Advertisement

Clinical Reviews in Allergy & Immunology

, Volume 55, Issue 2, pp 107–117 | Cite as

Mechanisms of Oral Tolerance

  • Leticia Tordesillas
  • M. Cecilia Berin
Article

Abstract

Oral tolerance is a state of systemic unresponsiveness that is the default response to food antigens in the gastrointestinal tract, although immune tolerance can also be induced by other routes, such as the skin or inhalation. Antigen can be acquired directly by intestinal phagocytes, or pass through enterocytes or goblet cell-associated passages prior to capture by dendritic cells (DCs) in the lamina propria. Mucin from goblet cells acts on DCs to render them more tolerogenic. A subset of regulatory DCs expressing CD103 is responsible for delivery of antigen to the draining lymph node and induction of Tregs. These DCs also imprint gastrointestinal homing capacity, allowing the recently primed Tregs to home back to the lamina propria where they interact with macrophages that produce IL-10 and expand. Tregs induced by dietary antigen include Foxp3+ Tregs and Foxp3 Tregs. In addition to Tregs, T cell anergy can also contribute to oral tolerance. The microbiota plays a key role in the development of oral tolerance, through regulation of macrophages and innate lymphoid cells that contribute to the regulatory phenotype of gastrointestinal dendritic cells. Absence of microbiota is associated with a susceptibility to food allergy, while presence of Clostridia strains can suppress development of food allergy through enhancement of Tregs and intestinal barrier function. It is not clear if feeding of antigens can also induce true immune tolerance after a memory immune response has been generated, but mechanistic studies of oral immunotherapy trials demonstrate shared pathways in oral tolerance and oral immunotherapy, with a role for Tregs and anergy. An important role for IgA and IgG antibodies in development of immune tolerance is also supported by studies of oral tolerance in humans. The elucidation of key pathways in oral tolerance could identify new strategies to increase efficacy of immunotherapy treatments for food allergy.

Keywords

Oral tolerance Regulatory T cells Antigen-presenting cells Immunotherapy Food allergy Microbiota 

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Kraus TA, Toy L, Chan L, Childs J, Mayer L (2004) Failure to induce oral tolerance to a soluble protein in patients with inflammatory bowel disease. Gastroenterology 126(7):1771–1778CrossRefGoogle Scholar
  2. 2.
    Husby S, Mestecky J, Moldoveanu Z, Holland S, Elson CO (1994) Oral tolerance in humans. T cell but not B cell tolerance after antigen feeding. J Immunol 152(9):4663–4670PubMedGoogle Scholar
  3. 3.
    Untersmayr E, Bakos N, Scholl I, Kundi M, Roth-Walter F, Szalai K, Riemer AB, Ankersmit HJ, Scheiner O, Boltz-Nitulescu G, Jensen-Jarolim E (2005) Anti-ulcer drugs promote IgE formation toward dietary antigens in adult patients. FASEB J 19(6):656–658.  https://doi.org/10.1096/fj.04-3170fje CrossRefPubMedGoogle Scholar
  4. 4.
    Untersmayr E, Scholl I, Swoboda I, Beil WJ, Forster-Waldl E, Walter F, Riemer A, Kraml G, Kinaciyan T, Spitzauer S, Boltz-Nitulescu G, Scheiner O, Jensen-Jarolim E (2003) Antacid medication inhibits digestion of dietary proteins and causes food allergy: a fish allergy model in BALB/c mice. J Allergy Clin Immunol 112(3):616–623CrossRefGoogle Scholar
  5. 5.
    Knoop KA, Miller MJ, Newberry RD (2013) Transepithelial antigen delivery in the small intestine: different paths, different outcomes. Curr Opin Gastroenterol 29(2):112–118.  https://doi.org/10.1097/MOG.0b013e32835cf1cd CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Rios D, Wood MB, Li J, Chassaing B, Gewirtz AT, Williams IR (2016) Antigen sampling by intestinal M cells is the principal pathway initiating mucosal IgA production to commensal enteric bacteria. Mucosal Immunol 9(4):907–916.  https://doi.org/10.1038/mi.2015.121 CrossRefPubMedGoogle Scholar
  7. 7.
    Mallegol J, Van Niel G, Lebreton C, Lepelletier Y, Candalh C, Dugave C, Heath JK, Raposo G, Cerf-Bensussan N, Heyman M (2007) T84-intestinal epithelial exosomes bear MHC class II/peptide complexes potentiating antigen presentation by dendritic cells. Gastroenterology 132(5):1866–1876.  https://doi.org/10.1053/j.gastro.2007.02.043 CrossRefPubMedGoogle Scholar
  8. 8.
    Menard S, Cerf-Bensussan N, Heyman M (2010) Multiple facets of intestinal permeability and epithelial handling of dietary antigens. Mucosal Immunol 3(3):247–259.  https://doi.org/10.1038/mi.2010.5 CrossRefPubMedGoogle Scholar
  9. 9.
    Perrier C, Corthesy B (2011) Gut permeability and food allergies. Clin Exp Allergy 41(1):20–28.  https://doi.org/10.1111/j.1365-2222.2010.03639.x CrossRefPubMedGoogle Scholar
  10. 10.
