Skip to main content

Advertisement

Log in

The Unique Molecular Signatures of Contact Dermatitis and Implications for Treatment

  • Published:
Clinical Reviews in Allergy & Immunology Aims and scope Submit manuscript

Abstract

Irritant contact dermatitis (ICD) and allergic contact dermatitis (ACD) are common skin disorders that are characterized by inflammation, oozing, crusting, and pruritus. Atopic dermatitis (AD) is an inflammatory skin disease characterized by immune and barrier abnormalities and is additionally a risk factor for acquiring ICD and ACD. New work on allergic sensitization to common allergens (e.g., nickel and fragrance) in human skin has shown that different allergens have distinct molecular fingerprinting. For example, nickel promotes strong Th1/Th17 polarization, whereas fragrance allergy causes Th2/Th22 skewing, which is similar to the phenotype of AD. While ACD has previously been considered to be constant across all allergens, largely based on mouse models involving strong sensitizers, these new data suggest that ACD differs mechanistically according to allergen. Further, ACD in the setting of concurrent AD shows a different and attenuated phenotype as compared to healthy individuals with ACD, which influences the way AD patients respond to vaccination and other treatment modalities. As in contact sensitization, skin challenged by food patch testing shows that common food allergens (e.g., peanut and barley) also cause distinct immune polarizations in the skin. Additionally, house dust mite reactions in human skin have been profiled to show unique Th2, Th9, and Th17/22 activation as compared to controls, which are similar to the phenotype of psoriasis and contact responses to nickel. Given this information, ACD patients should be treated based on their unique allergen polarity. Refined understanding of the molecular behavior of contact dermatitis and related diseases translates to improved methods of inducing tolerance in sensitized allergic patients, such as with targeted drug therapy and epicutaneous immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Abbreviations

ACD:

Allergic contact dermatitis

AD:

Atopic dermatitis

CD:

Contact dermatitis

dDC:

Dermal dendritic cells

DEG:

Differentially expressed genes

DNCB:

Dinitrochlorobenzene

EPIT:

Epicutaneous immunotherapy

FLG:

Filaggrin

HDM:

House dust mite

IDEC:

Inflammatory dendritic epidermal cell

ICD:

Irritant contact dermatitis

LC:

Langerhans cells

LN:

Lymph node

MADAD:

Meta-analysis derived atopic dermatitis

SLS:

Sodium lauryl sulfate

TEWL:

Trans-epidermal water loss

Treg:

Regulatory T cell

TSLP:

Thymic stromal lymphopoietin

References

  1. Saint-Mezard P, Rosieres A, Krasteva M, Berard F, Dubois B, Kaiserlian D, Nicolas JF (2004) Allergic contact dermatitis. Eur J Dermatol: EJD 14(5):284–295

    CAS  PubMed  Google Scholar 

  2. Zack B, Arrandale VH, Holness DL (2017) Preventing occupational skin disease: a review of training programs. Dermat : Contact, Atopic, Occup, Drug 28(3):169–182

    Google Scholar 

  3. Thyssen JP, Johansen JD, Linneberg A, Menne T (2010) The epidemiology of hand eczema in the general population--prevalence and main findings. Contact Dermat 62(2):75–87

    Article  Google Scholar 

  4. Eckert L, Gupta S, Amand C, Gadkari A, Mahajan P, Gelfand JM (2017) The burden of atopic dermatitis in US adults: health care resource utilization data from the 2013 National Health and Wellness Survey. J Am Acad Dermatol

  5. Weidinger S, Novak N (2016) Atopic dermatitis. Lancet (London, England) 387(10023):1109–1122

    Article  Google Scholar 

  6. Chew AL, Maibach HI (2003) Occupational issues of irritant contact dermatitis. Int Arch Occup Environ Health 76(5):339–346

    Article  CAS  Google Scholar 

  7. Gittler JK, Krueger JG, Guttman-Yassky E (2013) Atopic dermatitis results in intrinsic barrier and immune abnormalities: implications for contact dermatitis. J Allergy Clin Immunol 131(2):300–313

