Allergic and Immunologic Perspectives of Inflammatory Bowel Disease

  • Kofi ClarkeEmail author
  • Jayakrishna Chintanaboina


Inflammatory bowel disease (IBD) is a chronic immune-mediated inflammatory condition primarily involving the gastrointestinal tract. It includes Crohn’s disease (CD), ulcerative colitis (UC), and a less common phenotype—indeterminate colitis. It is thought to result from a complex interplay of environmental, microbial, and host factors including genetic factors, although the exact mechanism is not known. Dietary factors have been shown to play a role in the pathogenesis of IBD and can potentially alter the intestinal microbiota as well as disrupt the immune function in the gut. CD is characterized by transmural inflammation, sometimes associated with granulomatous lesions, and involves the entire gastrointestinal tract but often spares the rectum. UC is characterized by mucosal inflammation typically confined to the colon and rectum. Although IBD is mostly seen in western world, recent data suggests that the incidence and prevalence are increasing worldwide. Enteral nutrition has been shown to be effective in inducing remission in pediatric population with CD; however, there is mixed data in adult population. Nutritional deficiencies such as vitamin D and zinc deficiency are often noted in IBD patients. Several extraintestinal manifestations are noted in patients with IBD. Some of them parallel with the disease activity and others are independent of the disease course. Assessment of IBD disease activity clinically, radiologically, if indicated, biochemically and endoscopically is important to guide therapy in IBD. To ensure comprehensive care, it is important to assess associated conditions such as nutritional and psychological well-being, as well as age appropriate health maintenance status prior to starting treatment for IBD. Several biologic agents including anti-tumor necrosis factor alpha (anti-TNF-α) drugs, anti-integrins, and antibodies to the p40 subunit of IL12/23 are approved for induction and maintenance of remission of IBD. Steroids are also often used for induction. Anti-metabolites and thiopurines are also useful either as monotherapy or in combination regimens. Potential side effects of anti-TNF-α drugs such as serious infections, malignancy, worsening of heart failure, and infusion-related reactions should be considered prior to starting these drugs. Anti-TNF-α drugs with or without immunomodulators (azathioprine, 6-mercaptopurine, methotrexate) are often used for the induction and maintenance of remission. Treating to target of endoscopic and clinical remission provides the best long-term outcomes. Our knowledge and understanding of IBD has grown significantly. However, there are several unanswered questions on pathogenesis, disease behavior, and drivers of inflammation in various patient subgroups which require further research.


Colitis Nutritional deficiencies Enteral nutrition Granulomatous cheilitis Melkersson-Rosenthal syndrome Tumor necrosis factor Sweet syndrome 


Compliance with Ethical Standards

Conflict of Interest

There are no conflicts of interest relevant to this manuscript. However, for full disclosure, Dr. Clarke is on the speakers’ bureau for AbbVie, Takeda, and Janssen. In addition, he has served on an Ad Board for Pfizer.

Ethical Approval and Informed Consent

This is a review article; no patients were involved, and informed consent was not required. Permission was obtained for all images used and appropriate attribution/acknowledgement stated.


Speakers Bureau for Abbvie, Janssen and Takeda; Ad Board for Pfizer.


  1. 1.
    Baumgart DC, Carding SR (2007) Inflammatory bowel disease: cause and immunobiology. Lancet 369:1627–1640PubMedCrossRefGoogle Scholar
  2. 2.
    Molodecky NA, Soon IS, Rabi DM, Ghali WA, Ferris M, Chernoff G, Benchimol EI, Panaccione R, Ghosh S, Barkema HW, Kaplan GG (2012) Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review. Gastroenterology 142:46–54PubMedCrossRefGoogle Scholar
  3. 3.
    Anderson CA, Massey DC, Barrett JC et al (2009) Investigation of Crohn’s disease risk loci in ulcerative colitis further defines their molecular relationship. Gastroenterology 136:523–529PubMedCrossRefGoogle Scholar
  4. 4.
    Franke A, McGovern DP, Barrett JC et al (2010) Genome-wide meta-analysis increases to 71 the number of confirmed Crohn’s disease susceptibility loci. Nat Genet 42:1118–1125PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Fukata M, Abreu MT (2009) Pathogen recognition receptors, cancer and inflammation in the gut. Curr Opin Pharmacol 9:680–687PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Lakatos PL (2009) Environmental factors affecting inflammatory bowel disease: have we made progress? Dig Dis 27:215–225PubMedCrossRefGoogle Scholar
  7. 7.
    de Lange KM, Moutsianas L, Lee JC et al (2017) Genome-wide association study implicates immune activation of multiple integrin genes in inflammatory bowel disease. Nat Genet 49:256–261PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Molodecky NA et al (2012) Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review. Gastroenterology 142:46–54. e42PubMedCrossRefGoogle Scholar
  9. 9.
    Kaplan GG et al (2015) The global burden of IBD: from 2015 to 2025. Nat Rev Gastroenterol Hepatol 12:720–727PubMedCrossRefGoogle Scholar
  10. 10.
    Shivashankar R, Tremaine WJ, Harmsen WS, Loftus EV Jr (2017) Incidence and prevalence of Crohn’s disease and ulcerative colitis in Olmsted County, Minnesota from 1970 through 2010. Clin Gastroenterol Hepatol 15(6):857–863PubMedCrossRefGoogle Scholar
  11. 11.
