Advertisement

Sexual Dimorphism in Innate Immunity

  • Sébastien JaillonEmail author
  • Kevin Berthenet
  • Cecilia GarlandaEmail author
Article

Abstract

Sexual dimorphisms account for differences in clinical manifestations or incidence of infectious or autoimmune diseases and malignancy between females and males. Females develop enhanced innate and adaptive immune responses than males and are less susceptible to many infections of bacterial, viral, parasitic, and fungal origin and malignancies but in contrast, they are more prone to develop autoimmune diseases. The higher susceptibility to infections in males is observed from birth to adulthood, suggesting that sex chromosomes and not sex hormones have a major role in sexual dimorphism in innate immunity. Sex-based regulation of immune responses ultimately contributes to age-related disease development and life expectancy. Differences between males and females have been described in the expression of pattern recognition receptors of the innate immune response and in the functional responses of phagocytes and antigen presenting cells. Different factors have been shown to account for the sex-based disparity in immune responses, including genetic factors and hormonal mediators, which contribute independently to dimorphism in the innate immune response. For instance, several genes encoding for innate immune molecules are located on the X chromosome. In addition, estrogen and/or testosterone have been reported to modulate the differentiation, maturation, lifespan, and effector functions of innate immune cells, including neutrophils, macrophages, natural killer cells, and dendritic cells. In this review, we will focus on differences between males and females in innate immunity, which represents the first line of defense against pathogens and plays a fundamental role in the activation, regulation, and orientation of the adaptive immune response.

Keywords

Innate immunity Sexual dimorphisms Sex hormones X-linked immunodeficiency 

Notes

Funding

The contribution of Ministero della Salute (RF-2013-02355470), Ministry of Education, University and Research (PRIN 2015YYKPNN), and the Associazione Italiana Ricerca sul Cancro (MFAG 2016 ID 18475) is gratefully acknowledged.

Compliance with Ethical Standards

Conflicts of Interest

The authors declare that they have no conflict of interest.

Ethical Approval and Informed Consent

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. 1.
    Klein SL, Flanagan KL (2016) Sex differences in immune responses. Nat Rev Immunol 16(10):626–638.  https://doi.org/10.1038/nri.2016.90 PubMedCrossRefGoogle Scholar
  2. 2.
    Fish EN (2008) The X-files in immunity: sex-based differences predispose immune responses. Nat Rev Immunol 8(9):737–744.  https://doi.org/10.1038/nri2394 PubMedCrossRefGoogle Scholar
  3. 3.
    Libert C, Dejager L, Pinheiro I (2010) The X chromosome in immune functions: when a chromosome makes the difference. Nat Rev Immunol 10(8):594–604.  https://doi.org/10.1038/nri2815 PubMedCrossRefGoogle Scholar
  4. 4.
    vom Steeg LG, Klein SL (2016) SeXX matters in infectious disease pathogenesis. PLoS Pathog 12(2):e1005374.  https://doi.org/10.1371/journal.ppat.1005374 CrossRefGoogle Scholar
  5. 5.
    Giefing-Kroll C, Berger P, Lepperdinger G, Grubeck-Loebenstein B (2015) How sex and age affect immune responses, susceptibility to infections, and response to vaccination. Aging Cell 14(3):309–321.  https://doi.org/10.1111/acel.12326 PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Hill-Burns EM, Clark AG (2009) X-linked variation in immune response in Drosophila melanogaster. Genetics 183(4):1477–1491.  https://doi.org/10.1534/genetics.108.093971 PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Jaillon S, Ponzetta A, Magrini E, Barajon I, Barbagallo M et al (2016) Fluid phase recognition molecules in neutrophil-dependent immune responses. Semin Immunol 28(2):109–118.  https://doi.org/10.1016/j.smim.2016.03.005 PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Bottazzi B, Doni A, Garlanda C, Mantovani A (2010) An integrated view of humoral innate immunity: pentraxins as a paradigm. Annu Rev Immunol 28:157–183PubMedCrossRefGoogle Scholar
  9. 9.