    Article  CAS  Google Scholar 

  8. Clark SC, Zirwas MJ (2009) Management of occupational dermatitis. Dermatol Clin 27(3):365–383 vii-viii

    Article  CAS  Google Scholar 

  9. Nosbaum A, Vocanson M, Rozieres A, Hennino A, Nicolas JF (2009) Allergic and irritant contact dermatitis. Eur J Dermatol: EJD. 19(4):325–332

    CAS  PubMed  Google Scholar 

  10. Bonneville M, Chavagnac C, Vocanson M, Rozieres A, Benetiere J, Pernet I, Denis A, Nicolas JF, Hennino A (2007) Skin contact irritation conditions the development and severity of allergic contact dermatitis. J Investig Dermatol 127(6):1430–1435

    Article  CAS  Google Scholar 

  11. Vocanson M, Hennino A, Rozieres A, Poyet G, Nicolas JF (2009) Effector and regulatory mechanisms in allergic contact dermatitis. Allergy 64(12):1699–1714

    Article  CAS  Google Scholar 

  12. DaSilva SC, Sahu RP, Konger RL, Perkins SM, Kaplan MH, Travers JB (2012) Increased skin barrier disruption by sodium lauryl sulfate in mice expressing a constitutively active STAT6 in T cells. Arch Dermatol Res 304(1):65–71

    Article  CAS  Google Scholar 

  13. Koppes SA, Engebretsen KA, Agner T, Angelova-Fischer I, Berents T, Brandner J, Brans R, Clausen ML, Hummler E, Jakasa I, Jurakić-Tončic R, John SM, Khnykin D, Molin S, Holm JO, Suomela S, Thierse HJ, Kezic S, Martin SF, Thyssen JP (2017) Current knowledge on biomarkers for contact sensitization and allergic contact dermatitis. Contact Dermat 77(1):1–16

    Article  Google Scholar 

  14. Landeck L, Visser M, Kezic S, John SM (2012) Impact of tumour necrosis factor-alpha polymorphisms on irritant contact dermatitis. Contact Dermat 66(4):221–227

    Article  CAS  Google Scholar 

  15. Allen MH, Wakelin SH, Holloway D, Lisby S, Baadsgaard O, Barker JN et al (2000) Association of TNFA gene polymorphism at position -308 with susceptibility to irritant contact dermatitis. Immunogenetics 51(3):201–205

    Article  CAS  Google Scholar 

  16. de Jongh CM, John SM, Bruynzeel DP, Calkoen F, van Dijk FJ, Khrenova L et al (2008) Cytokine gene polymorphisms and susceptibility to chronic irritant contact dermatitis. Contact Dermat 58(5):269–277

    Article  Google Scholar 

  17. Dhingra N, Shemer A, Correa da Rosa J, Rozenblit M, Fuentes-Duculan J, Gittler JK, Finney R, Czarnowicki T, Zheng X, Xu H, Estrada YD, Cardinale I, Suárez-Fariñas M, Krueger JG, Guttman-Yassky E (2014) Molecular profiling of contact dermatitis skin identifies allergen-dependent differences in immune response. J Allergy Clin Immunol 134(2):362–372

    Article  CAS  Google Scholar 

  18. Martin SF, Jakob T (2008) From innate to adaptive immune responses in contact hypersensitivity. Curr Opin Allergy Clin Immunol 8(4):289–293

    Article  CAS  Google Scholar 

  19. Weltzien HU, Martin SF, Nicolas JF (2014) T cell responses to contact allergens. EXS 104:41–49

    CAS  PubMed  Google Scholar 

  20. Weltzien HU, Moulon C, Martin S, Padovan E, Hartmann U, Kohler J (1996) T cell immune responses to haptens. Structural models for allergic and autoimmune reactions. Toxicology 107(2):141–151

