossi AG, Wallace JL (2007) Resolution of inflammation: state of the art, definitions and terms. FASEB J 21(2):325–332CrossRefGoogle Scholar
  7. 7.
    Serhan CN (2004) A search for endogenous mechanisms of anti-inflammation uncovers novel chemical mediators: missing links to resolution. Histochem Cell Biol 122(4):305–321CrossRefGoogle Scholar
  8. 8.
    Serhan CN, Ward PA, Gilroy DW (2010) Fundamentals of inflammation. Cambridge University PressGoogle Scholar
  9. 9.
    Schwab JM, Serhan CN (2006) Lipoxins and new lipid mediators in the resolution of inflammation. Curr Opin Pharmacol 6(4):414–420CrossRefGoogle Scholar
  10. 10.
    Crean D, Godson C (2015) Specialised lipid mediators and their targets. In: Seminars in immunology, vol 3. Elsevier, pp 169–176Google Scholar
  11. 11.
    Samuelsson B, Dahlen S-E, Lindgren JA, Rouzer CA, Serhan CN (1987) Leukotrienes and lipoxins: structures, biosynthesis, and biological effects. Science 237(4819):1171–1176CrossRefGoogle Scholar
  12. 12.
    Manfredi AA, Ramirez GA, Rovere-Querini P, Maugeri N (2018) The neutrophil’s choice: phagocytose vs make neutrophil extracellular traps. Front Immunol 9:288CrossRefGoogle Scholar
  13. 13.
    Branzk N, Lubojemska A, Hardison SE, Wang Q, Gutierrez MG, Brown GD, Papayannopoulos V (2014) Neutrophils sense microbe size and selectively release neutrophil extracellular traps in response to large pathogens. Nat Immunol 15(11):1017–1025CrossRefGoogle Scholar
  14. 14.
    Warnatsch A, Tsourouktsoglou T-D, Branzk N, Wang Q, Reincke S, Herbst S, Gutierrez M, Papayannopoulos V (2017) Reactive oxygen species localization programs inflammation to clear microbes of different size. Immunity 46(3):421–432CrossRefGoogle Scholar
  15. 15.
    McDonald B, Urrutia R, Yipp BG, Jenne CN, Kubes P (2012) Intravascular neutrophil extracellular traps capture bacteria from the bloodstream during sepsis. Cell Host Microbe 12(3):324–333CrossRefGoogle Scholar
  16. 16.
    Kim S-J, Jenne CN (2016) Role of platelets in neutrophil extracellular trap (NET) production and tissue injury. In: Seminars in immunology, vol 6. Elsevier, pp 546–554Google Scholar
  17. 17.
    Chiurchiù V, Leuti A, Dalli J, Jacobsson A, Battistini L, Maccarrone M, Serhan CN (2016) Proresolving lipid mediators resolvin D1, resolvin D2, and maresin 1 are critical in modulating T cell responses. Sci Transl Med 8(353):353ra111CrossRefGoogle Scholar
  18. 18.
    Levy BD, Clish CB, Schmidt B, Gronert K, Serhan CN (2001) Lipid mediator class switching during acute inflammation: signals in resolution. Nat Immunol 2(7):612–619CrossRefGoogle Scholar
  19. 19.
    Arita M, Bianchini F, Aliberti J, Sher A, Chiang N, Hong S, Yang R, Petasis NA, Serhan CN (2005) Stereochemical assignment, antiinflammatory properties, and receptor for the omega-3 lipid mediator resolvin E1. J Exp Med 201(5):713–722.  https://doi.org/10.1084/jem.20042031 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Chiang N, Fredman G, Bäckhed F, Oh SF, Vickery T, Schmidt BA, Serhan CN (2012) Infection regulates pro-resolving mediators that lower antibiotic requirements. Nature 484(7395):524–528CrossRefGoogle Scholar
  21. 21.
    Han CZ, Ravichandran KS (2011) Metabolic connections during apoptotic cell engulfment. Cell 147(7):1442–1445CrossRefGoogle Scholar
  22. 22.
    Köröskényi K, Duró E, Pallai A, Sarang Z, Kloor D, Ucker DS, Beceiro S, Castrillo A, Chawla A, Ledent CA (2011) Involvement of adenosine A2A receptors in engulfment-dependent apoptotic cell suppression of inflammation. J Immunol 1002284Google Scholar
  23. 23.