    Tordesillas L, Gomez-Casado C, Garrido-Arandia M, Murua-Garcia A, Palacin A, Varela J, Konieczna P, Cuesta-Herranz J, Akdis CA, O'Mahony L, Diaz-Perales A (2013) Transport of Pru p 3 across gastrointestinal epithelium—an essential step towards the induction of food allergy? Clin Exp Allergy 43(12):1374–1383.  https://doi.org/10.1111/cea.12202 CrossRefPubMedGoogle Scholar
  11. 11.
    McDole JR, Wheeler LW, McDonald KG, Wang B, Konjufca V, Knoop KA, Newberry RD, Miller MJ (2012) Goblet cells deliver luminal antigen to CD103+ dendritic cells in the small intestine. Nature 483(7389):345–349.  https://doi.org/10.1038/nature10863 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Mazzini E, Massimiliano L, Penna G, Rescigno M (2014) Oral tolerance can be established via gap junction transfer of fed antigens from CX3CR1(+) macrophages to CD103(+) dendritic cells. Immunity 40(2):248–261.  https://doi.org/10.1016/j.immuni.2013.12.012 CrossRefPubMedGoogle Scholar
  13. 13.
    Rescigno M, Urbano M, Valzasina B, Francolini M, Rotta G, Bonasio R, Granucci F, Kraehenbuhl JP, Ricciardi-Castagnoli P (2001) Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat Immunol 2(4):361–367CrossRefGoogle Scholar
  14. 14.
    Niess JH, Brand S, Gu X, Landsman L, Jung S, McCormick BA, Vyas JM, Boes M, Ploegh HL, Fox JG, Littman DR, Reinecker HC (2005) CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance. Science 307(5707):254–258CrossRefGoogle Scholar
  15. 15.
    Farache J, Koren I, Milo I, Gurevich I, Kim KW, Zigmond E, Furtado GC, Lira SA, Shakhar G (2013) Luminal bacteria recruit CD103+ dendritic cells into the intestinal epithelium to sample bacterial antigens for presentation. Immunity 38(3):581–595.  https://doi.org/10.1016/j.immuni.2013.01.009 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Garside P, Steel M, Liew FY, Mowat AM (1995) CD4+ but not CD8+ T cells are required for the induction of oral tolerance. Int Immunol 7(3):501–504CrossRefGoogle Scholar
  17. 17.
    Chen Y, Kuchroo VK, Inobe J, Hafler DA, Weiner HL (1994) Regulatory T cell clones induced by oral tolerance: suppression of autoimmune encephalomyelitis. Science 265(5176):1237–1240CrossRefGoogle Scholar
  18. 18.
    Mucida D, Kutchukhidze N, Erazo A, Russo M, Lafaille JJ, Curotto de Lafaille MA (2005) Oral tolerance in the absence of naturally occurring Tregs. J Clin Invest 115(7):1923–1933CrossRefPubMedCentralGoogle Scholar
  19. 19.
    Curotto de Lafaille MA, Kutchukhidze N, Shen S, Ding Y, Yee H, Lafaille JJ (2008) Adaptive Foxp3+ regulatory T cell-dependent and -independent control of allergic inflammation. Immunity 29(1):114–126CrossRefGoogle Scholar
  20. 20.
    Torgerson TR, Linane A, Moes N, Anover S, Mateo V, Rieux-Laucat F, Hermine O, Vijay S, Gambineri E, Cerf-Bensussan N, Fischer A, Ochs HD, Goulet O, Ruemmele FM (2007) Severe food allergy as a variant of IPEX syndrome caused by a deletion in a noncoding region of the FOXP3 gene. Gastroenterology 132(5):1705–1717.  https://doi.org/10.1053/j.gastro.2007.02.044 CrossRefPubMedGoogle Scholar
  21. 21.
    Hadis U, Wahl B, Schulz O, Hardtke-Wolenski M, Schippers A, Wagner N, Muller W, Sparwasser T, Forster R, Pabst O (2011) Intestinal tolerance requires gut homing and expansion of FoxP3+ regulatory T cells in the lamina propria. Immunity 34(2):237–246.  https://doi.org/10.1016/j.immuni.2011.01.016 CrossRefGoogle Scholar
  22. 22.
    Ochi H, Abraham M, Ishikawa H, Frenkel D, Yang K, Basso AS, Wu H, Chen ML, Gandhi R, Miller A, Maron R, Weiner HL (2006) Oral CD3-specific antibody suppresses autoimmune encephalomyelitis by inducing CD4+ CD25- LAP+ T cells. Nat Med 12(6):627–635.  https://doi.org/10.1038/nm1408 CrossRefPubMedGoogle Scholar
  23. 23.