    Nerich V et al (2006) Geographical variations of inflammatory bowel disease in France: a study based on national health insurance data. Inflamm Bowel Dis 12:218–226PubMedCrossRefGoogle Scholar
  12. 12.
    Freeman HJ (2007) Application of the Montreal classification for Crohn’s disease to a single clinician database of 1015 patients. Can J Gastroenterol 21:363–366PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Farmer RG, Hawk WA, Turnbull RB Jr (1975) Clinical patterns in Crohn’s disease: a statistical study of 615 cases. Gastroenterology 68(4 Pt 1):627PubMedGoogle Scholar
  14. 14.
    Pimentel M, Chang M, Chow EJ, Tabibzadeh S, Kirit-Kiriak V, Targan SR, Lin HC (2000) Identification of a prodromal period in Crohn’s disease but not ulcerative colitis. Am J Gastroenterol 95(12):3458PubMedCrossRefGoogle Scholar
  15. 15.
    Mekhjian HS, Switz DM, Melnyk CS, Rankin GB, Brooks RK (1979) Clinical features and natural history of Crohn’s disease. Gastroenterology. 77(4 Pt 2):898PubMedGoogle Scholar
  16. 16.
    Thoreson R, Cullen JJ (2007 Jun.) Pathophysiology of inflammatory bowel disease: an overview. Surg Clin North Am 87(3):575–585PubMedCrossRefGoogle Scholar
  17. 17.
    A. M. C. Faria, D. Mucida, D.-M. McCafferty, N. M. Tsuji, and V. Verhasselt (2012) “Tolerance and inflammation at the gut mucosa,” Clinical and Developmental Immunology, vol. 2012, Article ID 738475, pages, 3Google Scholar
  18. 18.
    van der Flier LG, Clevers H (2009) Stem cells, self-renewal, and differentiation in the intestinal epithelium. Annu Rev Physiol 71:241–260PubMedCrossRefGoogle Scholar
  19. 19.
    Geremia A, Biancheri P, Allan P, Corazza GR, Di SA (2014) Innate and adaptive immunity in inflammatory bowel disease. Autoimmun Rev 13:3–10PubMedCrossRefGoogle Scholar
  20. 20.
    Geremia A, Biancheri P, Allan P et al (2014) Innate and adaptive immunity in inflammatory bowel disease. Autoimmun Rev 13(1):3–10PubMedCrossRefGoogle Scholar
  21. 21.
    Kaser A, Blumberg RS (2010) Endoplasmic reticulum stress and intestinal inflammation. Mucosal Immunol 3:11–16PubMedCrossRefGoogle Scholar
  22. 22.
    Salim SY, Soderholm JD (2011) Importance of disrupted intestinal barrier in inflammatory bowel diseases. Inflamm Bowel Dis 17:362–381PubMedCrossRefGoogle Scholar
  23. 23.
    Turner JR (2006) Molecular basis of epithelial barrier regulation: from basic mechanisms to clinical application. Am J Pathol 169(6):1901–1909PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Salzman NH, Hung K, Haribhai D, Chu H, Karlsson-Sjöberg J, Amir E, Teggatz P, Barman M, Hayward M, Eastwood D, Stoel M, Zhou Y, Sodergren E, Weinstock GM, Bevins CL, Williams CB, Bos NA (2010) Enteric defensins are essential regulators of intestinal microbial ecology. Nat Immunol 11(1):76PubMedCrossRefGoogle Scholar
  25. 25.
    Hermiston ML, Gordon JI (1995) Inflammatory bowel disease and adenomas in mice expressing a dominant negative N-cadherin. Science. 270(5239):1203PubMedCrossRefGoogle Scholar
  26. 26.
    Barrett JC, Lee JC, Lees CW et al (2009) Genome-wide association study of ulcerative colitis identifies three new susceptibility loci, including the HNF4A region. Nat Genet 41:1330–1334PubMedCrossRefGoogle Scholar
  27. 27.
    Anderson CA, Boucher G, Lees CW et al (2011) Meta-analysis identifies 29 additional ulcerative colitis risk loci, increasing the number of confirmed associations to 47. Nat Genet 43:246–252PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Uehara A, Fujimoto Y, Fukase K, Takada H (2007) Various human epithelial cells express functional Toll-like receptors, NOD1 and NOD2 to produce anti-microbial peptides, but not proinflammatory cytokines. Mol Immunol 44:3100–3111PubMedCrossRefGoogle Scholar
  29. 29.
    Wehkamp J, Harder J, Weichenthal M et al (2003) Inducible and constitutive betadefensins are differentially expressed in Crohn's disease and ulcerative colitis. Inflamm Bowel Dis 9:215–223PubMedCrossRefGoogle Scholar
  30. 30.
    Ogura Y, Bonen DK, Inohara N, Nicolae DL, Chen FF, Ramos R, Britton H, Moran T, Karaliuskas R, Duerr RH, Achkar JP, Brant SR, Bayless TM, Kirschner BS, Hanauer SB, Nuñez G, Cho JH (2001) A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature 411(6837):603PubMedCrossRefGoogle Scholar
  31. 31.
    Hugot JP, Chamaillard M, Zouali H, Lesage S, Cézard JP, Belaiche J, Almer S, Tysk C, O’Morain CA, Gassull M, Binder V, Finkel Y, Cortot A, Modigliani R, Laurent-Puig P, Gower-Rousseau C, Macry J, Colombel JF, Sahbatou M, Thomas G (2001) Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature 411(6837):599PubMedCrossRefGoogle Scholar
  32. 32.
