Advertisement

A Review of the Contribution of Mast Cells in Wound Healing: Involved Molecular and Cellular Mechanisms

  • Daniel Elieh Ali Komi
  • Kelly Khomtchouk
  • Peter Luke Santa MariaEmail author
Article
  • 16 Downloads

Abstract

Mast cells (MCs), apart from their classic role in allergy, contribute to a number of biologic processes including wound healing. In particular, two aspects of their histologic distribution within the skin have attracted the attention of researchers to study their wound healing role; they represent up to 8% of the total number of cells within the dermis and their cutaneous versions are localized adjacent to the epidermis and the subdermal vasculature and nerves. At the onset of a cutaneous injury, the accumulation of MCs and release of proinflammatory and immunomodulatory mediators have been well documented. The role of MC-derived mediators has been investigated through the stages of wound healing including inflammation, proliferation, and remodeling. They contribute to hemostasis and clot formation by enhancing the expression of factor XIIIa in dermal dendrocytes through release of TNF-α, and contribute to clot stabilization. Keratinocytes, by secreting stem cell factor (SCF), recruit MCs to the site. MCs in return release inflammatory mediators, including predominantly histamine, VEGF, interleukin (IL)-6, and IL-8, that contribute to increase of endothelial permeability and vasodilation, and facilitate migration of inflammatory cells, mainly monocytes and neutrophils to the site of injury. MCs are capable of activating the fibroblasts and keratinocytes, the predominant cells involved in wound healing. MCs stimulate fibroblast proliferation during the proliferative phase via IL-4, vascular endothelial growth factor (VEGF), and basic fibroblast growth factor (bFGF) to produce a new extracellular matrix (ECM). MC-derived mediators including fibroblast growth factor-2, VEGF, platelet-derived growth factor (PDGF), TGF-β, nerve growth factor (NGF), IL-4, and IL-8 contribute to neoangiogenesis, fibrinogenesis, or reepithelialization during the repair process. MC activation inhibition and targeting the MC-derived mediators are potential therapeutic strategies to improve wound healing through reduced inflammatory responses and scar formation.

Keywords

Angiogenesis Mast cells Mediators Scar formation Wound healing 

Abbreviations

bFGF

Basic fibroblast growth factor

ECM

Extracellular matrix

FGF

Fibroblast growth factor

IGF

Insulin-like growth factor

KGF

Keratinocyte growth factor

MC

Mast cell

MCP-1

Monocyte chemoattractant protein-1

MIP-2

Macrophage inflammatory protein-2

MMP

Matrix metalloproteinases

PAI-1

Plasminogen activator inhibitor 1

PDGF

Platelet-derived growth factor

SCF

Stem cell factor

TGF-β

Transforming growth factor β

t-PA

Tissue-type plasminogen activator

VEGF

Vascular endothelial growth factor

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

No informed consent was required to prepare the manuscript.