    Tordesillas L, Mondoulet L, Blazquez AB, Benhamou PH, Sampson HA, Berin MC (2016) Epicutaneous immunotherapy induces gastrointestinal LAP+ regulatory T cells and prevents food-induced anaphylaxis. J Allergy Clin Immunol 139:189–201.e4.  https://doi.org/10.1016/j.jaci.2016.03.057 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Carrier Y, Yuan J, Kuchroo VK, Weiner HL (2007) Th3 cells in peripheral tolerance. I. Induction of Foxp3-positive regulatory T cells by Th3 cells derived from TGF-beta T cell-transgenic mice. J Immunol 178 (1):179-185. doi:178/1/179 [pii]Google Scholar
  25. 25.
    Tran DQ, Andersson J, Wang R, Ramsey H, Unutmaz D, Shevach EM (2009) GARP (LRRC32) is essential for the surface expression of latent TGF-beta on platelets and activated FOXP3+ regulatory T cells. Proc Natl Acad Sci U S A 106(32):13445–13450.  https://doi.org/10.1073/pnas.0901944106 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Asseman C, Mauze S, Leach MW, Coffman RL, Powrie F (1999) An essential role for interleukin 10 in the function of regulatory T cells that inhibit intestinal inflammation. J Exp Med 190(7):995–1004CrossRefPubMedCentralGoogle Scholar
  27. 27.
    Kuhn R, Lohler J, Rennick D, Rajewsky K, Muller W (1993) Interleukin-10-deficient mice develop chronic enterocolitis. Cell 75(2):263–274CrossRefGoogle Scholar
  28. 28.
    Gonnella PA, Chen YH, Waldner H, Weiner HL (2006) Induction of oral tolerization in CD86 deficient mice: a role for CD86 and B cells in the up-regulation of TGF-beta. J Autoimmun 26(2):73–81.  https://doi.org/10.1016/j.jaut.2005.10.003 CrossRefPubMedGoogle Scholar
  29. 29.
    Zhou Y, Kawasaki H, Hsu SC, Lee RT, Yao X, Plunkett B, Fu J, Yang K, Lee YC, Huang SK (2010) Oral tolerance to food-induced systemic anaphylaxis mediated by the C-type lectin SIGNR1. Nat Med 16(10):1128–1133.  https://doi.org/10.1038/nm.2201 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Awasthi A, Carrier Y, Peron JP, Bettelli E, Kamanaka M, Flavell RA, Kuchroo VK, Oukka M, Weiner HL (2007) A dominant function for interleukin 27 in generating interleukin 10-producing anti-inflammatory T cells. Nat Immunol 8(12):1380–1389.  https://doi.org/10.1038/ni1541 CrossRefPubMedGoogle Scholar
  31. 31.
    Chen Y, Inobe J, Kuchroo VK, Baron JL, Janeway CA Jr, Weiner HL (1996) Oral tolerance in myelin basic protein T-cell receptor transgenic mice: suppression of autoimmune encephalomyelitis and dose-dependent induction of regulatory cells. Proc Natl Acad Sci U S A 93(1):388–391CrossRefPubMedCentralGoogle Scholar
  32. 32.
    Chen Y, Inobe J, Marks R, Gonnella P, Kuchroo VK, Weiner HL (1995) Peripheral deletion of antigen-reactive T cells in oral tolerance. Nature 376(6536):177–180CrossRefGoogle Scholar
  33. 33.
    Worbs T, Bode U, Yan S, Hoffmann MW, Hintzen G, Bernhardt G, Forster R, Pabst O (2006) Oral tolerance originates in the intestinal immune system and relies on antigen carriage by dendritic cells. J Exp Med 203(3):519–527CrossRefPubMedCentralGoogle Scholar
  34. 34.
    Kraus TA, Brimnes J, Muong C, Liu JH, Moran TM, Tappenden KA, Boros P, Mayer L (2005) Induction of mucosal tolerance in Peyer’s patch-deficient, ligated small bowel loops. J Clin Invest 115(8):2234–2243.  https://doi.org/10.1172/JCI19102 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Spahn TW, Fontana A, Faria AM, Slavin AJ, Eugster HP, Zhang X, Koni PA, Ruddle NH, Flavell RA, Rennert PD, Weiner HL (2001) Induction of oral tolerance to cellular immune responses in the absence of Peyer’s patches. Eur J Immunol 31(4):1278–1287CrossRefGoogle Scholar
  36. 36.
    Benson MJ, Pino-Lagos K, Rosemblatt M, Noelle RJ (2007) All-trans retinoic acid mediates enhanced T reg cell growth, differentiation, and gut homing in the face of high levels of co-stimulation. J Exp Med 204(8):1765–1774.  https://doi.org/10.1084/jem.20070719 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Coombes JL, Siddiqui KR, Arancibia-Carcamo CV, Hall J, Sun CM, Belkaid Y, Powrie F (2007) A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism. J Exp Med 204(8):1757–1764.  https://doi.org/10.1084/jem.20070590 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Sun CM, Hall JA, Blank RB, Bouladoux N, Oukka M, Mora JR, Belkaid Y (2007) Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid. J Exp Med 204(8):1775–1785.  https://doi.org/10.1084/jem.20070602 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Iwata M, Hirakiyama A, Eshima Y, Kagechika H, Kato C, Song SY (2004) Retinoic acid imprints gut-homing specificity on T cells. Immunity 21(4):527–538.  https://doi.org/10.1016/j.immuni.2004.08.011 CrossRefPubMedGoogle Scholar
  40. 40.