    Glick D, Barth S, Macleaod KF (2010) Autophagy: cellular and molecular mechanisms. J Pathol 221(1):3–12PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Deretic V, Saitoh T, Akira S (2013) Autophagy in infection, inflammation and immunity. Nat Rev Immunol 13(10):722–737PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Hampe J, Franke A, Rosenstiel P et al (2007) A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nat Genet 3(9):207–211CrossRefGoogle Scholar
  35. 35.
    Parkes M, Barrett JC, Prescott NJ et al (2007) Sequence variants in the autophagy gene IRGM and multiple other replicating loci contribute to Crohn’s disease susceptibility. Nat Genet 39:830–832PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Reinecker HC, Steffen M, Witthoeft T, Pflueger I, Schreiber S, MacDermott RP, Raedler A (1993) Enhanced secretion of tumour necrosis factor-alpha, IL-6, and IL-1 beta by isolated lamina propria mononuclear cells from patients with ulcerative colitis and Crohn's disease. Clin Exp Immunol 94(1):174PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Reimund JM, Wittersheim C, Dumont S, Muller CD, Kenney JS, Baumann R, Poindron P, Duclos B (1996) Increased production of tumour necrosis factor-alpha interleukin-1 beta, and interleukin-6 by morphologically normal intestinal biopsies from patients with Crohn’s disease. Gut 39(5):684–689PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Kamada N, Hisamatsu T, Okamoto S, Chinen H, Kobayashi T, Sato T, Sakuraba A, Kitazume MT, Sugita A, Koganei K, Akagawa KS, Hibi T (2008) Unique CD14 intestinal macrophages contribute to the pathogenesis of Crohn disease via IL-23/IFN-gamma axis. J Clin Invest 118(6):2269–2280PubMedPubMedCentralGoogle Scholar
  39. 39.
    Romagnani S (1994) Lymphokine production by human T cells in disease states. Annu Rev Immunol 12:227–257PubMedCrossRefGoogle Scholar
  40. 40.
    Korn T, Bettelli E, Oukka M, Kuchroo VK (2009) IL-17 and Th17 cells. Annu Rev Immunol 27:485–517PubMedCrossRefGoogle Scholar
  41. 41.
    Flammer JR, Rogatsky I (2011) Minireview: glucocorticoids in autoimmunity: unexpected targets and mechanisms. Mol Endocrinol 25:1075–1086PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Kühn R, Löhler J, Rennick D, Rajewsky K, Müller W (1993) Interleukin-10-deficient mice develop chronic enterocolitis. Cell 75(2):263PubMedCrossRefGoogle Scholar
  43. 43.
    Fuss IJ, Marth T, Neurath MF, Pearlstein GR, Jain A, Strober W (1999) Anti-interleukin 12 treatment regulates apoptosis of Th1 T cells in experimental colitis in mice. Gastroenterology 117(5):1078PubMedCrossRefGoogle Scholar
  44. 44.
    Powrie F, Leach MW, Mauze S, Menon S, Caddle LB, Coffman RL (1994) Inhibition of Th1 responses prevents inflammatory bowel disease in scid mice reconstituted with CD45RBhi CD4+ T cells. Immunity 1(7):553PubMedCrossRefGoogle Scholar
  45. 45.
    Targan SR, Hanauer SB, van Deventer SJ, Mayer L, Present DH, Braakman T, DeWoody KL, Schaible TF, Rutgeerts PJ, Crohn’s Disease cA2 Study Group (1997) A short-term study of chimeric monoclonal antibody cA2 to tumor necrosis factor alpha for Crohn’s disease. N Engl J Med 337(15):1029PubMedCrossRefGoogle Scholar
  46. 46.
    Podolsky DK (2002) Inflammatory bowel disease. N Engl J Med 347:417–429PubMedCrossRefGoogle Scholar
  47. 47.
    Monteleone G, Trapasso F, Parrello T et al (1999) Bioactive IL-18 expression is up-regulated in Crohn’s disease. J Immunol 163:143–147PubMedGoogle Scholar
  48. 48.
    Zhou L, Ivanov II, Spolski R et al (2007) IL-6 programs T(H)-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat Immunol 8:967–974PubMedCrossRefGoogle Scholar
  49. 49.
    Monteleone G, Monteleone I, Fina D et al (2005) Interleukin-21 enhances T-helper cell type I signaling and interferon-gamma production in Crohn’s disease. Gastroenterology 128:687–694PubMedCrossRefGoogle Scholar
  50. 50.
    Sarra M, Monteleone I, Stolfi C et al (2010) Interferon-gamma-expressing cells are a major source of interleukin-21 in inflammatory bowel diseases. Inflamm Bowel Dis 16:1332–1339PubMedCrossRefGoogle Scholar
  51. 51.
    Dore J, Corthier G (2010) The human intestinal microbiota. Gastroenterol Clin Biol 34(Suppl. 1):S7–S15Google Scholar
  52. 52.
    Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R (2012) Diversity, stability and resilience of the human gut microbiota. Nature 489(7415):220–230PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Hildebrandt MA, Hoffmann C, Sherrill-Mix SA, Keilbaugh SA, Hamady M, Chen YY, Knight R, Ahima RS, Bushman F, Wu GD (2009) High-fat diet determines the composition of the murine gut microbiome independently of obesity. Gastroenterology 137(5):1716–1724 e1–2PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Weinstock JV (2006) Helminths and mucosal immune modulation. Ann N Y Acad Sci 1072:356–364PubMedCrossRefGoogle Scholar
  55. 55.