References

  1. 1.
    Schultz GS, Davidson JM, Kirsner RS, Bornstein P, Herman IM (2011) Dynamic reciprocity in the wound microenvironment. Wound Repair Regen 19(2):134–148.  https://doi.org/10.1111/j.1524-475X.2011.00673.x CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Brugues A, Anon E, Conte V, Veldhuis JH, Gupta M, Colombelli J, Munoz JJ, Brodland GW, Ladoux B, Trepat X (2014) Forces driving epithelial wound healing. Nat Phys 10(9):683–690.  https://doi.org/10.1038/nphys3040 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Wulff BC, Wilgus TA (2013) Mast cell activity in the healing wound: more than meets the eye? Exp Dermatol 22(8):507–510.  https://doi.org/10.1111/exd.12169 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Noli C, Miolo A (2001) The mast cell in wound healing. Vet Dermatol 12(6):303–313CrossRefPubMedGoogle Scholar
  5. 5.
    Chen L, DiPietro LA (2017) Toll-like receptor function in acute wounds. Adv Wound Care 6(10):344–355.  https://doi.org/10.1089/wound.2017.0734 CrossRefGoogle Scholar
  6. 6.
    Das A, Dickerson R, Ghatak PD, Gordillo GM, Chaffee S, Saha A, Khanna S, Roy S (2018) May dietary supplementation augment respiratory burst in wound-site inflammatory cells? Antioxid Redox Signal 28(5):401–405.  https://doi.org/10.1089/ars.2017.7304 CrossRefPubMedGoogle Scholar
  7. 7.
    Berksoy Hayta S, Durmus K, Altuntas EE, Yildiz E, Hisarciklio M, Akyol M (2018) The reduction in inflammation and impairment in wound healing by using strontium chloride hexahydrate. Cutan Ocul Toxicol 37(1):24–28.  https://doi.org/10.1080/15569527.2017.1326497 CrossRefPubMedGoogle Scholar
  8. 8.
    Sun L, Gao W, Fu X, Shi M, Xie W, Zhang W, Zhao F, Chen X (2017) Enhanced wound healing in diabetic rats by nanofibrous scaffolds mimicking the basketweave pattern of collagen fibrils in native skin. Biomater Sci 6:340–349.  https://doi.org/10.1039/c7bm00545h CrossRefGoogle Scholar
  9. 9.
    Tracy LE, Minasian RA, Caterson EJ (2016) Extracellular matrix and dermal fibroblast function in the healing wound. Adv Wound Care 5(3):119–136.  https://doi.org/10.1089/wound.2014.0561 CrossRefGoogle Scholar
  10. 10.
    Yeh CJ, Chen CC, Leu YL, Lin MW, Chiu MM, Wang SH (2017) The effects of artocarpin on wound healing: in vitro and in vivo studies. Sci Rep 7(1):15599.  https://doi.org/10.1038/s41598-017-15876-7 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Adamson R (2009) Role of macrophages in normal wound healing: an overview. J Wound Care 18(8):349–351.  https://doi.org/10.12968/jowc.2009.18.8.43636 CrossRefPubMedGoogle Scholar
  12. 12.
    Martin P, D'Souza D, Martin J, Grose R, Cooper L, Maki R, McKercher SR (2003) Wound healing in the PU.1 null mouse--tissue repair is not dependent on inflammatory cells. Curr Biol: CB 13(13):1122–1128CrossRefPubMedGoogle Scholar
  13. 13.
    Yan J, Tie G, Wang S, Tutto A, DeMarco N, Khair L, Fazzio TG, Messina LM (2018) Diabetes impairs wound healing by Dnmt1-dependent dysregulation of hematopoietic stem cells differentiation towards macrophages. Nat Commun 9(1):33.  https://doi.org/10.1038/s41467-017-02425-z CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Artuc M, Hermes B, Steckelings UM, Grutzkau A, Henz BM (1999) Mast cells and their mediators in cutaneous wound healing--active participants or innocent bystanders? Exp Dermatol 8(1):1–16CrossRefPubMedGoogle Scholar
  15. 15.
    Au SR, Au K, Saggers GC, Karne N, Ehrlich HP (2007) Rat mast cells communicate with fibroblasts via gap junction intercellular communications. J Cell Biochem 100(5):1170–1177.  https://doi.org/10.1002/jcb.21107 CrossRefPubMedGoogle Scholar
  16. 16.
    Komi DEA, Rambasek T, Wohrl S (2017) Mastocytosis: from a molecular point of view.  https://doi.org/10.1007/s12016-017-8619-2
  17. 17.
    Elieh Ali Komi D, Grauwet K (2017) Role of mast cells in regulation of T cell responses in experimental and clinical settings. Clin Rev Allergy Immunol 54:432–445.  https://doi.org/10.1007/s12016-017-8646-z CrossRefGoogle Scholar
  18. 18.
    Elieh-Ali-Komi D, Cao Y (2017) Role of mast cells in the pathogenesis of multiple sclerosis and experimental autoimmune encephalomyelitis. Clin Rev Allergy Immunol 52(3):436–445.  https://doi.org/10.1007/s12016-016-8595-y CrossRefPubMedGoogle Scholar