    Hammerschmidt SI, Ahrendt M, Bode U, Wahl B, Kremmer E, Forster R, Pabst O (2008) Stromal mesenteric lymph node cells are essential for the generation of gut-homing T cells in vivo. J Exp Med 205(11):2483–2490.  https://doi.org/10.1084/jem.20080039 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Matteoli G, Mazzini E, Iliev ID, Mileti E, Fallarino F, Puccetti P, Chieppa M, Rescigno M (2010) Gut CD103+ dendritic cells express indoleamine 2,3-dioxygenase which influences T regulatory/T effector cell balance and oral tolerance induction. Gut 59(5):595–604.  https://doi.org/10.1136/gut.2009.185108 CrossRefPubMedGoogle Scholar
  42. 42.
    Cassani B, Villablanca EJ, Quintana FJ, Love PE, Lacy-Hulbert A, Blaner WS, Sparwasser T, Snapper SB, Weiner HL, Mora JR (2011) Gut-tropic T cells that express integrin alpha4beta7 and CCR9 are required for induction of oral immune tolerance in mice. Gastroenterology 141(6):2109–2118.  https://doi.org/10.1053/j.gastro.2011.09.015 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Esterhazy D, Loschko J, London M, Jove V, Oliveira TY, Mucida D (2016) Classical dendritic cells are required for dietary antigen-mediated induction of peripheral T(reg) cells and tolerance. Nat Immunol 17(5):545–555.  https://doi.org/10.1038/ni.3408 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Dubois B, Joubert G, Gomez de Aguero M, Gouanvic M, Goubier A, Kaiserlian D (2009) Sequential role of plasmacytoid dendritic cells and regulatory T cells in oral tolerance. Gastroenterology 137(3):1019–1028.  https://doi.org/10.1053/j.gastro.2009.03.055 CrossRefPubMedGoogle Scholar
  45. 45.
    Goubier A, Dubois B, Gheit H, Joubert G, Villard-Truc F, Asselin-Paturel C, Trinchieri G, Kaiserlian D (2008) Plasmacytoid dendritic cells mediate oral tolerance. Immunity 29(3):464–475CrossRefPubMedCentralGoogle Scholar
  46. 46.
    Palomares O, Ruckert B, Jartti T, Kucuksezer UC, Puhakka T, Gomez E, Fahrner HB, Speiser A, Jung A, Kwok WW, Kalogjera L, Akdis M, Akdis CA (2012) Induction and maintenance of allergen-specific FOXP3+ Treg cells in human tonsils as potential first-line organs of oral tolerance. J Allergy Clin Immunol 129 (2):510–520, 520 e511–519.  https://doi.org/10.1016/j.jaci.2011.09.031 CrossRefGoogle Scholar
  47. 47.
    Mascarell L, Lombardi V, Louise A, Saint-Lu N, Chabre H, Moussu H, Betbeder D, Balazuc AM, Van Overtvelt L, Moingeon P (2008) Oral dendritic cells mediate antigen-specific tolerance by stimulating TH1 and regulatory CD4+ T cells. J Allergy Clin Immunol 122 (3):603–609 e605. doi:  https://doi.org/10.1016/j.jaci.2008.06.034 CrossRefGoogle Scholar
  48. 48.
    Shan M, Gentile M, Yeiser JR, Walland AC, Bornstein VU, Chen K, He B, Cassis L, Bigas A, Cols M, Comerma L, Huang B, Blander JM, Xiong H, Mayer L, Berin C, Augenlicht LH, Velcich A, Cerutti A (2013) Mucus enhances gut homeostasis and oral tolerance by delivering immunoregulatory signals. Science 342(6157):447–453.  https://doi.org/10.1126/science.1237910 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Mortha A, Chudnovskiy A, Hashimoto D, Bogunovic M, Spencer SP, Belkaid Y, Merad M (2014) Microbiota-dependent crosstalk between macrophages and ILC3 promotes intestinal homeostasis. Science 343(6178):1249288.  https://doi.org/10.1126/science.1249288 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Mosconi E, Rekima A, Seitz-Polski B, Kanda A, Fleury S, Tissandie E, Monteiro R, Dombrowicz DD, Julia V, Glaichenhaus N, Verhasselt V (2010) Breast milk immune complexes are potent inducers of oral tolerance in neonates and prevent asthma development. Mucosal Immunol 3(5):461–474.  https://doi.org/10.1038/mi.2010.23 CrossRefPubMedGoogle Scholar
  51. 51.
    Rekima A, Macchiaverni P, Turfkruyer M, Holvoet S, Dupuis L, Baiz N, Annesi-Maesano I, Mercenier A, Nutten S, Verhasselt V (2017) Long-term reduction in food allergy susceptibility in mice by combining breastfeeding-induced tolerance and TGF-beta-enriched formula after weaning. Clin Exp Allergy 47(4):565–576.  https://doi.org/10.1111/cea.12864 CrossRefPubMedGoogle Scholar
  52. 52.