    Margolis DJ, Fanelli M, Hoffstad O, Lewis JD (2010) Potential association between the oral tetracycline class of antimicrobials used to treat acne and inflammatory bowel disease. Am J Gastroenterol 105(12):2610PubMedCrossRefGoogle Scholar
  56. 56.
    Elson CO, Cong Y, McCracken VJ, Dimmitt RA, Lorenz RG, Weaver CT (2005) Experimental models of inflammatory bowel disease reveal innate, adaptive, and regulatory mechanisms of host dialogue with the microbiota. Immunol Rev 206:260–276PubMedCrossRefGoogle Scholar
  57. 57.
    Garrett WS, Lord GM, Punit S, Lugo-Villarino G, Mazmanian SK, Ito S, Glickman JN, Glimcher LH (2007) Communicable ulcerative colitis induced by T-bet deficiency in the innate immune system. Cell 131(1):33–45PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Frank DN, St Amand AL, Feldman RA, Boedeker EC, Harpaz N, Pace NR (2007) Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci U S A 104(34):13780–13785PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Manichanh C, Rigottier-Gois L, Bonnaud E, Gloux K, Pelletier E, Frangeul L, Nalin R, Jarrin C, Chardon P, Marteau P, Roca J, Dore J (2006) Reduced diversity of faecal microbiota in Crohn’s disease revealed by a metagenomic approach. Gut 55(2):205–211PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Hansen R, Russell RK, Reiff C et al (2012) Microbiota of de-novo pediatric IBD: increased Faecalibacterium prausnitzii and reduced bacterial diversity in Crohn’s but not in ulcerative colitis. Am J Gastroenterol 107:1913–1922PubMedCrossRefGoogle Scholar
  61. 61.
    Morgan XC, Tickle TL, Sokol H et al (2012) Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol 13:R79PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Moustafa A, Li W, Anderson EL, Wong EHM, Dulai PS, Sandborn WJ et al (2018) Genetic risk, dysbiosis, and treatment stratification using host genome and gut microbiome in inflammatory bowel disease. Clin Transl Gastroenterol 18:9(1)Google Scholar
  63. 63.
    Marteau P (2009) Bacterial flora in inflammatory bowel disease. Dig Dis 27(Suppl. 1):99–103PubMedCrossRefGoogle Scholar
  64. 64.
    Reshef L, Kovacs A, Ofer A, Yahav L, Maharshak N, Keren N, Konikoff FM, Tulchinsky H, Gophna U, Dotan I (2015) Pouch inflammation is associated with a decrease in specific bacterial taxa. Gastroenterology 149(3):718–727PubMedCrossRefGoogle Scholar
  65. 65.
    Morgan XC, Kabakchiev B, Waldron L, Tyler AD, Tickle TL, Milgrom R, Stempak JM, Gevers D, Xavier RJ, Silverberg MS, Huttenhower C (2015) Associations between host gene expression, the mucosal microbiome, and clinical outcome in the pelvic pouch of patients with inflammatory bowel disease. Genome Biol 16:67PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Zachos M, Tondeur M, Griffiths AM (2007) Enteral nutritional therapy for induction of remission in Crohn’s disease. Cochrane Database Syst Rev 1:CD000542Google Scholar
  67. 67.
    Brestoff JR, Artis D (2013) Commensal bacteria at the interface of host metabolism and the immune system. Nat Immunol 14:676–684PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Han PD, Burke A, Baldassano RN, Rombeau JL, Lichtenstein GR (1999) Nutrition and inflammatory bowel disease. Gastroenterol Clin N Am 28(2):423e43CrossRefGoogle Scholar
  69. 69.
    Klement E, Cohen RV, Boxman J, Joseph A, Reif S (2004) Breastfeeding and risk of inflammatory bowel disease: a systematic review with meta-analysis. Am J Clin Nutr 80:1342–1352PubMedCrossRefGoogle Scholar
  70. 70.
    Zachos M, Tondeur M, Griffiths AM (2001) Enteral nutritional therapy for inducing remission of Crohn’s disease. Cochrane Database Syst Rev 3:CD000542Google Scholar
  71. 71.
    Racine A, Carbonnel F, Chan SS, Hart AR et al (2016) Dietary patterns and risk of inflammatory bowel disease in Europe: results from the EPIC study. Inflamm Bowel Dis 22(2):345–354PubMedCrossRefGoogle Scholar
  72. 72.
    Chan SSM, Luben R, Olsen A, Tjonneland A, Kaaks R, Lindgren S et al (2014) Association between high dietary intake of the n-3 polyunsaturated fatty acid docosahexaenoic acid and reduced risk of Crohn’s disease. Aliment Pharmacol Ther 39:834e42Google Scholar
  73. 73.
    Jantchou P, Morois S, Clavel-Chapelon F et al (2010) Animal protein intake and risk of inflammatory bowel disease: the E3N prospective study. Am J Gastroenterol 105:2195–2201PubMedCrossRefGoogle Scholar
  74. 74.
    Ananthakrishnan AN, Khalili H, Konijeti GG, Higuchi LM, de Silva P, Fuchs CS et al (2014) Long-term intake of dietary fat and risk of ulcerative colitis and Crohn’s disease. Gut 6:776e84Google Scholar
  75. 75.