  19. 19.
    Elieh Ali Komi D, Bjermer L (2018) Mast cell-mediated orchestration of the immune responses in human allergic asthma: current insights. Clin Rev Allergy Immunol.  https://doi.org/10.1007/s12016-018-8720-1
  20. 20.
    Elieh Ali Komi D, Rambasek T, Bielory L (2017) Clinical implications of mast cell involvement in allergic conjunctivitis. Allergy 73:528–539.  https://doi.org/10.1111/all.13334 CrossRefPubMedGoogle Scholar
  21. 21.
    Wilgus TA, Wulff BC (2014) The importance of mast cells in dermal scarring. Adv Wound Care 3(4):356–365.  https://doi.org/10.1089/wound.2013.0457 CrossRefGoogle Scholar
  22. 22.
    Huttunen M, Aalto ML, Harvima RJ, Horsmanheimo M, Harvima IT (2000) Alterations in mast cells showing tryptase and chymase activity in epithelializating and chronic wounds. Exp Dermatol 9(4):258–265CrossRefPubMedGoogle Scholar
  23. 23.
    Fukuoka Y, Hite MR, Dellinger AL, Schwartz LB (2013) Human skin mast cells express complement factors C3 and C5. J Immunol (Baltimore, Md: 1950) 191(4):1827–1834.  https://doi.org/10.4049/jimmunol.1202889 CrossRefGoogle Scholar
  24. 24.
    Bowser C, Erstein DP, Silverberg JI, Nowakowski M, Joks R (2010) Correlation of plasma complement split product levels with allergic respiratory disease activity and relation to allergen immunotherapy. Ann Allergy Asthma Immunol 104(1):42–49.  https://doi.org/10.1016/j.anai.2009.11.021 CrossRefPubMedGoogle Scholar
  25. 25.
    Oskeritzian CA, Zhao W, Min HK, Xia HZ, Pozez A, Kiev J, Schwartz LB (2005) Surface CD88 functionally distinguishes the MCTC from the MCT type of human lung mast cell. J Allergy Clin Immunol 115(6):1162–1168.  https://doi.org/10.1016/j.jaci.2005.02.022 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Weisel JW (2005) Fibrinogen and fibrin. Adv Protein Chem 70:247–299.  https://doi.org/10.1016/s0065-3233(05)70008-5 CrossRefPubMedGoogle Scholar
  27. 27.
    Hartmann K, Henz BM, Kruger-Krasagakes S, Kohl J, Burger R, Guhl S, Haase I, Lippert U, Zuberbier T (1997) C3a and C5a stimulate chemotaxis of human mast cells. Blood 89(8):2863–2870PubMedGoogle Scholar
  28. 28.
    Wojta J, Kaun C, Zorn G, Ghannadan M, Hauswirth AW, Sperr WR, Fritsch G, Printz D, Binder BR, Schatzl G, Zwirner J, Maurer G, Huber K, Valent P (2002) C5a stimulates production of plasminogen activator inhibitor-1 in human mast cells and basophils. Blood 100(2):517–523CrossRefPubMedGoogle Scholar
  29. 29.
    Oschatz C, Maas C, Lecher B, Jansen T, Bjorkqvist J, Tradler T, Sedlmeier R, Burfeind P, Cichon S, Hammerschmidt S, Muller-Esterl W, Wuillemin WA, Nilsson G, Renne T (2011) Mast cells increase vascular permeability by heparin-initiated bradykinin formation in vivo. Immunity 34(2):258–268.  https://doi.org/10.1016/j.immuni.2011.02.008 CrossRefPubMedGoogle Scholar
  30. 30.
    Yanase Y, Takahagi S, Hide M (2017) Chronic spontaneous urticaria and the extrinsic coagulation system. Allergol Int 67:191–194.  https://doi.org/10.1016/j.alit.2017.09.003 CrossRefPubMedGoogle Scholar
  31. 31.
    Zhu H, Liang B, Li R, Li J, Lin L, Ma S, Wang J (2013) Activation of coagulation, anti-coagulation, fibrinolysis and the complement system in patients with urticaria. Asian Pac J Allergy Immunol 31(1):43–50PubMedGoogle Scholar
  32. 32.
    Kettelhut BV, Metcalfe DD (1991) Pediatric mastocytosis. J Investig Dermatol 96(3 Suppl):15S–18S; discussion 18S, 60S–65S.  https://doi.org/10.1111/1523-1747.ep12468942 CrossRefPubMedGoogle Scholar
  33. 33.
    Gonzalo-Garijo MA, Perez-Rangel I, Alvarado-Izquierdo MI, Perez-Calderon R, Sanchez-Vega S, Zambonino MA (2010) Metrorrhagia as an uncommon symptom of anaphylaxis. J Investig Allergol Clin Immunol 20(6):540–541PubMedGoogle Scholar
  34. 34.
    Prieto-Garcia A, Castells MC, Hansbro PM, Stevens RL (2014) Mast cell-restricted tetramer-forming tryptases and their beneficial roles in hemostasis and blood coagulation. Immunol Allergy Clin N Am 34(2):263–281.  https://doi.org/10.1016/j.iac.2014.01.001 CrossRefGoogle Scholar
  35. 35.
    Trautmann A, Toksoy A, Engelhardt E, Brocker EB, Gillitzer R (2000) Mast cell involvement in normal human skin wound healing: expression of monocyte chemoattractant protein-1 is correlated with recruitment of mast cells which synthesize interleukin-4 in vivo. J Pathol 190(1):100–106.  https://doi.org/10.1002/(sici)1096-9896(200001)190:1<100::aid-path496>3.0.co;2-q CrossRefPubMedGoogle Scholar