    Serhan CN, Chiang N (2013) Resolution phase lipid mediators of inflammation: agonists of resolution. Curr Opin Pharmacol 13(4):632–640CrossRefGoogle Scholar
  24. 24.
    Dalli J, Winkler JW, Colas RA, Arnardottir H, Cheng C-YC, Chiang N, Petasis NA, Serhan CN (2013) Resolvin D3 and aspirin-triggered resolvin D3 are potent immunoresolvents. Chem Biol 20(2):188–201CrossRefGoogle Scholar
  25. 25.
    Schwab JM, Chiang N, Arita M, Serhan CN (2007) Resolvin E1 and protectin D1 activate inflammation-resolution programmes. Nature 447(7146):869–874CrossRefGoogle Scholar
  26. 26.
    Spite M, Serhan CN (2010) Novel lipid mediators promote resolution of acute inflammation: impact of aspirin and statins. Circ Res 107(10):1170–1184CrossRefGoogle Scholar
  27. 27.
    Nathan C (2002) Points of control in inflammation. Nature 420(6917):846–852CrossRefGoogle Scholar
  28. 28.
    Back M, Yurdagul A Jr, Tabas I, Oorni K, Kovanen PT (2019) Inflammation and its resolution in atherosclerosis: mediators and therapeutic opportunities. Nat Rev Cardiol 16:389–406.  https://doi.org/10.1038/s41569-019-0169-2 CrossRefPubMedGoogle Scholar
  29. 29.
    Serhan CN (2007) Resolution phase of inflammation: novel endogenous anti-inflammatory and proresolving lipid mediators and pathways. Annu Rev Immunol 25:101–137.  https://doi.org/10.1146/annurev.immunol.25.022106.141647 CrossRefPubMedGoogle Scholar
  30. 30.
    Bannenberg G, Serhan CN (2010) Specialized pro-resolving lipid mediators in the inflammatory response: an update. Biochim Biophys Acta 1801(12):1260–1273.  https://doi.org/10.1016/j.bbalip.2010.08.002 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Serhan CN (2010) Novel lipid mediators and resolution mechanisms in acute inflammation: to resolve or not? Am J Pathol 177(4):1576–1591.  https://doi.org/10.2353/ajpath.2010.100322 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Sun YP, Oh SF, Uddin J, Yang R, Gotlinger K, Campbell E, Colgan SP, Petasis NA, Serhan CN (2007) Resolvin D1 and its aspirin-triggered 17R epimer. Stereochemical assignments, anti-inflammatory properties, and enzymatic inactivation. J Biol Chem 282(13):9323–9334.  https://doi.org/10.1074/jbc.M609212200 CrossRefPubMedGoogle Scholar
  33. 33.
    Spite M, Norling LV, Summers L, Yang R, Cooper D, Petasis NA, Flower RJ, Perretti M, Serhan CN (2009) Resolvin D2 is a potent regulator of leukocytes and controls microbial sepsis. Nature 461(7268):1287–1291.  https://doi.org/10.1038/nature08541 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Arita M, Yoshida M, Hong S, Tjonahen E, Glickman JN, Petasis NA, Blumberg RS, Serhan CN (2005) Resolvin E1, an endogenous lipid mediator derived from omega-3 eicosapentaenoic acid, protects against 2,4,6-trinitrobenzene sulfonic acid-induced colitis. Proc Natl Acad Sci U S A 102(21):7671–7676.  https://doi.org/10.1073/pnas.0409271102 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Serhan CN, Clish CB, Brannon J, Colgan SP, Chiang N, Gronert K (2000) Novel functional sets of lipid-derived mediators with antiinflammatory actions generated from omega-3 fatty acids via cyclooxygenase 2-nonsteroidal antiinflammatory drugs and transcellular processing. J Exp Med 192(8):1197–1204CrossRefGoogle Scholar
  36. 36.
    Fetterman JW Jr, Zdanowicz MM (2009) Therapeutic potential of n-3 polyunsaturated fatty acids in disease. Am J Health Syst Pharm 66(13):1169–1179.  https://doi.org/10.2146/ajhp080411 CrossRefPubMedGoogle Scholar
  37. 37.
    Simopoulos AP (2002) Omega-3 fatty acids in inflammation and autoimmune diseases. J Am Coll Nutr 21(6):495–505CrossRefGoogle Scholar
  38. 38.