    Torcia MG, Nencioni L, Clemente AM, Civitelli L, Celestino I et al (2012) Sex differences in the response to viral infections: TLR8 and TLR9 ligand stimulation induce higher IL10 production in males. PLoS One 7(6):e39853.  https://doi.org/10.1371/journal.pone.0039853 PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Asai K, Hiki N, Mimura Y, Ogawa T, Unou K et al (2001) Gender differences in cytokine secretion by human peripheral blood mononuclear cells: role of estrogen in modulating LPS-induced cytokine secretion in an ex vivo septic model. Shock 16(5):340–343PubMedCrossRefGoogle Scholar
  11. 11.
    Berghofer B, Frommer T, Haley G, Fink L, Bein G et al (2006) TLR7 ligands induce higher IFN-alpha production in females. J Immunol 177(4):2088–2096PubMedCrossRefGoogle Scholar
  12. 12.
    Meier A, Chang JJ, Chan ES, Pollard RB, Sidhu HK et al (2009) Sex differences in the toll-like receptor-mediated response of plasmacytoid dendritic cells to HIV-1. Nat Med 15(8):955–959.  https://doi.org/10.1038/nm.2004 PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Seillet C, Laffont S, Tremollieres F, Rouquie N, Ribot C et al (2012) The TLR-mediated response of plasmacytoid dendritic cells is positively regulated by estradiol in vivo through cell-intrinsic estrogen receptor alpha signaling. Blood 119(2):454–464.  https://doi.org/10.1182/blood-2011-08-371831 PubMedCrossRefGoogle Scholar
  14. 14.
    Seillet C, Rouquie N, Foulon E, Douin-Echinard V, Krust A et al (2013) Estradiol promotes functional responses in inflammatory and steady-state dendritic cells through differential requirement for activation function-1 of estrogen receptor alpha. J Immunol 190(11):5459–5470.  https://doi.org/10.4049/jimmunol.1203312 PubMedCrossRefGoogle Scholar
  15. 15.
    Griesbeck M, Ziegler S, Laffont S, Smith N, Chauveau L et al (2015) Sex Differences in plasmacytoid dendritic cell levels of IRF5 drive higher IFN-alpha production in women. J Immunol 195(11):5327–5336.  https://doi.org/10.4049/jimmunol.1501684 PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Schoenemeyer A, Barnes BJ, Mancl ME, Latz E, Goutagny N et al (2005) The interferon regulatory factor, IRF5, is a central mediator of toll-like receptor 7 signaling. J Biol Chem 280(17):17005–17012.  https://doi.org/10.1074/jbc.M412584200 PubMedCrossRefGoogle Scholar
  17. 17.
    Laffont S, Rouquie N, Azar P, Seillet C, Plumas J et al (2014) X-Chromosome complement and estrogen receptor signaling independently contribute to the enhanced TLR7-mediated IFN-alpha production of plasmacytoid dendritic cells from women. J Immunol 193(11):5444–5452.  https://doi.org/10.4049/jimmunol.1303400 PubMedCrossRefGoogle Scholar
  18. 18.
    Marriott I, Bost KL, Huet-Hudson YM (2006) Sexual dimorphism in expression of receptors for bacterial lipopolysaccharides in murine macrophages: a possible mechanism for gender-based differences in endotoxic shock susceptibility. J Reprod Immunol 71(1):12–27.  https://doi.org/10.1016/j.jri.2006.01.004 PubMedCrossRefGoogle Scholar
  19. 19.
    Scotland RS, Stables MJ, Madalli S, Watson P, Gilroy DW (2011) Sex differences in resident immune cell phenotype underlie more efficient acute inflammatory responses in female mice. Blood 118(22):5918–5927.  https://doi.org/10.1182/blood-2011-03-340281 PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    McGowan JE Jr, Barnes MW, Finland M (1975) Bacteremia at Boston City Hospital: occurrence and mortality during 12 selected years (1935-1972), with special reference to hospital-acquired cases. J Infect Dis 132(3):316–335PubMedCrossRefGoogle Scholar
  21. 21.
    Bone RC (1992) Toward an epidemiology and natural history of SIRS (systemic inflammatory response syndrome). JAMA 268(24):3452–3455PubMedCrossRefGoogle Scholar
  22. 22.