    Vagianos K, Bector S, McConnell J, Bernstein CN (2007) Nutrition assessment of patients with inflammatory bowel disease. JPEN J Parenter Enteral Nutr 31(4):311PubMedCrossRefGoogle Scholar
  76. 76.
    Phelip JM, Ducros V, Faucheron JL, Flourie B, Roblin X (2008) Association of hyperhomocysteinemia and folate deficiency with colon tumors in patients with inflammatory bowel disease. Inflamm Bowel Dis 14(2):242PubMedCrossRefGoogle Scholar
  77. 77.
    Del Pinto R, Peitrapaoli D, Chadar AK et al (2015) Association between inflammatory bowel disease and vitamin D deficiency: a systematic review and meta-analysis. Inflamm Bowel Dis 21(11):2708–2717PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    White JH (2008) Vitamin D signaling, infectious diseases, and regulation of innate immunity. Infect Immun 76(9):3837–3843PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Baeke F, van Etten E, Gysemans C, Overbergh L, Mathieu C (2008) Vitamin D signaling in immune-mediated disorders: evolving insights and therapeutic opportunities. Mol Asp Med 29(6):376–387CrossRefGoogle Scholar
  80. 80.
    Ardesia M, Ferlazzo G, Fries W. Vitamin D and inflammatory bowel disease. Biomed Res In. 2015Google Scholar
  81. 81.
    Garg M, Rosella O, Lubel JS, Gibson PR (2013) Association of circulating vitamin D concentrations with intestinal but not systemic inflammation in inflammatory bowel disease. Inflamm Bowel Dis 19(12):2634–2643PubMedCrossRefGoogle Scholar
  82. 82.
    Kabbani TA, Koutroubakis IE et al. Association of vitamin D level with clinical status in inflammatory bowel disease: a 5-year longitudinal studyGoogle Scholar
  83. 83.
    Prasad AS (2000) Effects of zinc deficiency on Th1 and Th2 cytokine shifts. J Infect Dis 182(Suppl 1):S62–S68PubMedCrossRefGoogle Scholar
  84. 84.
    Ojuawo A, Keith L (2002) The serum concentrations of zinc, copper and selenium in children with inflammatory bowel disease. Cent Afr J Med 48:116–119PubMedGoogle Scholar
  85. 85.
    Alkhouri RH, Hashmi H, Baker RD et al (2013) Vitamin and mineral status in patients with inflammatory bowel disease. J Pediatr Gastroenterol Nutr 56:89–92PubMedCrossRefGoogle Scholar
  86. 86.
    Siva S, Rubin DT, Gulotta G, Wroblewski K, Pekow J (2017) Zinc deficiency is associated with poor clinical outcomes in patients with inflammatory bowel disease. Inflamm Bowel Dis 23(1):152–157PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Ananthakrishnan AN, Khalili H, Song M, Higuchi LM, Richter JM, Chan AT (2015) Zinc intake and risk of Crohn’s disease and ulcerative colitis: a prospective cohort study. Int J Epidemiol 44:1995–2005PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Dziechciarz P, Horvath A, Shamir R, Szajewska H (2007) Meta-analysis: enteral nutrition in active Crohn’s disease in children. Aliment Pharmacol Ther 26(6):795–806PubMedCrossRefGoogle Scholar
  89. 89.
    Akobeng AK, Thomas AG (2007) Enteral nutrition for maintenance of remission in Crohn’s disease. Cochrane Database Syst Rev 3:CD005984Google Scholar
  90. 90.
    Nakahigashi M, Yamamoto T, Sacco R, Hanai H, Kobayashi F (2016) Enteral nutrition for maintaining remission in patients with quiescent Crohn’s disease: current status and future perspectives. Int J Color Dis 31:1–7CrossRefGoogle Scholar
  91. 91.
    Travis SP, Stange EF, Lémann M, Oresland T, Chowers Y, Forbes A et al (2006) European evidence based consensus on the diagnosis and management of Crohn’s disease: current management. Gut 55(Suppl 1):i16–i35PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Konno M, Takahashi M, Toita N, Fujiwara S, Nojima M (2015) Long-term therapeutic effectiveness of maintenance enteral nutrition for Crohn’s disease. Pediatr Int 57(2):276–280PubMedCrossRefGoogle Scholar
  93. 93.
    Frivolt K, Schwerd T, Werkstetter KJ, Schwarzer A, Schatz SB, Bufler P, Koletzko S (2014) Repeated exclusive enteral nutrition in the treatment of paediatric Crohn’s disease: predictors of efficacy and outcome. Aliment Pharmacol Ther 39(12):1398–1407PubMedCrossRefGoogle Scholar
  94. 94.
    Wall CL, Day AS, Gearry RB (2013) Use of exclusive enteral nutrition in adults with Crohn’s disease: a review. World J Gastroenterol 19(43):7652–7660PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Yang Q, Gao X, Chen H, Li M, Wu X, Zhi M, Lan P, Hu P (2017) Efficacy of exclusive enteral nutrition in complicated Crohn’s disease. Scand J Gastroenterol 52(9):995–1001PubMedGoogle Scholar
  96. 96.
    Bernstein CN, Blanchard JF, Rawsthorne P, Yu N (2001) The prevalence of extraintestinal diseases in inflammatory bowel disease: a population-based study. Am J Gastroenterol 96(4):1116PubMedCrossRefGoogle Scholar
  97. 97.