    Article  CAS  Google Scholar 

  21. Larson RP, Zimmerli SC, Comeau MR, Itano A, Omori M, Iseki M, Hauser C, Ziegler SF (2010) Dibutyl phthalate-induced thymic stromal lymphopoietin is required for Th2 contact hypersensitivity responses. J Immunol 184(6):2974–2984

    Article  CAS  Google Scholar 

  22. Vocanson M, Hennino A, Cluzel-Tailhardat M, Saint-Mezard P, Benetiere J, Chavagnac C, Berard F, Kaiserlian D, Nicolas JF (2006) CD8+ T cells are effector cells of contact dermatitis to common skin allergens in mice. J Investig Dermatol. 126(4):815–820

    Article  CAS  Google Scholar 

  23. Saint-Mezard P, Krasteva M, Chavagnac C, Bosset S, Akiba H, Kehren J, Nicolas JF, Berard F, Kanitakis J, Kaiserlian D (2003) Afferent and efferent phases of allergic contact dermatitis (ACD) can be induced after a single skin contact with haptens: evidence using a mouse model of primary ACD. J Investig Dermatol. 120(4):641–647

    Article  CAS  Google Scholar 

  24. Malajian D, Belsito DV (2013) Cutaneous delayed-type hypersensitivity in patients with atopic dermatitis. J Am Acad Dermatol 69(2):232–237

    Article  CAS  Google Scholar 

  25. Newell L, Polak ME, Perera J, Owen C, Boyd P, Pickard C, Howarth PH, Healy E, Holloway JW, Friedmann PS, Ardern-Jones MR (2013) Sensitization via healthy skin programs Th2 responses in individuals with atopic dermatitis. J Investig Dermatol. 133(10):2372–2380

    Article  CAS  Google Scholar 

  26. Correa da Rosa J, Malajian D, Shemer A, Rozenblit M, Dhingra N, Czarnowicki T, Khattri S, Ungar B, Finney R, Xu H, Zheng X, Estrada YD, Peng X, Suárez-Fariñas M, Krueger JG, Guttman-Yassky E (2015) Patients with atopic dermatitis have attenuated and distinct contact hypersensitivity responses to common allergens in skin. J Allergy Clin Immunol 135(3):712–720

    Article  CAS  Google Scholar 

  27. Ungar B, Correa da Rosa J, Shemer A, Czarnowicki T, Estrada YD, Fuentes-Duculan J, Xu H, Zheng X, Peng X, Suárez-Fariñas M, Nowak-Wegrzyn A, Sampson HA, Krueger JG, Guttman-Yassky E (2017) Patch testing of food allergens promotes Th17 and Th2 responses with increased IL-33: a pilot study. Exp Dermatol 26(3):272–275

    Article  Google Scholar 

  28. Tordesillas L, Goswami R, Benede S, Grishina G, Dunkin D, Jarvinen KM et al (2014) Skin exposure promotes a Th2-dependent sensitization to peanut allergens. J Clin Invest 124(11):4965–4975

    Article  CAS  Google Scholar 

  29. Malik K, Ungar B, Garcet S, Dutt R, Dickstein D, Zheng X, et al. 2017 Dust mite induces multiple polar T-cell axes in human skin. Clinical and experimental allergy: journal of the British Society for Allergy and Clin Immunol

  30. Kaplan DH, Igyarto BZ, Gaspari AA (2012) Early immune events in the induction of allergic contact dermatitis. Nat Rev Immunol 12(2):114–124

    Article  CAS  Google Scholar 

  31. Honda T, Egawa G, Grabbe S, Kabashima K (2013) Update of immune events in the murine contact hypersensitivity model: toward the understanding of allergic contact dermatitis. J Investig Dermatol. 133(2):303–315

    Article  CAS  Google Scholar 

  32. Peiser M (2013) Role of Th17 cells in skin inflammation of allergic contact dermatitis. Clin Dev Immunol 2013:261037

    Article  Google Scholar 

  33. Zug KA, Warshaw EM, Fowler JF, Jr., Maibach HI, Belsito DL, Pratt MD, et al. Patch-test results of the North American Contact Dermatitis Group 2005-2006. Dermat : Contact, Atopic, Occup, Drug. 2009;20(3):149–160