    Fourrier F, Jallot A, Leclerc L, Jourdain M, Racadot A et al (1994) Sex steroid hormones in circulatory shock, sepsis syndrome, and septic shock. Circ Shock 43(4):171–178PubMedGoogle Scholar
  23. 23.
    Barrow RE, Herndon DN (1990) Incidence of mortality in boys and girls after severe thermal burns. Surg Gynecol Obstet 170(4):295–298PubMedGoogle Scholar
  24. 24.
    Schroder J, Kahlke V, Staubach KH, Zabel P, Stuber F (1998) Gender differences in human sepsis. Arch Surg 133(11):1200–1205PubMedCrossRefGoogle Scholar
  25. 25.
    Kisat M, Villegas CV, Onguti S, Zafar SN, Latif A et al (2013) Predictors of sepsis in moderately severely injured patients: an analysis of the National Trauma Data Bank. Surg Infect 14(1):62–68.  https://doi.org/10.1089/sur.2012.009 CrossRefGoogle Scholar
  26. 26.
    Offner PJ, Moore EE, Biffl WL (1999) Male gender is a risk factor for major infections after surgery. Arch Surg 134(9):935–938 discussion 938-940PubMedCrossRefGoogle Scholar
  27. 27.
    Reade MC, Yende S, D'Angelo G, Kong L, Kellum JA et al (2009) Differences in immune response may explain lower survival among older men with pneumonia. Crit Care Med 37(5):1655–1662.  https://doi.org/10.1097/CCM.0b013e31819da853 PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Angele MK, Pratschke S, Hubbard WJ, Chaudry IH (2014) Gender differences in sepsis: cardiovascular and immunological aspects. Virulence 5(1):12–19.  https://doi.org/10.4161/viru.26982 PubMedCrossRefGoogle Scholar
  29. 29.
    Newsome CT, Flores E, Ayala A, Gregory S, Reichner JS (2011) Improved antimicrobial host defense in mice following poly-(1,6)-beta-D-glucopyranosyl-(1,3)-beta-D-glucopyranose glucan treatment by a gender-dependent immune mechanism. Clin Vaccine Immunol 18(12):2043–2049.  https://doi.org/10.1128/CVI.05202-11 PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Christeff N, Benassayag C, Carli-Vielle C, Carli A, Nunez EA (1988) Elevated oestrogen and reduced testosterone levels in the serum of male septic shock patients. J Steroid Biochem 29(4):435–440PubMedCrossRefGoogle Scholar
  31. 31.
    Drechsler S, Weixelbaumer K, Raeven P, Jafarmadar M, Khadem A et al (2012) Relationship between age/gender-induced survival changes and the magnitude of inflammatory activation and organ dysfunction in post-traumatic sepsis. PLoS One 7(12):e51457.  https://doi.org/10.1371/journal.pone.0051457 PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Mantovani A, Cassatella MA, Costantini C, Jaillon S (2011) Neutrophils in the activation and regulation of innate and adaptive immunity. Nat Rev Immunol 11(8):519–531PubMedCrossRefGoogle Scholar
  33. 33.
    Jaillon S, Galdiero MR, Del Prete D, Cassatella MA, Garlanda C et al (2013) Neutrophils in innate and adaptive immunity. Semin Immunopathol 35(4):377–394.  https://doi.org/10.1007/s00281-013-0374-8 PubMedCrossRefGoogle Scholar
  34. 34.
    Wirths S, Bugl S, Kopp HG (2014) Neutrophil homeostasis and its regulation by danger signaling. Blood 123(23):3563–3566.  https://doi.org/10.1182/blood-2013-11-516260 PubMedCrossRefGoogle Scholar
  35. 35.
    Scapini P, Cassatella MA (2014) Social networking of human neutrophils within the immune system. Blood 124(5):710–719.  https://doi.org/10.1182/blood-2014-03-453217 PubMedCrossRefGoogle Scholar
  36. 36.
    Marini O, Costa S, Bevilacqua D, Calzetti F, Tamassia N et al (2017) Mature CD10+ and immature CD10− neutrophils present in G-CSF-treated donors display opposite effects on T cells. Blood 129(10):1343–1356.  https://doi.org/10.1182/blood-2016-04-713206 PubMedCrossRefGoogle Scholar
  37. 37.