    Das KM, Vecchi M, Sakamaki S (1990) A shared and unique epitope(s) on human colon, skin, and biliary epithelium detected by a monoclonal antibody. Gastroenterology 98(2):464PubMedCrossRefGoogle Scholar
  98. 98.
    Orchard TR, Chua CN, Ahmad T, Cheng H, Welsh KI, Jewell DP (2002) Uveitis and erythema nodosum in inflammatory bowel disease: clinical features and the role of HLA genes. Gastroenterology 123(3):714PubMedCrossRefGoogle Scholar
  99. 99.
    Ruocco E, Sangiuliano S, Gravina AG, Miranda A, Nicoletti G (2009) Pyoderma gangrenosum: an updated review. J Eur Acad Dermatol Venereol 23(9):1008–1017PubMedCrossRefGoogle Scholar
  100. 100.
    Sasor SE, Soleimani T, Chu MW, Cook JA, Nicksic PJ, Tholpady SS (2018) Pyoderma gangrenosum demographics, treatments, and outcomes: an analysis of 2,273 cases. J Wound Care 27(Sup1):S4–S8PubMedCrossRefGoogle Scholar
  101. 101.
    Powell FC, Hackett BC, Wallach D. Pyoderma gangrenosum. In: Fitzpatrick’s dermatology in general medicine, 8th ed, Goldsmith LA, Katz SI, Gilchrest BA, et al (Eds), McGraw-Hill Companies, Inc., New York 2012. Vol 1, p.371Google Scholar
  102. 102.
    Wise CA, Gillum JD, Seidman CE, Lindor NM, Veile R, Bashiardes S, Lovett M (2002) Mutations in CD2BP1 disrupt binding to PTP PEST and are responsible for PAPA syndrome, an autoinflammatory disorder. Hum Mol Genet 11(8):961PubMedCrossRefGoogle Scholar
  103. 103.
    Marzano AV, Trevisan V, Gattorno M, Ceccherini I, De Simone C, Crosti C (2013) Pyogenic arthritis, pyoderma gangrenosum, acne, and hidradenitis suppurativa (PAPASH): a new autoinflammatory syndrome associated with a novel mutation of the PSTPIP1 gene. JAMA Dermatol 149(6):762PubMedCrossRefGoogle Scholar
  104. 104.
    Binus AM, Qureshi AA, Li VW, Winterfield LS (2011) Pyoderma gangrenosum: a retrospective review of patient characteristics, comorbidities and therapy in 103 patients. Br J Dermatol 165(6):1244PubMedCrossRefGoogle Scholar
  105. 105.
    Xia FD, Liu K, Lockwood S, Butler D, Tsiaras WG, Joyce C, Mostaghimi A (2018) Risk of developing pyoderma gangrenosum after procedures in patients with a known history of pyoderma gangrenosum—a retrospective analysis. J Am Acad Dermatol 78(2):310–314 e1PubMedCrossRefGoogle Scholar
  106. 106.
    Jockenhöfer F, Wollina U, Salva KA, Benson S, Dissemond J. The PARACELSUS score: a novel diagnostic tool for pyoderma gangrenosum. Br J Dermatol 2018. doi:
  107. 107.
    Leiphart PA, Lam CC, Foulke GT (2017) Suppression of pathergy in pyoderma gangrenosum with infliximab allowing for successful tendon debridement. JAAD Case Rep. 4(1):98–100PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Le Cleach L, Moguelet P, Perrin P, Chosidow O (2011) Is topical monotherapy effective for localized pyoderma gangrenosum? Arch Dermatol 147(1):101–103PubMedCrossRefGoogle Scholar
  109. 109.
    Reichrath J, Bens G, Bonowitz A, Tilgen W (2005) Treatment recommendations for pyoderma gangrenosum: an evidence-based review of the literature based on more than 350 patients. J Am Acad Dermatol 53(2):273–283PubMedCrossRefGoogle Scholar
  110. 110.
    Brooklyn TN, Dunnill MG, Shetty A, Bowden JJ, Williams JD, Griffiths CE, Forbes A, Greenwood R, Probert CS (2006) Infliximab for the treatment of pyoderma gangrenosum: a randomised, double blind, placebo controlled trial. Gut 55(4):505PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Song H, Lahood N, Mostaghimi A (2017) Intravenous immunoglobulin as adjunct therapy for refractory pyoderma gangrenosum: systematic review of cases and case series. Br J Dermatol. 5Google Scholar
  112. 112.
    Van Hale HM, Rogers RS, Zone JJ, Philip R, Greipp R (1985) Pyostomatitis vegetans—a reactive mucosal marker for inflammatory disease of the gut. Arch Dermatol 121:94–98CrossRefGoogle Scholar
  113. 113.
    Clark LG, Tolkachjov SN, Bridges AG, Camilleri MJ (2016) Pyostomatitis vegetans (PSV)-pyodermatitis vegetans (PDV): a clinicopathologic study of 7 cases at a tertiary referral center. J Am Acad Dermatol 75(3):578–584PubMedCrossRefGoogle Scholar
  114. 114.
    NIgen S, Poulin Y, Rochette L, Levesque MH, Gagne E (2003) Pyodermatitis-pyostomatitis vegetans: two cases and a review of the literature. J Cutan Med Surg 7(3):250–255PubMedGoogle Scholar
  115. 115.