    Akbari O, DeKruyff RH, Umetsu DT (2001) Pulmonary dendritic cells producing IL-10 mediate tolerance induced by respiratory exposure to antigen. Nat Immunol 2(8):725–731CrossRefGoogle Scholar
  53. 53.
    Wu HY, Quintana FJ, Weiner HL (2008) Nasal anti-CD3 antibody ameliorates lupus by inducing an IL-10-secreting CD4+ CD25- LAP+ regulatory T cell and is associated with down-regulation of IL-17+ CD4+ ICOS+ CXCR5+ follicular helper T cells. J Immunol 181(9):6038–6050CrossRefPubMedCentralGoogle Scholar
  54. 54.
    Duan W, So T, Croft M (2008) Antagonism of airway tolerance by endotoxin/lipopolysaccharide through promoting OX40L and suppressing antigen-specific Foxp3+ T regulatory cells. J Immunol 181(12):8650–8659CrossRefPubMedCentralGoogle Scholar
  55. 55.
    Duan W, So T, Mehta AK, Choi H, Croft M (2011) Inducible CD4+LAP+Foxp3- regulatory T cells suppress allergic inflammation. J Immunol 187(12):6499–6507.  https://doi.org/10.4049/jimmunol.1101398 CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Ostroukhova M, Seguin-Devaux C, Oriss TB, Dixon-McCarthy B, Yang L, Ameredes BT, Corcoran TE, Ray A (2004) Tolerance induced by inhaled antigen involves CD4(+) T cells expressing membrane-bound TGF-beta and FOXP3. J Clin Invest 114(1):28–38.  https://doi.org/10.1172/JCI20509 CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Vermaelen KY, Carro-Muino I, Lambrecht BN, Pauwels RA (2001) Specific migratory dendritic cells rapidly transport antigen from the airways to the thoracic lymph nodes. J Exp Med 193(1):51–60CrossRefPubMedCentralGoogle Scholar
  58. 58.
    Hintzen G, Ohl L, del Rio ML, Rodriguez-Barbosa JI, Pabst O, Kocks JR, Krege J, Hardtke S, Forster R (2006) Induction of tolerance to innocuous inhaled antigen relies on a CCR7-dependent dendritic cell-mediated antigen transport to the bronchial lymph node. J Immunol 177 (10):7346-7354. doi:177/10/7346 [pii] Google Scholar
  59. 59.
    de Heer HJ, Hammad H, Soullie T, Hijdra D, Vos N, Willart MA, Hoogsteden HC, Lambrecht BN (2004) Essential role of lung plasmacytoid dendritic cells in preventing asthmatic reactions to harmless inhaled antigen. J Exp Med 200(1):89–98CrossRefPubMedCentralGoogle Scholar
  60. 60.
    Xanthou G, Alissafi T, Semitekolou M, Simoes DC, Economidou E, Gaga M, Lambrecht BN, Lloyd CM, Panoutsakopoulou V (2007) Osteopontin has a crucial role in allergic airway disease through regulation of dendritic cell subsets. Nat Med 13(5):570–578.  https://doi.org/10.1038/nm1580 CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Tordesillas L, Berin MC, Sampson HA (2017) Immunology of food allergy. Immunity 47(1):32–50.  https://doi.org/10.1016/j.immuni.2017.07.004 CrossRefGoogle Scholar
  62. 62.
    Dunkin D, Berin MC, Mayer L (2011) Allergic sensitization can be induced via multiple physiologic routes in an adjuvant-dependent manner. J Allergy Clin Immunol 128 (6):1251–1258 e1252.  https://doi.org/10.1016/j.jaci.2011.06.007 CrossRefGoogle Scholar
  63. 63.
    Strid J, Hourihane J, Kimber I, Callard R, Strobel S (2005) Epicutaneous exposure to peanut protein prevents oral tolerance and enhances allergic sensitization. Clin Exp Allergy 35(6):757–766CrossRefGoogle Scholar
  64. 64.
    Tordesillas L, Goswami R, Benede S, Grishina G, Dunkin D, Jarvinen KM, Maleki SJ, Sampson HA, Berin MC (2014) Skin exposure promotes a Th2-dependent sensitization to peanut allergens. J Clin Invest 124(11):4965–4975.  https://doi.org/10.1172/JCI75660 CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Li W, Zhang Z, Saxon A, Zhang K (2012) Prevention of oral food allergy sensitization via skin application of food allergen in a mouse model. Allergy 67(5):622–629.  https://doi.org/10.1111/j.1398-9995.2012.02798.x CrossRefPubMedGoogle Scholar
  66. 66.
    Dunkin D, Berin MC, Mondoulet L, Yeretssian G, Tordesillas L, Iuga A, Larcher T, Guillespie V, Benhamou PH, Colombel JF, Sampson HA (2017) Epicutaneous tolerance induction to a bystander antigen abrogates colitis and ileitis in mice. Inflammatory Bowel Diseases In PressGoogle Scholar
  67. 67.