    Coffelt SB, Wellenstein MD, de Visser KE (2016) Neutrophils in cancer: neutral no more. Nat Rev Cancer 16(7):431–446.  https://doi.org/10.1038/nrc.2016.52 PubMedCrossRefGoogle Scholar
  38. 38.
    Bouman A, Heineman MJ, Faas MM (2005) Sex hormones and the immune response in humans. Hum Reprod Update 11(4):411–423.  https://doi.org/10.1093/humupd/dmi008 PubMedCrossRefGoogle Scholar
  39. 39.
    Jeannin P, Jaillon S, Delneste Y (2008) Pattern recognition receptors in the immune response against dying cells. Curr Opin Immunol 20(5):530–537PubMedCrossRefGoogle Scholar
  40. 40.
    Kaplan MJ (2011) Neutrophils in the pathogenesis and manifestations of SLE. Nat Rev Rheumatol 7(12):691–699.  https://doi.org/10.1038/nrrheum.2011.132 PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Molloy EJ, O'Neill AJ, Grantham JJ, Sheridan-Pereira M, Fitzpatrick JM et al (2003) Sex-specific alterations in neutrophil apoptosis: the role of estradiol and progesterone. Blood 102(7):2653–2659.  https://doi.org/10.1182/blood-2003-02-0649 PubMedCrossRefGoogle Scholar
  42. 42.
    Chuang KH, Altuwaijri S, Li G, Lai JJ, Chu CY et al (2009) Neutropenia with impaired host defense against microbial infection in mice lacking androgen receptor. J Exp Med 206(5):1181–1199.  https://doi.org/10.1084/jem.20082521 PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Gomez Perdiguero E, Klapproth K, Schulz C, Busch K, Azzoni E et al (2015) Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature 518(7540):547–551.  https://doi.org/10.1038/nature13989 PubMedCrossRefGoogle Scholar
  44. 44.
    De Kleer I, Willems F, Lambrecht B, Goriely S (2014) Ontogeny of myeloid cells. Front Immunol 5:423.  https://doi.org/10.3389/fimmu.2014.00423 PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Wynn TA, Chawla A, Pollard JW (2013) Macrophage biology in development, homeostasis and disease. Nature 496(7446):445–455.  https://doi.org/10.1038/nature12034 PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Bain CC, Bravo-Blas A, Scott CL, Perdiguero EG, Geissmann F et al (2014) Constant replenishment from circulating monocytes maintains the macrophage pool in the intestine of adult mice. Nat Immunol 15(10):929–937.  https://doi.org/10.1038/ni.2967 PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    McGovern N, Schlitzer A, Gunawan M, Jardine L, Shin A et al (2014) Human dermal CD14(+) cells are a transient population of monocyte-derived macrophages. Immunity 41(3):465–477.  https://doi.org/10.1016/j.immuni.2014.08.006 PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Molawi K, Wolf Y, Kandalla PK, Favret J, Hagemeyer N et al (2014) Progressive replacement of embryo-derived cardiac macrophages with age. J Exp Med 211(11):2151–2158.  https://doi.org/10.1084/jem.20140639 PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Ter Horst R, Jaeger M, Smeekens SP, Oosting M, Swertz MA et al (2016) Host and environmental factors influencing individual human cytokine responses. Cell 167(4):1111–1124 e1113.  https://doi.org/10.1016/j.cell.2016.10.018 PubMedCrossRefGoogle Scholar
  50. 50.
    Biswas SK, Mantovani A (2010) Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol 11(10):889–896.  https://doi.org/10.1038/ni.1937 PubMedCrossRefGoogle Scholar
  51. 51.
    Sica A, Mantovani A (2012) Macrophage plasticity and polarization: in vivo veritas. J Clin Invest 122(3):787–795.  https://doi.org/10.1172/JCI59643 PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Mosser DM, Edwards JP (2008) Exploring the full spectrum of macrophage activation. Nat Rev Immunol 8(12):958–969.  https://doi.org/10.1038/nri2448 PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Murray PJ, Allen JE, Biswas SK, Fisher EA, Gilroy DW et al (2014) Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 41(1):14–20.  https://doi.org/10.1016/j.immuni.2014.06.008 PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Mantovani A, Allavena P (2015) The interaction of anticancer therapies with tumor-associated macrophages. J Exp Med DOI.  https://doi.org/10.1084/jem.20150295
  55. 55.