    Harper CR, Jacobson TA (2001) The fats of life: the role of omega-3 fatty acids in the prevention of coronary heart disease. Arch Intern Med 161(18):2185–2192CrossRefGoogle Scholar
  39. 39.
    Herrera BS, Hasturk H, Kantarci A, Freire MO, Nguyen O, Kansal S, Van Dyke TE (2015) Impact of resolvin E1 on murine neutrophil phagocytosis in type 2 diabetes. Infect Immun 83(2):792–801CrossRefGoogle Scholar
  40. 40.
    Herová M, Schmid M, Gemperle C, Hersberger M (2015) ChemR23, the receptor for chemerin and resolvin E1, is expressed and functional on M1 but not on M2 macrophages. J Immunol 1402166Google Scholar
  41. 41.
    Seki H, Fukunaga K, Arita M, Arai H, Nakanishi H, Taguchi R, Miyasho T, Takamiya R, Asano K, Ishizaka A (2010) The anti-inflammatory and proresolving mediator resolvin E1 protects mice from bacterial pneumonia and acute lung injury. J Immunol 184(2):836–843CrossRefGoogle Scholar
  42. 42.
    El Kebir D, Gjorstrup P, Filep JG (2012) Resolvin E1 promotes phagocytosis-induced neutrophil apoptosis and accelerates resolution of pulmonary inflammation. Proc Natl Acad Sci 201206641Google Scholar
  43. 43.
    Hong S, Porter TF, Lu Y, Oh SF, Pillai PS, Serhan CN (2008) Resolvin E1 metabolome in local inactivation during inflammation-resolution. J Immunol 180(5):3512–3519CrossRefGoogle Scholar
  44. 44.
    Titos E, Rius B, González-Périz A, López-Vicario C, Morán-Salvador E, Martínez-Clemente M, Arroyo V, Clària J (2011) Resolvin D1 and its precursor docosahexaenoic acid promote resolution of adipose tissue inflammation by eliciting macrophage polarization toward an M2-like phenotype. J Immunol 1100225Google Scholar
  45. 45.
    Serhan CN (2014) Pro-resolving lipid mediators are leads for resolution physiology. Nature 510(7503):92–101CrossRefGoogle Scholar
  46. 46.
    Kohli P, Levy BD (2009) Resolvins and protectins: mediating solutions to inflammation. Br J Pharmacol 158(4):960–971CrossRefGoogle Scholar
  47. 47.
    Mogensen TH (2009) Pathogen recognition and inflammatory signaling in innate immune defenses. Clin Microbiol Rev 22(2):240–273CrossRefGoogle Scholar
  48. 48.
    Akagi D, Chen M, Toy R, Chatterjee A, Conte MS (2015) Systemic delivery of proresolving lipid mediators resolvin D2 and maresin 1 attenuates intimal hyperplasia in mice. FASEB J 29(6):2504–2513CrossRefGoogle Scholar
  49. 49.
    Krishnamoorthy S, Recchiuti A, Chiang N, Yacoubian S, Lee C-H, Yang R, Petasis NA, Serhan CN (2010) Resolvin D1 binds human phagocytes with evidence for proresolving receptors. Proc Natl Acad Sci 107(4):1660–1665CrossRefGoogle Scholar
  50. 50.
    Krishnamoorthy S, Recchiuti A, Chiang N, Fredman G, Serhan CN (2012) Resolvin D1 receptor stereoselectivity and regulation of inflammation and proresolving microRNAs. Am J Pathol 180(5):2018–2027CrossRefGoogle Scholar
  51. 51.
    Park C-K, Xu Z-Z, Liu T, Lü N, Serhan CN, Ji R-R (2011) Resolvin D2 is a potent endogenous inhibitor for transient receptor potential subtype V1/A1, inflammatory pain, and spinal cord synaptic plasticity in mice: distinct roles of resolvin D1, D2, and E1. J Neurosci 31(50):18433–18438CrossRefGoogle Scholar
  52. 52.
    Wang B, Gong X, J-y W, Zhang L, Zhang Z, Li H-z, Min S (2011) Resolvin D1 protects mice from LPS-induced acute lung injury. Pulm Pharmacol Ther 24(4):434–441CrossRefGoogle Scholar
  53. 53.