    Hegarty AM, Barett AW, Scully C (2004) Pyostomatitis vegetans. Clin Exp Dermatol 29(1):1–7PubMedCrossRefGoogle Scholar
  116. 116.
    Thornhill MH, Zakrzewska JM, Gilkes JJH (1992) Pyostomatitis vegetans: report of three cases and review of the literature. J Oral Pathol Med 21:128–133PubMedCrossRefGoogle Scholar
  117. 117.
    Soriano ML, Martinez N, Grilli R, Farina MC, Martin L, Requena L (1999) Pyodermatitis-pyostomatitis vegetans. Report of a case and review of the literature. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 87:322–326PubMedCrossRefGoogle Scholar
  118. 118.
    Storwick GS, Prihoda MB, Fulton RJ, Wood WS (1994) Pyodermatitis-pyostomatitis vegetans: a specific marker for inflammatory bowel disease. J Am Acad Dermatol 31:336–341PubMedCrossRefGoogle Scholar
  119. 119.
    Ballo FS, Camisa C, Allen CM (1989) Pyostomatitis vegetans: report of a case and review of the literature. J Am Acad Dermatol 21:381–387PubMedCrossRefGoogle Scholar
  120. 120.
    Lopes Caçola R, Soares M, Cardoso C, Furtado A (2016) Sweet’s syndrome complicating ulcerative colitis: a rare association. BMJ Case Rep 20:2016Google Scholar
  121. 121.
    Cohen PR, Hongsmann H, Kurzrock R (2012) Acute febrile neutrophilic dermatosis (Sweet syndrome). In: Fitzpatrick’s dermatology in general medicine, 8th ed, Goldsmith LA, Katz SI, Gilchrest BA, et al. (Eds), McGraw Hill, Vol 1, p.362Google Scholar
  122. 122.
    Yang CS, Teeple M, Muglia J, Robinson-Bostom L (2016) Inflammatory and glandular skin disease in pregnancy. Clin Dermatol 34(3):335–343PubMedCrossRefGoogle Scholar
  123. 123.
    Cohen PR, Kurzrock R (1993) Sweet’s syndrome and cancer. Clin Dermatol 11(1):149–157PubMedCrossRefGoogle Scholar
  124. 124.
    Rochet NM, Chavan RN, Cappel MA, Wada DA, Gibson LE (2013) Sweet syndrome: clinical presentation, associations, and response to treatment in 77 patients. J Am Acad Dermatol 69(4):557PubMedCrossRefGoogle Scholar
  125. 125.
    Casarin Costa JR, Virgens AR, de Oliveira ML, Dias NF, Samorano LP, Valente NYS, Festa NC (2017) Sweet syndrome: clinical features, histopathology, and associations of 83 cases. J Cutan Med Surg 21(3):211–216PubMedCrossRefGoogle Scholar
  126. 126.
    Amouri M, Masmoudi A, Ammar M, Boudaya S, Khabir A, Boudawara T, Turki H (2016) Sweet’s syndrome: a retrospective study of 90 cases from a tertiary care center. Int J Dermatol 55(9):1033–1039PubMedCrossRefGoogle Scholar
  127. 127.
    Giasuddin AS, El-Orfi AH, Ziu MM, El-Barnawi NY (1998) Sweet’s syndrome: is the pathogenesis mediated by helper T cell type 1 cytokines? J Am Acad Dermatol 39(6):940PubMedCrossRefGoogle Scholar
  128. 128.
    Voelter-Mahlknecht S, Bauer J, Metzler G, Fierlbeck G, Rassner G (2005) Bullous variant of Sweet’s syndrome. Int J Dermatol 44(11):946–947PubMedCrossRefGoogle Scholar
  129. 129.
    Mijovic A, Novak A, Medenica L (1992) Sweet’s syndrome associated with inversion of chromosome 3q in a patient with refractory anemia. Eur J Haematol 49(3):156–157PubMedCrossRefGoogle Scholar
  130. 130.
    Takahama H, Kanbe T (2010) Neutrophilic dermatosis of the dorsal hands: a case showing HLA B54, the marker of Sweet’s syndrome. Int J Dermatol 49(9):1079–1080PubMedCrossRefGoogle Scholar
  131. 131.
    Jo T, Horio K, Migita K (2015) Sweet’s syndrome in patients with MDS and MEFV mutations. N Engl J Med 372(7):686PubMedCrossRefGoogle Scholar
  132. 132.
    Cohen PR, Kurzrock R (2002) Sweet’s syndrome: a review of current treatment options. Am J Clin Dermatol 3(2):117–131PubMedCrossRefGoogle Scholar
  133. 133.
    Seminario-Vidal L, Guerrero C, Sami N (2015]) Refractory Sweet’s syndrome successfully treated with rituximab. JAAD Case Rep 1(3):123–125PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Hashemi SM, Fazeli SA, Vahedi A, Golabchifard R (2016) Rituximab for refractory subcutaneous Sweet’s syndrome in chronic lymphocytic leukemia: a case report. Mol Clin Oncol 4(3):436–440PubMedCrossRefGoogle Scholar
  135. 135.
    Agarwal A, Barrow W, Selim MA, Nicholas MW (2016) Refractory subcutaneous sweet syndrome treated with adalimumab. JAMA Dermatol. 152(7):842PubMedCrossRefGoogle Scholar
  136. 136.