    Li K, Xu W, Guo Q, Jiang Z, Wang P et al (2009) Differential macrophage polarization in male and female BALB/c mice infected with coxsackievirus B3 defines susceptibility to viral myocarditis. Circ Res 105(4):353–364.  https://doi.org/10.1161/CIRCRESAHA.109.195230 PubMedCrossRefGoogle Scholar
  56. 56.
    Melgert BN, Oriss TB, Qi Z, Dixon-McCarthy B, Geerlings M et al (2010) Macrophages: regulators of sex differences in asthma? Am J Respir Cell Mol Biol 42(5):595–603.  https://doi.org/10.1165/rcmb.2009-0016OC PubMedCrossRefGoogle Scholar
  57. 57.
    Galvan-Pena S, O'Neill LA (2014) Metabolic reprograming in macrophage polarization. Front Immunol 5:420.  https://doi.org/10.3389/fimmu.2014.00420 PubMedPubMedCentralGoogle Scholar
  58. 58.
    Gubbels Bupp MR (2015) Sex, the aging immune system, and chronic disease. Cell Immunol 294(2):102–110.  https://doi.org/10.1016/j.cellimm.2015.02.002 PubMedCrossRefGoogle Scholar
  59. 59.
    Klein SL, Jedlicka A, Pekosz A (2010) The Xs and Y of immune responses to viral vaccines. Lancet Infect Dis 10(5):338–349.  https://doi.org/10.1016/S1473-3099(10)70049-9 PubMedCrossRefGoogle Scholar
  60. 60.
    Vivier E, Raulet DH, Moretta A, Caligiuri MA, Zitvogel L et al (2011) Innate or adaptive immunity? The example of natural killer cells. Science 331(6013):44–49.  https://doi.org/10.1126/science.1198687 PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Hanna J, Goldman-Wohl D, Hamani Y, Avraham I, Greenfield C et al (2006) Decidual NK cells regulate key developmental processes at the human fetal-maternal interface. Nat Med 12(9):1065–1074PubMedCrossRefGoogle Scholar
  62. 62.
    Carlino C, Stabile H, Morrone S, Bulla R, Soriani A et al (2008) Recruitment of circulating NK cells through decidual tissues: a possible mechanism controlling NK cell accumulation in the uterus during early pregnancy. Blood 111(6):3108–3115PubMedCrossRefGoogle Scholar
  63. 63.
    Chistiakov DA, Orekhov AN, Sobenin IA, Bobryshev YV (2014) Plasmacytoid dendritic cells: development, functions, and role in atherosclerotic inflammation. Front Physiol 5:279.  https://doi.org/10.3389/fphys.2014.00279 PubMedPubMedCentralGoogle Scholar
  64. 64.
    Marshak-Rothstein A (2006) Toll-like receptors in systemic autoimmune disease. Nat Rev Immunol 6(11):823–835.  https://doi.org/10.1038/nri1957 PubMedCrossRefGoogle Scholar
  65. 65.
    Ronnblom L, Eloranta ML, Alm GV (2006) The type I interferon system in systemic lupus erythematosus. Arthritis Rheum 54(2):408–420.  https://doi.org/10.1002/art.21571 PubMedCrossRefGoogle Scholar
  66. 66.
    Whitacre CC (2001) Sex differences in autoimmune disease. Nat Immunol 2(9):777–780.  https://doi.org/10.1038/ni0901-777 PubMedCrossRefGoogle Scholar
  67. 67.
    Ghosh S, Klein RS (2017) Sex drives dimorphic immune responses to viral infections. J Immunol 198(5):1782–1790.  https://doi.org/10.4049/jimmunol.1601166 PubMedCrossRefGoogle Scholar
  68. 68.
    Sterling TR, Vlahov D, Astemborski J, Hoover DR, Margolick JB et al (2001) Initial plasma HIV-1 RNA levels and progression to AIDS in women and men. N Engl J Med 344(10):720–725.  https://doi.org/10.1056/NEJM200103083441003 PubMedCrossRefGoogle Scholar
  69. 69.