    Liao Z, Dong J, Wu W, Yang T, Wang T, Guo L, Chen L, Xu D, Wen F (2012) Resolvin D1 attenuates inflammation in lipopolysaccharide-induced acute lung injury through a process involving the PPARγ/NF-κB pathway. Respir Res 13(1):110CrossRefGoogle Scholar
  54. 54.
    Wang L, Wang FS, Gershwin ME (2015) Human autoimmune diseases: a comprehensive update. J Intern Med 278(4):369–395CrossRefGoogle Scholar
  55. 55.
    Baccala R, Hoebe K, Kono DH, Beutler B, Theofilopoulos AN (2007) TLR-dependent and TLR-independent pathways of type I interferon induction in systemic autoimmunity. Nat Med 13(5):543–551CrossRefGoogle Scholar
  56. 56.
    Mitchell S, Thomas G, Harvey K, Cottell D, Reville K, Berlasconi G, Petasis NA, Erwig L, Rees AJ, Savill J (2002) Lipoxins, aspirin-triggered epi-lipoxins, lipoxin stable analogues, and the resolution of inflammation: stimulation of macrophage phagocytosis of apoptotic neutrophils in vivo. J Am Soc Nephrol 13(10):2497–2507CrossRefGoogle Scholar
  57. 57.
    Milligan G, Stoddart LA, Brown AJ (2006) G protein-coupled receptors for free fatty acids. Cell Signal 18(9):1360–1365.  https://doi.org/10.1016/j.cellsig.2006.03.011 CrossRefPubMedGoogle Scholar
  58. 58.
    Eizirik DL, Colli ML, Ortis F (2009) The role of inflammation in insulitis and β-cell loss in type 1 diabetes. Nat Rev Endocrinol 5(4):219–226CrossRefGoogle Scholar
  59. 59.
    Serhan CN, Hong S, Gronert K, Colgan SP, Devchand PR, Mirick G, Moussignac R-L (2002) Resolvins: a family of bioactive products of omega-3 fatty acid transformation circuits initiated by aspirin treatment that counter proinflammation signals. J Exp Med 196(8):1025–1037CrossRefGoogle Scholar
  60. 60.
    Chiang N, Arita M, Serhan CN (2005) Anti-inflammatory circuitry: lipoxin, aspirin-triggered lipoxins and their receptor ALX. Prostaglandins Leukot Essent Fat Acids 73(3–4):163–177CrossRefGoogle Scholar
  61. 61.
    Oh DY, Talukdar S, Bae EJ, Imamura T, Morinaga H, Fan W, Li P, Lu WJ, Watkins SM, Olefsky JM (2010) GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects. Cell 142(5):687–698CrossRefGoogle Scholar
  62. 62.
    Das UN (2011) Lipoxins as biomarkers of lupus and other inflammatory conditions. Lipids Health Dis 10:76.  https://doi.org/10.1186/1476-511x-10-76 CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Lattin JE, Schroder K, Su AI, Walker JR, Zhang J, Wiltshire T, Saijo K, Glass CK, Hume DA, Kellie S, Sweet MJ (2008) Expression analysis of G protein-coupled receptors in mouse macrophages. Immunome Res 4:5.  https://doi.org/10.1186/1745-7580-4-5 CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Weylandt KH, Kang JX, Wiedenmann B, Baumgart DC (2007) Lipoxins and resolvins in inflammatory bowel disease. Inflamm Bowel Dis 13(6):797–799.  https://doi.org/10.1002/ibd.20109 CrossRefPubMedGoogle Scholar
  65. 65.
    Kelsall BL, Leon F (2005) Involvement of intestinal dendritic cells in oral tolerance, immunity to pathogens, and inflammatory bowel disease. Immunol Rev 206:132–148.  https://doi.org/10.1111/j.0105-2896.2005.00292.x CrossRefPubMedGoogle Scholar
  66. 66.
    Baumgart DC, Metzke D, Schmitz J, Scheffold A, Sturm A, Wiedenmann B, Dignass AU (2005) Patients with active inflammatory bowel disease lack immature peripheral blood plasmacytoid and myeloid dendritic cells. Gut 54(2):228–236.  https://doi.org/10.1136/gut.2004.040360 CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Allen B (1991) Fish oil in combination with other therapies in the treatment of psoriasis. In: Health effects of omega 3 polyunsaturated fatty acids in seafoods, vol 66. Karger Publishers, pp 436–445Google Scholar
  68. 68.