  36. 36.
    Gillitzer R, Goebeler M (2001) Chemokines in cutaneous wound healing. J Leukoc Biol 69(4):513–521PubMedGoogle Scholar
  37. 37.
    Ogle ME, Segar CE, Sridhar S, Botchwey EA (2016) Monocytes and macrophages in tissue repair: implications for immunoregenerative biomaterial design. Exp Biol Med (Maywood, NJ) 241(10):1084–1097.  https://doi.org/10.1177/1535370216650293 CrossRefGoogle Scholar
  38. 38.
    Gordon JR (2000) Monocyte chemoattractant peptide-1 expression during cutaneous allergic reactions in mice is mast cell dependent and largely mediates the monocyte recruitment response. J Allergy Clin Immunol 106(1 Pt 1):110–116.  https://doi.org/10.1067/mai.2000.107036 CrossRefPubMedGoogle Scholar
  39. 39.
    Li J, Chen J, Kirsner R (2007) Pathophysiology of acute wound healing. Clin Dermatol 25(1):9–18.  https://doi.org/10.1016/j.clindermatol.2006.09.007 CrossRefPubMedGoogle Scholar
  40. 40.
    Egozi EI, Ferreira AM, Burns AL, Gamelli RL, Dipietro LA (2003) Mast cells modulate the inflammatory but not the proliferative response in healing wounds. Wound Repair Regen 11(1):46–54CrossRefPubMedGoogle Scholar
  41. 41.
    Leoni G, Neumann PA, Sumagin R, Denning TL, Nusrat A (2015) Wound repair: role of immune-epithelial interactions. Mucosal Immunol 8(5):959–968.  https://doi.org/10.1038/mi.2015.63 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    van der Veer WM, Bloemen MC, Ulrich MM, Molema G, van Zuijlen PP, Middelkoop E, Niessen FB (2009) Potential cellular and molecular causes of hypertrophic scar formation. Burns 35(1):15–29.  https://doi.org/10.1016/j.burns.2008.06.020 CrossRefPubMedGoogle Scholar
  43. 43.
    Iba Y, Shibata A, Kato M, Masukawa T (2004) Possible involvement of mast cells in collagen remodeling in the late phase of cutaneous wound healing in mice. Int Immunopharmacol 4(14):1873–1880.  https://doi.org/10.1016/j.intimp.2004.08.009 CrossRefPubMedGoogle Scholar
  44. 44.
    Theoharides TC, Alysandratos KD, Angelidou A, Delivanis DA, Sismanopoulos N, Zhang B, Asadi S, Vasiadi M, Weng Z, Miniati A, Kalogeromitros D (2012) Mast cells and inflammation. Biochim Biophys Acta 1822(1):21–33.  https://doi.org/10.1016/j.bbadis.2010.12.014 CrossRefPubMedGoogle Scholar
  45. 45.
    Kennelly R, Conneely JB, Bouchier-Hayes D, Winter DC (2011) Mast cells in tissue healing: from skin to the gastrointestinal tract. Curr Pharm Des 17(34):3772–3775CrossRefPubMedGoogle Scholar
  46. 46.
    Ng MF (2010) The role of mast cells in wound healing. Int Wound J 7(1):55–61.  https://doi.org/10.1111/j.1742-481X.2009.00651.x CrossRefPubMedGoogle Scholar
  47. 47.
    Ishikawa T, Kanda N, Hau CS, Tada Y, Watanabe S (2009) Histamine induces human beta-defensin-3 production in human keratinocytes. J Dermatol Sci 56(2):121–127.  https://doi.org/10.1016/j.jdermsci.2009.07.012 CrossRefPubMedGoogle Scholar
  48. 48.
    Soliman M, Kim DS, Park JG, Kim JY, Alfajaro MM, Baek YB, Cho EH, Park CH, Kang MI, Park SI, Cho KO (2018) PI3K/Akt and MEK/ERK signaling pathways facilitate sapovirus trafficking and late endosomal acidification for viral uncoating in LLC-PK cells. J Virol 92.  https://doi.org/10.1128/jvi.01674-18
  49. 49.
    Zhu C, Bao NR, Chen S, Zhao JN (2016) HBD-3 regulation of the immune response and the LPS/TLR4-mediated signaling pathway. Exp Ther Med 12(4):2150–2154.  https://doi.org/10.3892/etm.2016.3579 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Rohrl J, Yang D, Oppenheim JJ, Hehlgans T (2008) Identification and biological characterization of mouse beta-defensin 14, the orthologue of human beta-defensin 3. J Biol Chem 283(9):5414–5419.  https://doi.org/10.1074/jbc.M709103200 CrossRefPubMedGoogle Scholar
  51. 51.
    Kasuya A, Tokura Y (2014) Attempts to accelerate wound healing. J Dermatol Sci 76(3):169–172.  https://doi.org/10.1016/j.jdermsci.2014.11.001 CrossRefPubMedGoogle Scholar
  52. 52.
    Huttunen M, Hyttinen M, Nilsson G, Butterfield JH, Horsmanheimo M, Harvima IT (2001) Inhibition of keratinocyte growth in cell culture and whole skin culture by mast cell mediators. Exp Dermatol 10(3):184–192CrossRefPubMedGoogle Scholar