    Beignon AS, McKenna K, Skoberne M, Manches O, DaSilva I et al (2005) Endocytosis of HIV-1 activates plasmacytoid dendritic cells via Toll-like receptor-viral RNA interactions. J Clin Invest 115(11):3265–3275.  https://doi.org/10.1172/JCI26032 PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Tsao LC, Guo H, Jeffrey J, Hoxie JA, Su L (2016) CCR5 interaction with HIV-1 Env contributes to Env-induced depletion of CD4 T cells in vitro and in vivo. Retrovirology 13:22.  https://doi.org/10.1186/s12977-016-0255-z PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Pessach IM, Notarangelo LD (2009) X-linked primary immunodeficiencies as a bridge to better understanding X-chromosome related autoimmunity. J Autoimmun 33(1):17–24.  https://doi.org/10.1016/j.jaut.2009.03.003 PubMedCrossRefGoogle Scholar
  72. 72.
    Bouma G, Burns SO, Thrasher AJ (2009) Wiskott-Aldrich Syndrome: immunodeficiency resulting from defective cell migration and impaired immunostimulatory activation. Immunobiology 214(9–10):778–790.  https://doi.org/10.1016/j.imbio.2009.06.009 PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Hannah MF, Bajic VB, Klein SL (2008) Sex differences in the recognition of and innate antiviral responses to Seoul virus in Norway rats. Brain Behav Immun 22(4):503–516.  https://doi.org/10.1016/j.bbi.2007.10.005 PubMedCrossRefGoogle Scholar
  74. 74.
    Bjornstrom L, Sjoberg M (2005) Mechanisms of estrogen receptor signaling: convergence of genomic and nongenomic actions on target genes. Mol Endocrinol 19(4):833–842.  https://doi.org/10.1210/me.2004-0486 PubMedCrossRefGoogle Scholar
  75. 75.
    Ray A, Prefontaine KE, Ray P (1994) Down-modulation of interleukin-6 gene expression by 17 beta-estradiol in the absence of high affinity DNA binding by the estrogen receptor. J Biol Chem 269(17):12940–12946PubMedGoogle Scholar
  76. 76.
    Stein B, Yang MX (1995) Repression of the interleukin-6 promoter by estrogen receptor is mediated by NF-kappa B and C/EBP beta. Mol Cell Biol 15(9):4971–4979PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Palaszynski KM, Smith DL, Kamrava S, Burgoyne PS, Arnold AP et al (2005) A yin-yang effect between sex chromosome complement and sex hormones on the immune response. Endocrinology 146(8):3280–3285.  https://doi.org/10.1210/en.2005-0284 PubMedCrossRefGoogle Scholar
  78. 78.
    Wichmann MW, Zellweger R, DeMaso CM, Ayala A, Chaudry IH (1996) Mechanism of immunosuppression in males following trauma-hemorrhage. Critical role of testosterone. Arch Surg 131(11):1186–1191 discussion 1191-1182PubMedCrossRefGoogle Scholar
  79. 79.
    Trigunaite A, Dimo J, Jorgensen TN (2015) Suppressive effects of androgens on the immune system. Cell Immunol 294(2):87–94.  https://doi.org/10.1016/j.cellimm.2015.02.004 PubMedCrossRefGoogle Scholar
  80. 80.
    Miyagi M, Aoyama H, Morishita M, Iwamoto Y (1992) Effects of sex hormones on chemotaxis of human peripheral polymorphonuclear leukocytes and monocytes. J Periodontol 63(1):28–32.  https://doi.org/10.1902/jop.1992.63.1.28 PubMedCrossRefGoogle Scholar
  81. 81.
    Robinson DP, Hall OJ, Nilles TL, Bream JH, Klein SL (2014) 17beta-estradiol protects females against influenza by recruiting neutrophils and increasing virus-specific CD8 T cell responses in the lungs. J Virol 88(9):4711–4720.  https://doi.org/10.1128/JVI.02081-13 PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Lasarte S, Samaniego R, Salinas-Munoz L, Guia-Gonzalez MA, Weiss LA et al (2016) Sex hormones coordinate neutrophil immunity in the vagina by controlling chemokine gradients. J Infect Dis 213(3):476–484.  https://doi.org/10.1093/infdis/jiv402 PubMedCrossRefGoogle Scholar
  83. 83.