    Cleland L, James M (1997) Rheumatoid arthritis and the balance of dietary N-6 and N-3 essential fatty acids. Br J Rheumatol 36(5):513–514CrossRefGoogle Scholar
  69. 69.
    Kremer JM (2000) N-3 fatty acid supplements in rheumatoid arthritis. Am J Clin Nutr 71(1 Suppl):349s–351s.  https://doi.org/10.1093/ajcn/71.1.349s CrossRefPubMedGoogle Scholar
  70. 70.
    Bhatt DL, Steg PG, Miller M, Brinton EA, Jacobson TA, Ketchum SB, Doyle RT Jr, Juliano RA, Jiao L, Granowitz C (2019) Cardiovascular risk reduction with icosapent ethyl for hypertriglyceridemia. N Engl J Med 380(1):11–22CrossRefGoogle Scholar
  71. 71.
    Hughes RA, Cornblath DR (2005) Guillain-Barre syndrome. Lancet (London, England) 366(9497):1653–1666.  https://doi.org/10.1016/s0140-6736(05)67665-9 CrossRefGoogle Scholar
  72. 72.
    Soliven B (2012) Autoimmune neuropathies: insights from animal models. J Peripher Nerv Syst 17:28–33CrossRefGoogle Scholar
  73. 73.
    Yun JH, Henson PM, Tuder RM (2008) Phagocytic clearance of apoptotic cells: role in lung disease. Exp Rev Respir Med 2(6):753–765.  https://doi.org/10.1586/17476348.2.6.753 CrossRefGoogle Scholar
  74. 74.
    Annunziato F, Cosmi L, Liotta F, Maggi E, Romagnani S (2008) The phenotype of human Th17 cells and their precursors, the cytokines that mediate their differentiation and the role of Th17 cells in inflammation. Int Immunol 20(11):1361–1368.  https://doi.org/10.1093/intimm/dxn106 CrossRefPubMedGoogle Scholar
  75. 75.
    Fadok VA, Bratton DL, Konowal A, Freed PW, Westcott JY, Henson PM (1998) Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF. J Clin Invest 101(4):890–898CrossRefGoogle Scholar
  76. 76.
    Kimura A, Naka T, Kishimoto T (2007) IL-6-dependent and -independent pathways in the development of interleukin 17-producing T helper cells. Proc Natl Acad Sci 104(29):12099–12104.  https://doi.org/10.1073/pnas.0705268104 CrossRefPubMedGoogle Scholar
  77. 77.
    Luchting B, Rachinger-Adam B, Heyn J, Hinske LC, Kreth S, Azad SC (2015) Anti-inflammatory T-cell shift in neuropathic pain. J Neuroinflammation 12:12.  https://doi.org/10.1186/s12974-014-0225-0 CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Zhang Z, Zhang ZY, Schluesener HJ (2009) Compound A, a plant origin ligand of glucocorticoid receptors, increases regulatory T cells and M2 macrophages to attenuate experimental autoimmune neuritis with reduced side effects. J Immunol 183(5):3081–3091.  https://doi.org/10.4049/jimmunol.0901088 CrossRefPubMedGoogle Scholar
  79. 79.
    Luo B, Han F, Xu K, Wang J, Liu Z, Shen Z, Li J, Liu Y, Jiang M, Zhang ZY, Zhang Z (2016) Resolvin D1 programs inflammation resolution by increasing TGF-beta expression induced by dying cell clearance in experimental autoimmune neuritis. J Neurosci 36(37):9590–9603.  https://doi.org/10.1523/jneurosci.0020-16.2016 CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Dhopeshwarkar A, Mackie K (2014) CB2 cannabinoid receptors as a therapeutic target—what does the future hold? Mol Pharmacol 86(4):430–437CrossRefGoogle Scholar
  81. 81.
    Rom S, Persidsky Y (2013) Cannabinoid receptor 2: potential role in immunomodulation and neuroinflammation. J NeuroImmune Pharmacol 8(3):608–620CrossRefGoogle Scholar
  82. 82.
    Turcotte C, Blanchet M-R, Laviolette M, Flamand N (2016) The CB 2 receptor and its role as a regulator of inflammation. Cell Mol Life Sci 73(23):4449–4470CrossRefGoogle Scholar
  83. 83.