  53. 53.
    Gruber BL (2003) Mast cells in the pathogenesis of fibrosis. Curr Rheumatol Rep 5(2):147–153CrossRefPubMedGoogle Scholar
  54. 54.
    Yamamoto T, Hartmann K, Eckes B, Krieg T (2000) Mast cells enhance contraction of three-dimensional collagen lattices by fibroblasts by cell-cell interaction: role of stem cell factor/c-kit. Immunology 99(3):435–439CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Yamamoto T, Hartmann K, Eckes B, Krieg T (2001) Role of stem cell factor and monocyte chemoattractant protein-1 in the interaction between fibroblasts and mast cells in fibrosis. J Dermatol Sci 26(2):106–111CrossRefPubMedGoogle Scholar
  56. 56.
    Shiota N, Nishikori Y, Kakizoe E, Shimoura K, Niibayashi T, Shimbori C, Tanaka T, Okunishi H (2010) Pathophysiological role of skin mast cells in wound healing after scald injury: study with mast cell-deficient W/W(V) mice. Int Arch Allergy Immunol 151(1):80–88.  https://doi.org/10.1159/000232573 CrossRefPubMedGoogle Scholar
  57. 57.
    Nauta AC, Grova M, Montoro DT, Zimmermann A, Tsai M, Gurtner GC, Galli SJ, Longaker MT (2013) Evidence that mast cells are not required for healing of splinted cutaneous excisional wounds in mice. PLoS One 8(3):e59167.  https://doi.org/10.1371/journal.pone.0059167 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Tellechea A, Leal EC, Kafanas A, Auster ME, Kuchibhotla S, Ostrovsky Y, Tecilazich F, Baltzis D, Zheng Y, Carvalho E, Zabolotny JM, Weng Z, Petra A, Patel A, Panagiotidou S, Pradhan-Nabzdyk L, Theoharides TC, Veves A (2016) Mast cells regulate wound healing in diabetes. Diabetes 65(7):2006–2019.  https://doi.org/10.2337/db15-0340 CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Oskeritzian CA (2012) Mast cells and wound healing. Adv Wound Care 1(1):23–28.  https://doi.org/10.1089/wound.2011.0357 CrossRefGoogle Scholar
  60. 60.
    Wilgus TA (2008) Immune cells in the healing skin wound: influential players at each stage of repair. Pharmacol Res 58(2):112–116.  https://doi.org/10.1016/j.phrs.2008.07.009 CrossRefPubMedGoogle Scholar
  61. 61.
    Hiromatsu Y, Toda S (2003) Mast cells and angiogenesis. Microsc Res Tech 60(1):64–69.  https://doi.org/10.1002/jemt.10244 CrossRefPubMedGoogle Scholar
  62. 62.
    Rao KN, Brown MA (2008) Mast cells: multifaceted immune cells with diverse roles in health and disease. Ann N Y Acad Sci 1143:83–104.  https://doi.org/10.1196/annals.1443.023 CrossRefPubMedGoogle Scholar
  63. 63.
    Maltby S, Khazaie K, McNagny KM (2009) Mast cells in tumor growth: angiogenesis, tissue remodelling and immune-modulation. Biochim Biophys Acta 1796(1):19–26.  https://doi.org/10.1016/j.bbcan.2009.02.001 CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Hinz B (2016) The role of myofibroblasts in wound healing. Curr Res Transl Med 64(4):171–177.  https://doi.org/10.1016/j.retram.2016.09.003 CrossRefPubMedGoogle Scholar
  65. 65.
    Nishikori Y, Shiota N, Okunishi H (2014) The role of mast cells in cutaneous wound healing in streptozotocin-induced diabetic mice. Arch Dermatol Res 306(9):823–835.  https://doi.org/10.1007/s00403-014-1496-0 CrossRefPubMedGoogle Scholar
  66. 66.
    Bagher M, Larsson-Callerfelt AK, Rosmark O, Hallgren O, Bjermer L, Westergren-Thorsson G (2018) Mast cells and mast cell tryptase enhance migration of human lung fibroblasts through protease-activated receptor 2. Cell Commun Signal 16(1):59.  https://doi.org/10.1186/s12964-018-0269-3 CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Landolina N, Gangwar RS, Levi-Schaffer F (2015) Mast cells’ integrated actions with eosinophils and fibroblasts in allergic inflammation: implications for therapy. Adv Immunol 125:41–85.  https://doi.org/10.1016/bs.ai.2014.09.002 CrossRefPubMedGoogle Scholar
  68. 68.
    Takeo M, Lee W, Ito M (2015) Wound healing and skin regeneration. Cold Spring Harbor Perspect Med 5(1):a023267.  https://doi.org/10.1101/cshperspect.a023267 CrossRefGoogle Scholar
  69. 69.
    Glim JE, van Egmond M, Niessen FB, Everts V, Beelen RH (2013) Detrimental dermal wound healing: what can we learn from the oral mucosa? Wound Repair Regen 21(5):648–660.  https://doi.org/10.1111/wrr.12072 CrossRefPubMedGoogle Scholar
  70. 70.