    Cahenzli J, Koller Y, Wyss M, Geuking MB, McCoy KD (2013) Intestinal microbial diversity during early-life colonization shapes long-term IgE levels. Cell Host Microbe 14(5):559–570.  https://doi.org/10.1016/j.chom.2013.10.004 CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Stefka AT, Feehley T, Tripathi P, Qiu J, McCoy K, Mazmanian SK, Tjota MY, Seo GY, Cao S, Theriault BR, Antonopoulos DA, Zhou L, Chang EB, Fu YX, Nagler CR (2014) Commensal bacteria protect against food allergen sensitization. Proc Natl Acad Sci U S A 111(36):13145–13150.  https://doi.org/10.1073/pnas.1412008111 CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Noval Rivas M, Burton OT, Wise P, Zhang YQ, Hobson SA, Garcia Lloret M, Chehoud C, Kuczynski J, DeSantis T, Warrington J, Hyde ER, Petrosino JF, Gerber GK, Bry L, Oettgen HC, Mazmanian SK, Chatila TA (2013) A microbiota signature associated with experimental food allergy promotes allergic sensitization and anaphylaxis. J Allergy Clin Immunol 131(1):201–212.  https://doi.org/10.1016/j.jaci.2012.10.026 CrossRefPubMedGoogle Scholar
  70. 70.
    Diesner SC, Bergmayr C, Pfitzner B, Assmann V, Krishnamurthy D, Starkl P, Endesfelder D, Rothballer M, Welzl G, Rattei T, Eiwegger T, Szepfalusi Z, Fehrenbach H, Jensen-Jarolim E, Hartmann A, Pali-Scholl I, Untersmayr E (2016) A distinct microbiota composition is associated with protection from food allergy in an oral mouse immunization model. Clin Immunol 173:10–18.  https://doi.org/10.1016/j.clim.2016.10.009 CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Atarashi K, Tanoue T, Oshima K, Suda W, Nagano Y, Nishikawa H, Fukuda S, Saito T, Narushima S, Hase K, Kim S, Fritz JV, Wilmes P, Ueha S, Matsushima K, Ohno H, Olle B, Sakaguchi S, Taniguchi T, Morita H, Hattori M, Honda K (2013) Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature 500(7461):232–236.  https://doi.org/10.1038/nature12331 CrossRefPubMedGoogle Scholar
  72. 72.
    Atarashi K, Tanoue T, Shima T, Imaoka A, Kuwahara T, Momose Y, Cheng G, Yamasaki S, Saito T, Ohba Y, Taniguchi T, Takeda K, Hori S, Ivanov, II, Umesaki Y, Itoh K, Honda K (2011) Induction of colonic regulatory T cells by indigenous Clostridium species. Science 331 (6015):337–341. doi: https://doi.org/10.1126/science.1198469 CrossRefPubMedCentralGoogle Scholar
  73. 73.
    Rodriguez B, Prioult G, Bibiloni R, Nicolis I, Mercenier A, Butel MJ, Waligora-Dupriet AJ (2011) Germ-free status and altered caecal subdominant microbiota are associated with a high susceptibility to cow’s milk allergy in mice. FEMS Microbiol Ecol 76(1):133–144.  https://doi.org/10.1111/j.1574-6941.2010.01035.x CrossRefPubMedGoogle Scholar
  74. 74.
    Naik S, Bouladoux N, Linehan JL, Han SJ, Harrison OJ, Wilhelm C, Conlan S, Himmelfarb S, Byrd AL, Deming C, Quinones M, Brenchley JM, Kong HH, Tussiwand R, Murphy KM, Merad M, Segre JA, Belkaid Y (2015) Commensal-dendritic-cell interaction specifies a unique protective skin immune signature. Nature 520(7545):104–108.  https://doi.org/10.1038/nature14052 CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Faith JJ, Ahern PP, Ridaura VK, Cheng J, Gordon JI (2014) Identifying gut microbe-host phenotype relationships using combinatorial communities in gnotobiotic mice. Sci Transl Med 6(220):220ra211.  https://doi.org/10.1126/scitranslmed.3008051 CrossRefGoogle Scholar
  76. 76.
    Ohnmacht C, Park JH, Cording S, Wing JB, Atarashi K, Obata Y, Gaboriau-Routhiau V, Marques R, Dulauroy S, Fedoseeva M, Busslinger M, Cerf-Bensussan N, Boneca IG, Voehringer D, Hase K, Honda K, Sakaguchi S, Eberl G (2015) MUCOSAL IMMUNOLOGY. The microbiota regulates type 2 immunity through RORgammat(+) T cells. Science 349(6251):989–993.  https://doi.org/10.1126/science.aac4263 CrossRefPubMedGoogle Scholar
  77. 77.