  34. Suarez-Farinas M, Tintle SJ, Shemer A, Chiricozzi A, Nograles K, Cardinale I et al (2011) Nonlesional atopic dermatitis skin is characterized by broad terminal differentiation defects and variable immune abnormalities. J Allergy Clin Immunol 127(4):954–64.e1–4

    Article  Google Scholar 

  35. Czarnowicki T, Krueger JG, Guttman-Yassky E (2014) Skin barrier and immune dysregulation in atopic dermatitis: an evolving story with important clinical implications. J Allergy Clin Immunol Pract 2(4):371–379 quiz 80-1

    Article  Google Scholar 

  36. Brunner PM, Emerson RO, Tipton C, Garcet S, Khattri S, Coats I, Krueger JG, Guttman-Yassky E (2017) Nonlesional atopic dermatitis skin shares similar T-cell clones with lesional tissues. Allergy 72:2017–2025

    Article  CAS  Google Scholar 

  37. Guttman-Yassky E, Krueger JG (2017) Atopic dermatitis and psoriasis: two different immune diseases or one spectrum? Curr Opin Immunol 48:68–73

    Article  CAS  Google Scholar 

  38. Brunner PM, Silverberg JI, Guttman-Yassky E, Paller AS, Kabashima K, Amagai M, Luger TA, Deleuran M, Werfel T, Eyerich K, Stingl G, Bagot M, Hijnen DJ, Ardern-Jones M, Reynolds N, Spuls P, Taieb A (2017) Increasing comorbidities suggest that atopic dermatitis is a systemic disorder. J Investig Dermatol. 137(1):18–25

    Article  CAS  Google Scholar 

  39. Candi E, Schmidt R, Melino G (2005) The cornified envelope: a model of cell death in the skin. Nat Rev Mol Cell Biol 6(4):328–340

    Article  CAS  Google Scholar 

  40. Cabanillas B, Novak N (2016) Atopic dermatitis and filaggrin. Curr Opin Immunol 42:1–8

    Article  CAS  Google Scholar 

  41. Bin L, Leung DY (2016) Genetic and epigenetic studies of atopic dermatitis. Allergy, Asthma, Clin Immunol : Off J Can Soc Allergy Clin Immunol 12:52

    Article  Google Scholar 

  42. Howell MD, Kim BE, Gao P, Grant AV, Boguniewicz M, DeBenedetto A, Schneider L, Beck LA, Barnes KC, Leung DYM (2009) Cytokine modulation of atopic dermatitis filaggrin skin expression. J Allergy Clin Immunol 124(3 Suppl 2):R7–r12

    Article  CAS  Google Scholar 

  43. Ewald DA, Malajian D, Krueger JG, Workman CT, Wang T, Tian S, Litman T, Guttman-Yassky E, Suárez-Fariñas M (2015) Meta-analysis derived atopic dermatitis (MADAD) transcriptome defines a robust AD signature highlighting the involvement of atherosclerosis and lipid metabolism pathways. BMC Med Genet 8:60

    Google Scholar 

  44. Danso M, Boiten W, van Drongelen V, Gmelig Meijling K, Gooris G, El Ghalbzouri A et al (2017) Altered expression of epidermal lipid bio-synthesis enzymes in atopic dermatitis skin is accompanied by changes in stratum corneum lipid composition. J Dermatol Sci 88(1):57–66

    Article  CAS  Google Scholar 

  45. Dickel H, Bruckner TM, Schmidt A, Diepgen TL (2003) Impact of atopic skin diathesis on occupational skin disease incidence in a working population. J Investig Dermatol. 121(1):37–40

    Article  CAS  Google Scholar 

  46. Dhingra N, Gulati N, Guttman-Yassky E (2013) Mechanisms of contact sensitization offer insights into the role of barrier defects vs. intrinsic immune abnormalities as drivers of atopic dermatitis. J Investig Dermatol. 133(10):2311–2314