    Moyer KE, Saggers GC, Ehrlich HP (2004) Mast cells promote fibroblast populated collagen lattice contraction through gap junction intercellular communication. Wound Repair Regen 12(3):269–275.  https://doi.org/10.1111/j.1067-1927.2004.012310.x CrossRefPubMedGoogle Scholar
  71. 71.
    Ehrlich HP (2013) A snapshot of direct cell-cell communications in wound healing and scarring. Adv Wound Care 2(4):113–121.  https://doi.org/10.1089/wound.2012.0414 CrossRefGoogle Scholar
  72. 72.
    Darby IA, Hewitson TD (2007) Fibroblast differentiation in wound healing and fibrosis. Int Rev Cytol 257:143–179.  https://doi.org/10.1016/s0074-7696(07)57004-x CrossRefPubMedGoogle Scholar
  73. 73.
    Wulff BC, Parent AE, Meleski MA, DiPietro LA, Schrementi ME, Wilgus TA (2012) Mast cells contribute to scar formation during fetal wound healing. J Investig Dermatol 132(2):458–465.  https://doi.org/10.1038/jid.2011.324 CrossRefPubMedGoogle Scholar
  74. 74.
    Whitby DJ, Ferguson MW (1991) The extracellular matrix of lip wounds in fetal, neonatal and adult mice. Development 112(2):651–668PubMedGoogle Scholar
  75. 75.
    Glim JE, Beelen RH, Niessen FB, Everts V, Ulrich MM (2015) The number of immune cells is lower in healthy oral mucosa compared to skin and does not increase after scarring. Arch Oral Biol 60(2):272–281.  https://doi.org/10.1016/j.archoralbio.2014.10.008 CrossRefPubMedGoogle Scholar
  76. 76.
    Natah SS, Hayrinen-Immonen R, Hietanen J, Malmstrom M, Konttinen YT (1998) Quantitative assessment of mast cells in recurrent aphthous ulcers (RAU). J Oral Pathol Med 27(3):124–129CrossRefPubMedGoogle Scholar
  77. 77.
    Dong X, Xu T, Ma S, Wen H (2015) Expression and activity levels of chymase in mast cells of burn wound tissues increase during the healing process in a hamster model. Exp Ther Med 9(6):2190–2194.  https://doi.org/10.3892/etm.2015.2424 CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Salmon-Ehr V, Ramont L, Godeau G, Birembaut P, Guenounou M, Bernard P, Maquart FX (2000) Implication of interleukin-4 in wound healing. Lab Investig 80(8):1337–1343CrossRefPubMedGoogle Scholar
  79. 79.
    Succar J, Douaiher J, Lancerotto L, Li Q, Yamaguchi R, Younan G, Pejler G, Orgill DP (2014) The role of mouse mast cell proteases in the proliferative phase of wound healing in microdeformational wound therapy. Plast Reconstr Surg 134(3):459–467.  https://doi.org/10.1097/prs.0000000000000432 CrossRefPubMedGoogle Scholar
  80. 80.
    Weller K, Foitzik K, Paus R, Syska W, Maurer M (2006) Mast cells are required for normal healing of skin wounds in mice. FASEB J 20(13):2366–2368.  https://doi.org/10.1096/fj.06-5837fje CrossRefPubMedGoogle Scholar
  81. 81.
    Lin L, Bankaitis E, Heimbach L, Li N, Abrink M, Pejler G, An L, Diaz LA, Werb Z, Liu Z (2011) Dual targets for mouse mast cell protease-4 in mediating tissue damage in experimental bullous pemphigoid. J Biol Chem 286(43):37358–37367.  https://doi.org/10.1074/jbc.M111.272401 CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Honnegowda TM, Kumar P, Padmanabha Udupa EG, Kumar S, Kumar U, Rao P (2015) Role of angiogenesis and angiogenic factors in acute and chronic wound healing. Plast Aesthet Res 2:243–249.  https://doi.org/10.4103/2347-9264.165438
  83. 83.
    Caughey GH (2007) Mast cell tryptases and chymases in inflammation and host defense. Immunol Rev 217:141–154.  https://doi.org/10.1111/j.1600-065X.2007.00509.x CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Gailit J, Marchese MJ, Kew RR, Gruber BL (2001) The differentiation and function of myofibroblasts is regulated by mast cell mediators. J Investig Dermatol 117(5):1113–1119.  https://doi.org/10.1046/j.1523-1747.2001.15211.x CrossRefPubMedGoogle Scholar
  85. 85.
    Kondo S, Kagami S, Kido H, Strutz F, Muller GA, Kuroda Y (2001) Role of mast cell tryptase in renal interstitial fibrosis. J Am Soc Nephrol 12(8):1668–1676PubMedGoogle Scholar
  86. 86.
    Li CY, Baek JY (2002) Mastocytosis and fibrosis: role of cytokines. Int Arch Allergy Immunol 127(2):123–126CrossRefPubMedGoogle Scholar
  87. 87.