    Deitch EA, Ananthakrishnan P, Cohen DB, Xu DZ, Feketeova E et al (2006) Neutrophil activation is modulated by sex hormones after trauma-hemorrhagic shock and burn injuries. Am J Physiol Heart Circ Physiol 291(3):H1456–H1465.  https://doi.org/10.1152/ajpheart.00694.2005 PubMedCrossRefGoogle Scholar
  84. 84.
    Angele MK, Schwacha MG, Ayala A, Chaudry IH (2000) Effect of gender and sex hormones on immune responses following shock. Shock 14(2):81–90PubMedCrossRefGoogle Scholar
  85. 85.
    Rettew JA, Huet-Hudson YM, Marriott I (2008) Testosterone reduces macrophage expression in the mouse of toll-like receptor 4, a trigger for inflammation and innate immunity. Biol Reprod 78(3):432–437.  https://doi.org/10.1095/biolreprod.107.063545 PubMedCrossRefGoogle Scholar
  86. 86.
    Rettew JA, Huet YM, Marriott I (2009) Estrogens augment cell surface TLR4 expression on murine macrophages and regulate sepsis susceptibility in vivo. Endocrinology 150(8):3877–3884.  https://doi.org/10.1210/en.2009-0098 PubMedCrossRefGoogle Scholar
  87. 87.
    Bouman A, Schipper M, Heineman MJ, Faas MM (2004) Gender difference in the non-specific and specific immune response in humans. Am J Reprod Immunol 52(1):19–26.  https://doi.org/10.1111/j.1600-0897.2004.00177.x PubMedCrossRefGoogle Scholar
  88. 88.
    Hughes GC, Thomas S, Li C, Kaja MK, Clark EA (2008) Cutting edge: progesterone regulates IFN-alpha production by plasmacytoid dendritic cells. J Immunol 180(4):2029–2033PubMedCrossRefGoogle Scholar
  89. 89.
    Tora L, White J, Brou C, Tasset D, Webster N et al (1989) The human estrogen receptor has two independent nonacidic transcriptional activation functions. Cell 59(3):477–487PubMedCrossRefGoogle Scholar
  90. 90.
    Lanzavecchia A, Sallusto F (2001) The instructive role of dendritic cells on T cell responses: lineages, plasticity and kinetics. Curr Opin Immunol 13(3):291–298PubMedCrossRefGoogle Scholar
  91. 91.
    Paharkova-Vatchkova V, Maldonado R, Kovats S (2004) Estrogen preferentially promotes the differentiation of CD11c+ CD11b(intermediate) dendritic cells from bone marrow precursors. J Immunol 172(3):1426–1436PubMedCrossRefGoogle Scholar
  92. 92.
    Siracusa MC, Overstreet MG, Housseau F, Scott AL, Klein SL (2008) 17beta-estradiol alters the activity of conventional and IFN-producing killer dendritic cells. J Immunol 180(3):1423–1431PubMedCrossRefGoogle Scholar
  93. 93.
    Bengtsson AK, Ryan EJ, Giordano D, Magaletti DM, Clark EA (2004) 17beta-estradiol (E2) modulates cytokine and chemokine expression in human monocyte-derived dendritic cells. Blood 104(5):1404–1410.  https://doi.org/10.1182/blood-2003-10-3380 PubMedCrossRefGoogle Scholar
  94. 94.
    Baden R, Rockstroh JK, Buti M (2014) Natural history and management of hepatitis C: does sex play a role? J Infect Dis 209(Suppl 3):S81–S85.  https://doi.org/10.1093/infdis/jiu057 PubMedCrossRefGoogle Scholar
  95. 95.
    Kamada M, Irahara M, Maegawa M, Ohmoto Y, Takeji T et al (2001) Postmenopausal changes in serum cytokine levels and hormone replacement therapy. Am J Obstet Gynecol 184(3):309–314.  https://doi.org/10.1067/mob.2001.109940 PubMedCrossRefGoogle Scholar
  96. 96.