    Article  CAS  Google Scholar 

  47. Savage J, Johns CB (2015) Food allergy: epidemiology and natural history. Immunol Allergy Clin N Am 35(1):45–59

    Article  Google Scholar 

  48. Seltmann J, Roesner LM, von Hesler FW, Wittmann M, Werfel T. IL-33 impacts on the skin barrier by downregulating the expression of filaggrin. The Journal of allergy and clinical immunology. 2015;135(6):1659–61.e4

  49. AnaptysBio Initiates Multiple Ascending Dose Cohorts In ANB020 Phase 1 Clinical Trial. [press release]. July 6, 2016 2016

  50. Jurakic Toncic R, Lipozencic J (2010) Role and significance of atopy patch test. Acta Dermatovenerol Croat : ADC 18(1):38–55

    PubMed  Google Scholar 

  51. Reisacher WR, Davison W (2017) Immunotherapy for food allergy. Curr Opin Otolaryngol Head Neck Surg 25(3):235–241

    Article  Google Scholar 

  52. Herve PL, Descamps D, Deloizy C, Dhelft V, Laubreton D, Bouguyon E et al (2016) Non-invasive epicutaneous vaccine against respiratory syncytial virus: preclinical proof of concept. J Control Release : Off J Control Release Soc 243:146–159

    Article  CAS  Google Scholar 

  53. Mondoulet L, Dioszeghy V, Ligouis M, Dhelft V, Dupont C, Benhamou PH (2010) Epicutaneous immunotherapy on intact skin using a new delivery system in a murine model of allergy. Clin Exp Allergy : J Br Soc Allergy Clin Immunol 40(4):659–667

    Article  CAS  Google Scholar 

  54. Jones SM, Sicherer SH, Burks AW, Leung DY, Lindblad RW, Dawson P et al (2017) Epicutaneous immunotherapy for the treatment of peanut allergy in children and young adults. J Allergy Clin Immunol 139(4):1242–52.e9

    Article  CAS  Google Scholar 

  55. Ewald DA, Noda S, Oliva M, Litman T, Nakajima S, Li X, Xu H, Workman CT, Scheipers P, Svitacheva N, Labuda T, Krueger JG, Suárez-Fariñas M, Kabashima K, Guttman-Yassky E (2017) Major differences between human atopic dermatitis and murine models, as determined by using global transcriptomic profiling. J Allergy Clin Immunol 139(2):562–571

    Article  CAS  Google Scholar 

  56. Swindell WR, Johnston A, Carbajal S, Han G, Wohn C, Lu J, Xing X, Nair RP, Voorhees JJ, Elder JT, Wang XJ, Sano S, Prens EP, DiGiovanni J, Pittelkow MR, Ward NL, Gudjonsson JE (2011) Genome-wide expression profiling of five mouse models identifies similarities and differences with human psoriasis. PLoS One 6(4):e18266

    Article  CAS  Google Scholar 

  57. Bromley SK, Larson RP, Ziegler SF, Luster AD (2013) IL-23 induces atopic dermatitis-like inflammation instead of psoriasis-like inflammation in CCR2-deficient mice. PLoS One 8(3):e58196

    Article  CAS  Google Scholar 

  58. Neumann C, Gutgesell C, Fliegert F, Bonifer R, Herrmann F (1996) Comparative analysis of the frequency of house dust mite specific and nonspecific Th1 and Th2 cells in skin lesions and peripheral blood of patients with atopic dermatitis. J Mol Med(Berlin, Germany) 74(7):401–406

    Article  CAS  Google Scholar 

  59. Gfesser M, Rakoski J, Ring J (1996) The disturbance of epidermal barrier function in atopy patch test reactions in atopic eczema. Br J Dermatol 135(4):560–565

    Article  CAS  Google Scholar 

  60. Tanaka A, Amagai Y, Oida K, Matsuda H (2012) Recent findings in mouse models for human atopic dermatitis. Exp Anim 61(2):77–84