    Wygrecka M, Dahal BK, Kosanovic D, Petersen F, Taborski B, von Gerlach S, Didiasova M, Zakrzewicz D, Preissner KT, Schermuly RT, Markart P (2013) Mast cells and fibroblasts work in concert to aggravate pulmonary fibrosis: role of transmembrane SCF and the PAR-2/PKC-alpha/Raf-1/p44/42 signaling pathway. Am J Pathol 182(6):2094–2108.  https://doi.org/10.1016/j.ajpath.2013.02.013 CrossRefPubMedGoogle Scholar
  88. 88.
    Jarbrink K, Ni G, Sonnergren H, Schmidtchen A, Pang C, Bajpai R, Car J (2016) Prevalence and incidence of chronic wounds and related complications: a protocol for a systematic review. 5(1):152.  https://doi.org/10.1186/s13643-016-0329-y
  89. 89.
    Janssens AS, Heide R, den Hollander JC, Mulder PG, Tank B, Oranje AP (2005) Mast cell distribution in normal adult skin. J Clin Pathol 58(3):285–289.  https://doi.org/10.1136/jcp.2004.017210 CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Huttunen M, Naukkarinen A, Horsmanheimo M, Harvima IT (2002) Transient production of stem cell factor in dermal cells but increasing expression of Kit receptor in mast cells during normal wound healing. Arch Dermatol Res 294(7):324–330.  https://doi.org/10.1007/s00403-002-0331-1 CrossRefPubMedGoogle Scholar
  91. 91.
    Iemura A, Tsai M, Ando A, Wershil BK, Galli SJ (1994) The c-kit ligand, stem cell factor, promotes mast cell survival by suppressing apoptosis. Am J Pathol 144(2):321–328PubMedPubMedCentralGoogle Scholar
  92. 92.
    Alm PE, Bloom GD, Hellstrom S, Stenfors LE, Widemar L (1983) Mast cells in the pars flaccida of the tympanic membrane. A quantitative morphological and biochemical study in the rat. Experientia 39(3):287–289CrossRefPubMedGoogle Scholar
  93. 93.
    Widemar L, Hellstrom S, Stenfors LE, Bloom GD (1986) An overlooked site of tissue mast cells—the human tympanic membrane. Implications for middle ear affections. Acta Otolaryngol 102(5–6):391–395CrossRefPubMedGoogle Scholar
  94. 94.
    Ichimiya I, Kawauchi H, Mogi G (1990) Analysis of immunocompetent cells in the middle ear mucosa. Arch Otolaryngol Head Neck Surg 116(3):324–330CrossRefPubMedGoogle Scholar
  95. 95.
    Sankovic S, Dergenc R, Bojic P (2005) Mast cells in chronic inflammation of the middle ear mucosa. Rev Laryngol Otol Rhinol 126(1):15–18Google Scholar
  96. 96.
    Hurst DS, Amin K, Seveus L, Venge P (1999) Evidence of mast cell activity in the middle ears of children with otitis media with effusion. Laryngoscope 109(3):471–477CrossRefPubMedGoogle Scholar
  97. 97.
    Griffin G, Flynn CA (2011) Antihistamines and/or decongestants for otitis media with effusion (OME) in children. Cochrane Database Syst Rev 9:Cd003423.  https://doi.org/10.1002/14651858.CD003423.pub3 CrossRefGoogle Scholar
  98. 98.
    Schulz JN, Zeltz C, Sorensen IW, Barczyk M, Carracedo S, Hallinger R, Niehoff A, Eckes B, Gullberg D (2015) Reduced granulation tissue and wound strength in the absence of alpha11beta1 integrin. J Investig Dermatol 135(5):1435–1444.  https://doi.org/10.1038/jid.2015.24 CrossRefPubMedGoogle Scholar
  99. 99.
    Olaso E, Lin HC, Wang LH, Friedman SL (2011) Impaired dermal wound healing in discoidin domain receptor 2-deficient mice associated with defective extracellular matrix remodeling. Fibrogenesis Tissue Repair 4(1):5.  https://doi.org/10.1186/1755-1536-4-5 CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Jun JI, Lau LF (2010) The matricellular protein CCN1 induces fibroblast senescence and restricts fibrosis in cutaneous wound healing. Nat Cell Biol 12(7):676–685.  https://doi.org/10.1038/ncb2070 CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Denton CP, Khan K, Hoyles RK, Shiwen X, Leoni P, Chen Y, Eastwood M, Abraham DJ (2009) Inducible lineage-specific deletion of TbetaRII in fibroblasts defines a pivotal regulatory role during adult skin wound healing. J Investig Dermatol 129(1):194–204.  https://doi.org/10.1038/jid.2008.171 CrossRefPubMedGoogle Scholar
  102. 102.
    Kopecki Z, Luchetti MM, Adams DH, Strudwick X, Mantamadiotis T, Stoppacciaro A, Gabrielli A, Ramsay RG, Cowin AJ (2007) Collagen loss and impaired wound healing is associated with c-Myb deficiency. J Pathol 211(3):351–361.  https://doi.org/10.1002/path.2113 CrossRefPubMedGoogle Scholar
  103. 103.