    Tepper MA, Zurier RB, Burstein SH (2014) Ultrapure ajulemic acid has improved CB2 selectivity with reduced CB1 activity. Bioorg Med Chem 22(13):3245–3251CrossRefGoogle Scholar
  84. 84.
    Motwani MP, Bennett F, Norris PC, Maini AA, George MJ, Newson J, Henderson A, Hobbs AJ, Tepper M, White B (2018) Potent anti-inflammatory and pro-resolving effects of anabasum in a human model of self-resolving acute inflammation. Clin Pharmacol Ther 104(4):675–686CrossRefGoogle Scholar
  85. 85.
    Zurier RB, Rossetti RG, Lane JH, Goldberg JM, Hunter SA, Burstein SH (1998) Dimethylheptyl-THC-11 OIC acid: a nonpsychoactive antiinflammatory agent with a cannabinoid template structure. Arthritis Rheum 41(1):163–170CrossRefGoogle Scholar
  86. 86.
    Zurier RB, Sun Y-P, George KL, Stebulis JA, Rossetti RG, Skulas A, Judge E, Serhan CN (2009) Ajulemic acid, a synthetic cannabinoid, increases formation of the endogenous proresolving and anti-inflammatory eicosanoid, lipoxin A4. FASEB J 23(5):1503–1509CrossRefGoogle Scholar
  87. 87.
    Gonzalez EG, Selvi E, Balistreri E, Akhmetshina A, Palumbo K, Lorenzini S, Lazzerini PE, Montilli C, Capecchi PL, Lucattelli M (2012) Synthetic cannabinoid ajulemic acid exerts potent antifibrotic effects in experimental models of systemic sclerosis. Ann Rheum Dis 71(9):1545–1551CrossRefGoogle Scholar
  88. 88.
    Lucattelli M, Fineschi S, Selvi E, Gonzalez EG, Bartalesi B, De Cunto G, Lorenzini S, Galeazzi M, Lungarella G (2016) Ajulemic acid exerts potent anti-fibrotic effect during the fibrogenic phase of bleomycin lung. Respir Res 17(1):49CrossRefGoogle Scholar
  89. 89.
    Abdolmaleki F, Farahani N, Gheibi Hayat SM, Pirro M, Bianconi V, Barreto GE, Sahebkar A (2018) The role of efferocytosis in autoimmune diseases. Front Immunol 9:1645.  https://doi.org/10.3389/fimmu.2018.01645 CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Gheibi Hayat SM, Bianconi V, Pirro M, Sahebkar A (2019) Efferocytosis: molecular mechanisms and pathophysiological perspectives. Immunol Cell Biol 97(2):124–133.  https://doi.org/10.1111/imcb.12206 CrossRefPubMedGoogle Scholar
  91. 91.
    Tajbakhsh A, Gheibi Hayat SM, Butler AE, Sahebkar A (2019) Effect of soluble cleavage products of important receptors/ligands on efferocytosis: their role in inflammatory, autoimmune and cardiovascular disease. Ageing Res Rev 50:43–57.  https://doi.org/10.1016/j.arr.2019.01.007 CrossRefPubMedGoogle Scholar
  92. 92.
    Tajbakhsh A, Rezaee M, Kovanen PT, Sahebkar A (2018) Efferocytosis in atherosclerotic lesions: malfunctioning regulatory pathways and control mechanisms. Pharmacol Ther 188:12–25.  https://doi.org/10.1016/j.pharmthera.2018.02.003 CrossRefPubMedGoogle Scholar
  93. 93.
    Lauber K, Blumenthal SG, Waibel M, Wesselborg S (2004) Clearance of apoptotic cells: getting rid of the corpses. Mol Cell 14(3):277–287CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Cellular and Molecular Research Center, School of Paramedical SciencesQazvin University of Medical SciencesQazvinIran
  2. 2.Wihuri Research InstituteHelsinkiFinland
  3. 3.Department of BiochemistryPasteur Institute of IranTehranIran
  4. 4.Department of Genetics, School of MedicineShahid Sadoughi University of Medical SciencesYazdIran
  5. 5.Department of Medical Sciences, AOU Città della Salute e della Scienza di TorinoUniversity of TurinTorinoItaly
  6. 6.Neurogenic Inflammation Research CenterMashhad University of Medical SciencesMashhadIran
  7. 7.Biotechnology Research Center, Pharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
  8. 8.School of PharmacyMashhad University of Medical SciencesMashhadIran

Personalised recommendations