    Sefik E, Geva-Zatorsky N, Oh S, Konnikova L, Zemmour D, McGuire AM, Burzyn D, Ortiz-Lopez A, Lobera M, Yang J, Ghosh S, Earl A, Snapper SB, Jupp R, Kasper D, Mathis D, Benoist C (2015) MUCOSAL IMMUNOLOGY. Individual intestinal symbionts induce a distinct population of RORgamma(+) regulatory T cells. Science 349(6251):993–997.  https://doi.org/10.1126/science.aaa9420 CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Wang S, Charbonnier LM, Noval Rivas M, Georgiev P, Li N, Gerber G, Bry L, Chatila TA (2015) MyD88 adaptor-dependent microbial sensing by regulatory T cells promotes mucosal tolerance and enforces commensalism. Immunity 43(2):289–303.  https://doi.org/10.1016/j.immuni.2015.06.014 CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Hill DA, Siracusa MC, Abt MC, Kim BS, Kobuley D, Kubo M, Kambayashi T, Larosa DF, Renner ED, Orange JS, Bushman FD, Artis D (2012) Commensal bacteria-derived signals regulate basophil hematopoiesis and allergic inflammation. Nat Med 18(4):538–546.  https://doi.org/10.1038/nm.2657 CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Arpaia N, Campbell C, Fan X, Dikiy S, van der Veeken J, deRoos P, Liu H, Cross JR, Pfeffer K, Coffer PJ, Rudensky AY (2013) Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 504(7480):451–455.  https://doi.org/10.1038/nature12726 CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Furusawa Y, Obata Y, Fukuda S, Endo TA, Nakato G, Takahashi D, Nakanishi Y, Uetake C, Kato K, Kato T, Takahashi M, Fukuda NN, Murakami S, Miyauchi E, Hino S, Atarashi K, Onawa S, Fujimura Y, Lockett T, Clarke JM, Topping DL, Tomita M, Hori S, Ohara O, Morita T, Koseki H, Kikuchi J, Honda K, Hase K, Ohno H (2013) Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504(7480):446–450.  https://doi.org/10.1038/nature12721 CrossRefPubMedGoogle Scholar
  82. 82.
    Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA, Bohlooly YM, Glickman JN, Garrett WS (2013) The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 341(6145):569–573.  https://doi.org/10.1126/science.1241165 CrossRefPubMedGoogle Scholar
  83. 83.
    Tan J, McKenzie C, Vuillermin PJ, Goverse G, Vinuesa CG, Mebius RE, Macia L, Mackay CR (2016) Dietary fiber and bacterial SCFA enhance oral tolerance and protect against food allergy through diverse cellular pathways. Cell Rep 15(12):2809–2824.  https://doi.org/10.1016/j.celrep.2016.05.047 CrossRefPubMedGoogle Scholar
  84. 84.
    De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, Collini S, Pieraccini G, Lionetti P (2010) Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A 107(33):14691–14696.  https://doi.org/10.1073/pnas.1005963107 CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Wu GD, Chen J, Hoffmann C, Bittinger K, Chen YY, Keilbaugh SA, Bewtra M, Knights D, Walters WA, Knight R, Sinha R, Gilroy E, Gupta K, Baldassano R, Nessel L, Li H, Bushman FD, Lewis JD (2011) Linking long-term dietary patterns with gut microbial enterotypes. Science 334(6052):105–108.  https://doi.org/10.1126/science.1208344 CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Kim KS, Hong SW, Han D, Yi J, Jung J, Yang BG, Lee JY, Lee M, Surh CD (2016) Dietary antigens limit mucosal immunity by inducing regulatory T cells in the small intestine. Science 351(6275):858–863.  https://doi.org/10.1126/science.aac5560 CrossRefPubMedGoogle Scholar
  87. 87.
    Gorelik M, Narisety SD, Guerrerio AL, Chichester KL, Keet CA, Bieneman AP, Hamilton RG, Wood RA, Schroeder JT, Frischmeyer-Guerrerio PA (2015) Suppression of the immunologic response to peanut during immunotherapy is often transient. J Allergy Clin Immunol 135(5):1283–1292.  https://doi.org/10.1016/j.jaci.2014.11.010 CrossRefPubMedGoogle Scholar
  88. 88.
    Varshney P, Jones SM, Scurlock AM, Perry TT, Kemper A, Steele P, Hiegel A, Kamilaris J, Carlisle S, Yue X, Kulis M, Pons L, Vickery B, Burks AW (2011) A randomized controlled study of peanut oral immunotherapy: clinical desensitization and modulation of the allergic response. J Allergy Clin Immunol 127(3):654–660.  https://doi.org/10.1016/j.jaci.2010.12.1111 CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Perezabad L, Reche M, Valbuena T, Lopez-Fandino R, Molina E, Lopez-Exposito I (2017) Oral food desensitization in children with IgE-mediated cow’s milk allergy: immunological changes underlying desensitization. Allergy Asthma Immunol Res 9(1):35–42.  https://doi.org/10.4168/aair.2017.9.1.35 CrossRefPubMedGoogle Scholar
  90. 90.