    Peters T, Sindrilaru A, Hinz B, Hinrichs R, Menke A, Al-Azzeh EA, Holzwarth K, Oreshkova T, Wang H, Kess D, Walzog B, Sulyok S, Sunderkotter C, Friedrich W, Wlaschek M, Krieg T, Scharffetter-Kochanek K (2005) Wound-healing defect of CD18(−/−) mice due to a decrease in TGF-beta1 and myofibroblast differentiation. EMBO J 24(19):3400–3410.  https://doi.org/10.1038/sj.emboj.7600809 CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Al-Otaiby M, Tassi E, Schmidt MO, Chien CD, Baker T, Salas AG, Xu J, Furlong M, Schlegel R, Riegel AT, Wellstein A (2012) Role of the nuclear receptor coactivator AIB1/SRC-3 in angiogenesis and wound healing. Am J Pathol 180(4):1474–1484.  https://doi.org/10.1016/j.ajpath.2011.12.032 CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Xu Z, Xu H, Ploplis VA, Castellino FJ (2010) Factor VII deficiency impairs cutaneous wound healing in mice. Mol Med 16(5–6):167–176.  https://doi.org/10.2119/molmed.2009.00171 CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Geary SM, Cowin AJ, Copeland B, Baleato RM, Miyazaki K, Ashman LK (2008) The role of the tetraspanin CD151 in primary keratinocyte and fibroblast functions: implications for wound healing. Exp Cell Res 314(11–12):2165–2175.  https://doi.org/10.1016/j.yexcr.2008.04.011 CrossRefPubMedGoogle Scholar
  107. 107.
    Bairy KL, Rao CM, Ramesh KV, Kulkarni DR (1991) Effects of antihistamines on wound healing. Indian J Exp Biol 29(4):398–399PubMedGoogle Scholar
  108. 108.
    Gallant-Behm CL, Hildebrand KA, Hart DA (2008) The mast cell stabilizer ketotifen prevents development of excessive skin wound contraction and fibrosis in red Duroc pigs. Wound Repair Regen 16(2):226–233.  https://doi.org/10.1111/j.1524-475X.2008.00363.x CrossRefPubMedGoogle Scholar
  109. 109.
    Chen L, Schrementi ME, Ranzer MJ, Wilgus TA, DiPietro LA (2014) Blockade of mast cell activation reduces cutaneous scar formation. PLoS One 9(1):e85226.  https://doi.org/10.1371/journal.pone.0085226 CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Orenstein SB, Saberski ER, Klueh U, Kreutzer DL, Novitsky YW (2010) Effects of mast cell modulation on early host response to implanted synthetic meshes. Hernia 14(5):511–516.  https://doi.org/10.1007/s10029-010-0680-1 CrossRefPubMedGoogle Scholar
  111. 111.
    Shah DR, Dholakia S, Shah RR (2014) Effect of tyrosine kinase inhibitors on wound healing and tissue repair: implications for surgery in cancer patients. Drug Saf 37(3):135–149.  https://doi.org/10.1007/s40264-014-0139-x CrossRefPubMedGoogle Scholar
  112. 112.
    Cheng C, Nayernama A, Christopher Jones S, Casey D, Waldron PE (2018) Wound healing complications with lenvatinib identified in a pharmacovigilance database. J Oncol Pharm Pract.  https://doi.org/10.1177/1078155218817109
  113. 113.
    Younan G, Suber F, Xing W, Shi T, Kunori Y, Abrink M, Pejler G, Schlenner SM, Rodewald HR, Moore FD Jr, Stevens RL, Adachi R, Austen KF, Gurish MF (2010) The inflammatory response after an epidermal burn depends on the activities of mouse mast cell proteases 4 and 5. J Immunol 185(12):7681–7690.  https://doi.org/10.4049/jimmunol.1002803 CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    el Sayed SO, Dyson M (1993) Responses of dermal mast cells to injury. J Anat 182(Pt 3):369–376PubMedPubMedCentralGoogle Scholar
  115. 115.
    Dorsett-Martin WA (2004) Rat models of skin wound healing: a review. Wound Repair Regen 12(6):591–599.  https://doi.org/10.1111/j.1067-1927.2004.12601.x CrossRefPubMedGoogle Scholar
  116. 116.
    Garner WL, Ehrlich HP (2011) Discussion: mast cells are required in the proliferation and remodeling phases of microdeformational wound therapy. Plast Reconstr Surg 128(6):659e–660e.  https://doi.org/10.1097/PRS.0b013e318230bec1 CrossRefPubMedGoogle Scholar
  117. 117.
    Dong X, Geng Z, Zhao Y, Chen J, Cen Y (2013) Involvement of mast cell chymase in burn wound healing in hamsters. Exp Ther Medicine 5(2):643–647.  https://doi.org/10.3892/etm.2012.836 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Daniel Elieh Ali Komi
    • 1
    • 2
  • Kelly Khomtchouk
    • 3
  • Peter Luke Santa Maria
    • 3
    Email author
  1. 1.Immunology Research CenterTabriz University of Medical SciencesTabrizIran
  2. 2.Department of ImmunologyTabriz University of Medical SciencesTabrizIran
  3. 3.Department of Otolaryngology, Head and Neck Surgery, School of MedicineStanford UniversityStanfordUSA

Personalised recommendations