    Article  Google Scholar 

  61. Noda S, Suarez-Farinas M, Ungar B, Kim SJ, de Guzman Strong C, Xu H et al (2015) The Asian atopic dermatitis phenotype combines features of atopic dermatitis and psoriasis with increased TH17 polarization. J Allergy Clin Immunol 136(5):1254–1264

    Article  CAS  Google Scholar 

  62. Suarez-Farinas M, Dhingra N, Gittler J, Shemer A, Cardinale I, de Guzman Strong C et al (2013) Intrinsic atopic dermatitis shows similar TH2 and higher TH17 immune activation compared with extrinsic atopic dermatitis. J Allergy Clin Immunol 132(2):361–370

    Article  CAS  Google Scholar 

  63. Esaki H, Brunner PM, Renert-Yuval Y, Czarnowicki T, Huynh T, Tran G, Lyon S, Rodriguez G, Immaneni S, Johnson DB, Bauer B, Fuentes-Duculan J, Zheng X, Peng X, Estrada YD, Xu H, de Guzman Strong C, Suárez-Fariñas M, Krueger JG, Paller AS, Guttman-Yassky E (2016) Early-onset pediatric atopic dermatitis is TH2 but also TH17 polarized in skin. J Allergy Clin Immunol 138(6):1639–1651

    Article  CAS  Google Scholar 

  64. Czarnowicki T, Krueger JG, Guttman-Yassky E (2017) Novel concepts of prevention and treatment of atopic dermatitis through barrier and immune manipulations with implications for the atopic march. J Allergy Clin Immunol 139(6):1723–1734

    Article  CAS  Google Scholar 

  65. Nakajima S, Igyarto BZ, Honda T, Egawa G, Otsuka A, Hara-Chikuma M et al (2012) Langerhans cells are critical in epicutaneous sensitization with protein antigen via thymic stromal lymphopoietin receptor signaling. JAllergy Clin Immunol 129(0):1048–55.e6

    Article  CAS  Google Scholar 

  66. Steinbrink K, Mahnke K, Grabbe S, Enk AH, Jonuleit H (2009) Myeloid dendritic cell: from sentinel of immunity to key player of peripheral tolerance? Hum Immunol 70(5):289–293

    Article  CAS  Google Scholar 

  67. Novak N, Gros E, Bieber T, Allam JP (2010) Human skin and oral mucosal dendritic cells as ‘good guys’ and ‘bad guys’ in allergic immune responses. Clin Exp Immunol 161(1):28–33

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Our innovative EPIT® mechanism of action may have the potential to offer compelling clinical benefits to patients suffering from food allergies. 2014 [Available from: https://www.dbv-technologies.com/en/epit/moa]

  69. Bissonnette R, Papp KA, Poulin Y, Gooderham M, Raman M, Mallbris L, Wang C, Purohit V, Mamolo C, Papacharalambous J, Ports WC (2016) Topical tofacitinib for atopic dermatitis: a phase IIa randomized trial. Br J Dermatol 175(5):902–911

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emma Guttman-Yassky.

Ethics declarations

Conflict of Interest

EGY is an employee of Mount Sinai and has received research funds (grants paid to the institution) from AbbVie, Celgene, Eli Lilly, Janssen, Medimmune/AstraZeneca, Novartis, Pfizer, Regeneron, Vitae, Glenmark, Galderma, Asana, Innovaderm, Dermira, and UCB. EGY is also a consultant for Sanofi Aventis, Regeneron, Stiefel/GlaxoSmithKline, MedImmune, Celgene, Anacor, AnaptysBio, Dermira, Galderma, Glenmark, Novartis, Pfizer, Vitae, Leo Pharma, AbbVie, Eli Lilly, Kyowa, Mitsubishi Tanabe, Asana Biosciences, and Promius. AL declares no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leonard, A., Guttman-Yassky, E. The Unique Molecular Signatures of Contact Dermatitis and Implications for Treatment. Clinic Rev Allerg Immunol 56, 1–8 (2019). https://doi.org/10.1007/s12016-018-8685-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12016-018-8685-0

Keywords

Navigation