    Muhammed K, Nandakumar G, Thomas S (2004) Granulomatous cheilitis evolving into Melkersson-Rosenthal syndrome with bilateral facial palsy. Indian J Dermatol Venereol Leprol 70(5):313–314PubMedGoogle Scholar
  137. 137.
    Dummer W, Lurz C, Jeschke R, Meissner N et al (1999) Granulomatous cheilitis and Crohn’s disease in a 3-year-old boy. Pediatr Dermatol 16(1):39–42PubMedCrossRefGoogle Scholar
  138. 138.
    Oliveira AM, Martins M, Martins A, Ramos de Deus J (2016) Granulomatous cheilitis associated with Crohn’s disease. Am J Gastroenterol 111(4):456PubMedCrossRefGoogle Scholar
  139. 139.
    White A, Nunes C, Escudier M, Lomer MC, Barnard K, Shirlaw P et al (2006) Improvement in orofacial granulomatosis on a cinnamon- and benzoate-free diet. Inflamm Bowel Dis 12(6):508–514PubMedCrossRefGoogle Scholar
  140. 140.
    Inui S, Itami S, Katayama I (2008) Granulomatous cheilitis successfully treated with roxithromycin. J Dermatol 35:244–245PubMedCrossRefGoogle Scholar
  141. 141.
    Williams PM, Greenberg MS (1991) Management of cheilitis granulomatosa. Oral Surg Oral Med Oral Pathol 72(4):436–439PubMedCrossRefGoogle Scholar
  142. 142.
    Fdez-Freire LR, Serrano Gotarredona A, Bernabeu Wittel J, Pulpillo Ruiz A, Cabrera R, Navarrete Ortega M et al (2005) Clofazimine as elective treatment for granulomatous cheilitis. J Drugs Dermatol 4(3):374–377PubMedGoogle Scholar
  143. 143.
    Hindryckx P, Novak G, Bonovas S, Peyrin-Biroulet L, Danese S (2017) Infection risk with biologic therapy in patients with inflammatory bowel disease. Clin Pharmacol Ther 102:633–641PubMedCrossRefGoogle Scholar
  144. 144.
    Shah ED, Farida JP, Siegel CA et al (2017) Risk for overall infection with anti-TNF and anti-integrin agents used in IBD: a systematic review and meta-analysis. Inflamm Bowel Dis 357:570–577CrossRefGoogle Scholar
  145. 145.
    Thayu M, Markowitz JE, Mamula P et al (2005) Hepatosplenic T-cell lymphoma in an adolescent patient after immunomodulator and biologic therapy for Crohn disease. J Pediatr Gastroenterol Nutr 40(2):220–222PubMedCrossRefGoogle Scholar
  146. 146.
    Beaugerie L, Brousse N, Bouvier AM et al (2009) Lymphoproliferative disorders in patients receiving thiopurines for inflammatory bowel disease: a prospective observational cohort study. Lancet 357:1617–1625CrossRefGoogle Scholar
  147. 147.
    Seror R, Mariette X (2017) Malignancy and the risks of biologic therapies: current status. Rheum Dis Clin North Am 357:43–64CrossRefGoogle Scholar
  148. 148.
    Axelrad J, Bernheim O, Colombel JF et al (2016) Risk of new or recurrent cancer in patients with inflammatory bowel disease and previous cancer exposed to immunosuppressive and anti-tumor necrosis factor agents. Clin Gastroenterol Hepatol 357:58–64CrossRefGoogle Scholar
  149. 149.
    Shovman O, Tamar S et al (2018) Diverse patterns of anti-TNF-α-induced lupus: case series and review of the literature. Clin Rheumatol 37(2):563–568PubMedCrossRefGoogle Scholar
  150. 150.
    Kemanetzoglou E, Andreadou E (2017) CNS demyelination with TNF-α blockers. Curr Neurol Neurosci Rep 17(4):36PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Cleynen I, Van Moerkercke W, Billiet T et al (2016) Characteristics of skin lesions associated with anti-tumor necrosis factor therapy in patients with inflammatory bowel disease: a cohort study. Ann Intern Med 357:10–22CrossRefGoogle Scholar
  152. 152.
    Guerra I, Pérez-Jeldres T, Iborra M et al (2016) Incidence, clinical characteristics, and management of psoriasis induced by anti-TNF therapy in patients with inflammatory bowel disease: a nationwide cohort study. Inflamm Bowel Dis 357:894–901CrossRefGoogle Scholar
  153. 153.
    Mourad AA, Boktor MN, Yilmaz-Demirdag Y, Bahna SL (2015) Adverse reactions to infliximab and the outcome of desensitization. Ann Allergy Asthma Immunol 115(2):143–146PubMedCrossRefGoogle Scholar
  154. 154.
    Rutgeerts P, Schreiber S, Feagan B et al (2008) Certolizumab pegol, a monthly subcutaneously administered Fc-free anti-TNFalpha, improves health-related quality of life in patients with moderate to severe Crohn’s disease. Int J Color Dis 23(3):289–296CrossRefGoogle Scholar
  155. 155.
    Clowse ME, Wolf DC, Förger F, Cush JJ, Golembesky A, Shaughnessy L, De Cuyper D, Mahadevan U (2015) Pregnancy outcomes in subjects exposed to certolizumab pegol. J Rheumatol 42(12):2270–2278PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Milton S Hershey Medical CenterPenn State College of MedicineHersheyUSA
  2. 2.Division of Gastroenterology and HepatologyPenn State Milton S Hershey Medical CenterHersheyUSA

Personalised recommendations