    Bedoret D, Singh AK, Shaw V, Hoyte EG, Hamilton R, DeKruyff RH, Schneider LC, Nadeau KC, Umetsu DT (2012) Changes in antigen-specific T-cell number and function during oral desensitization in cow's milk allergy enabled with omalizumab. Mucosal Immunol 5(3):267–276.  https://doi.org/10.1038/mi.2012.5 CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Ryan JF, Hovde R, Glanville J, Lyu SC, Ji X, Gupta S, Tibshirani RJ, Jay DC, Boyd SD, Chinthrajah RS, Davis MM, Galli SJ, Maecker HT, Nadeau KC (2016) Successful immunotherapy induces previously unidentified allergen-specific CD4+ T-cell subsets. Proc Natl Acad Sci U S A 113(9):E1286–E1295.  https://doi.org/10.1073/pnas.1520180113 CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Syed A, Garcia MA, Lyu SC, Bucayu R, Kohli A, Ishida S, Berglund JP, Tsai M, Maecker H, O'Riordan G, Galli SJ, Nadeau KC (2014) Peanut oral immunotherapy results in increased antigen-induced regulatory T-cell function and hypomethylation of forkhead box protein 3 (FOXP3). J Allergy Clin Immunol 133 (2):500–510 e511. doi: https://doi.org/10.1016/j.jaci.2013.12.1037 CrossRefGoogle Scholar
  93. 93.
    Burton OT, Noval Rivas M, Zhou JS, Logsdon SL, Darling AR, Koleoglou KJ, Roers A, Houshyar H, Crackower MA, Chatila TA, Oettgen HC (2014) Immunoglobulin E signal inhibition during allergen ingestion leads to reversal of established food allergy and induction of regulatory T cells. Immunity 41(1):141–151.  https://doi.org/10.1016/j.immuni.2014.05.017 CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Noval Rivas M, Burton OT, Wise P, Charbonnier LM, Georgiev P, Oettgen HC, Rachid R, Chatila TA (2015) Regulatory T cell reprogramming toward a Th2-cell-like lineage impairs oral tolerance and promotes food allergy. Immunity 42(3):512–523.  https://doi.org/10.1016/j.immuni.2015.02.004 CrossRefPubMedGoogle Scholar
  95. 95.
    Mondoulet L, Dioszeghy V, Puteaux E, Ligouis M, Dhelft V, Plaquet C, Dupont C, Benhamou PH (2015) Specific epicutaneous immunotherapy prevents sensitization to new allergens in a murine model. J Allergy Clin Immunol 135 (6):1546–1557 e1544.  https://doi.org/10.1016/j.jaci.2014.11.028 CrossRefGoogle Scholar
  96. 96.
    Husby S, Oxelius VA, Teisner B, Jensenius JC, Svehag SE (1985) Humoral immunity to dietary antigens in healthy adults. Occurrence, isotype and IgG subclass distribution of serum antibodies to protein antigens. Int Arch Allergy Appl Immunol 77 (4):416–422CrossRefGoogle Scholar
  97. 97.
    Du Toit G, Roberts G, Sayre PH, Bahnson HT, Radulovic S, Santos AF, Brough HA, Phippard D, Basting M, Feeney M, Turcanu V, Sever ML, Gomez Lorenzo M, Plaut M, Lack G, Team LS (2015) Randomized trial of peanut consumption in infants at risk for peanut allergy. N Engl J Med 372(9):803–813.  https://doi.org/10.1056/NEJMoa1414850 CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Hoh RA, Joshi SA, Liu Y, Wang C, Roskin KM, Lee JY, Pham T, Looney TJ, Jackson KJL, Dixit VP, King J, Lyu SC, Jenks J, Hamilton RG, Nadeau KC, Boyd SD (2016) Single B-cell deconvolution of peanut-specific antibody responses in allergic patients. J Allergy Clin Immunol 137(1):157–167.  https://doi.org/10.1016/j.jaci.2015.05.029 CrossRefPubMedGoogle Scholar
  99. 99.
    Vickery BP, Lin J, Kulis M, Fu Z, Steele PH, Jones SM, Scurlock AM, Gimenez G, Bardina L, Sampson HA, Burks AW (2013) Peanut oral immunotherapy modifies IgE and IgG4 responses to major peanut allergens. J Allergy Clin Immunol 131 (1):128-134 e121-123.  https://doi.org/10.1016/j.jaci.2012.10.048 CrossRefGoogle Scholar
  100. 100.
    Burton OT, Logsdon SL, Zhou JS, Medina-Tamayo J, Abdel-Gadir A, Noval Rivas M, Koleoglou KJ, Chatila TA, Schneider LC, Rachid R, Umetsu DT, Oettgen HC (2014) Oral immunotherapy induces IgG antibodies that act through FcgammaRIIb to suppress IgE-mediated hypersensitivity. J Allergy Clin Immunol 134 (6):1310–1317 e1316.  https://doi.org/10.1016/j.jaci.2014.05.042 CrossRefGoogle Scholar
  101. 101.
    Burton OT, Tamayo JM, Stranks AJ, Koleoglou KJ, Oettgen HC (2017) Allergen-specific IgG antibody signaling through FcgammaRIIb promotes food tolerance. J Allergy Clin Immunol 141:189–201.e3.  https://doi.org/10.1016/j.jaci.2017.03.045 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Jaffe Food Allergy Institute, Immunology Institute, Mindich Child Health InstituteIcahn School of Medicine at Mount SinaiNew YorkUSA
  2. 2.Department of PediatricsIcahn School of Medicine at Mount SinaiNew YorkUSA

Personalised recommendations