    Vural P, Akgul C, Canbaz M (2006) Effects of hormone replacement therapy on plasma pro-inflammatory and anti-inflammatory cytokines and some bone turnover markers in postmenopausal women. Pharmacol Res 54(4):298–302.  https://doi.org/10.1016/j.phrs.2006.06.006 PubMedCrossRefGoogle Scholar
  97. 97.
    Salamonsen LA, Dimitriadis E, Jones RL, Nie G (2003) Complex regulation of decidualization: a role for cytokines and proteases—a review. Placenta 24(Suppl A):S76–S85PubMedCrossRefGoogle Scholar
  98. 98.
    Garlanda C, Maina V, Martinez de la Torre Y, Nebuloni M, Locati M (2008) Inflammatory reaction and implantation: the new entries PTX3 and D6. Placenta 29(Suppl B):129–134PubMedCrossRefGoogle Scholar
  99. 99.
    Leonard S, Murrant C, Tayade C, van den Heuvel M, Watering R et al (2006) Mechanisms regulating immune cell contributions to spiral artery modification—facts and hypotheses—a review. Placenta 27(Suppl A):S40–S46PubMedCrossRefGoogle Scholar
  100. 100.
    Redman CW, Sargent IL (2005) Latest advances in understanding preeclampsia. Science 308(5728):1592–1594PubMedCrossRefGoogle Scholar
  101. 101.
    Graham C, Chooniedass R, Stefura WP, Becker AB, Sears MR et al (2017) In vivo immune signatures of healthy human pregnancy: inherently inflammatory or anti-inflammatory? PLoS One 12(6):e0177813.  https://doi.org/10.1371/journal.pone.0177813 PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    PrabhuDas M, Bonney E, Caron K, Dey S, Erlebacher A et al (2015) Immune mechanisms at the maternal-fetal interface: perspectives and challenges. Nat Immunol 16(4):328–334.  https://doi.org/10.1038/ni.3131 PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Salamonsen LA, Zhang J, Brasted M (2002) Leukocyte networks and human endometrial remodelling. J Reprod Immunol 57(1–2):95–108PubMedCrossRefGoogle Scholar
  104. 104.
    Martinez de la Torre Y, Buracchi C, Borroni EM, Dupor J, Bonecchi R et al (2007) Protection against inflammation- and autoantibody-caused fetal loss by the chemokine decoy receptor D6. Proc Natl Acad Sci U S A 104(7):2319–2324PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Salustri A, Garlanda C, Hirsch E, De Acetis M, Maccagno A et al (2004) PTX3 plays a key role in the organization of the cumulus oophorus extracellular matrix and in in vivo fertilization. Development 131(7):1577–1586PubMedCrossRefGoogle Scholar
  106. 106.
    Cetin I, Cozzi V, Pasqualini F, Nebuloni M, Garlanda C et al (2006) Elevated maternal levels of the long pentraxin 3 (PTX3) in preeclampsia and intrauterine growth restriction. Am J Obstet Gynecol 194(5):1347–1353PubMedCrossRefGoogle Scholar
  107. 107.
    Cozzi V, Garlanda C, Nebuloni M, Maina V, Martinelli A et al (2012) PTX3 as a potential endothelial dysfunction biomarker for severity of preeclampsia and IUGR. Placenta 33(12):1039–1044.  https://doi.org/10.1016/j.placenta.2012.09.009 PubMedCrossRefGoogle Scholar
  108. 108.
    Dorak MT, Karpuzoglu E (2012) Gender differences in cancer susceptibility: an inadequately addressed issue. Front Genet 3:268.  https://doi.org/10.3389/fgene.2012.00268 PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Morrison BA, Ucisik-Akkaya E, Flores H, Alaez C, Gorodezky C et al (2010) Multiple sclerosis risk markers in HLA-DRA, HLA-C, and IFNG genes are associated with sex-specific childhood leukemia risk. Autoimmunity 43(8):690–697.  https://doi.org/10.3109/08916930903567492 PubMedCrossRefGoogle Scholar
  110. 110.
    Do TN, Ucisik-Akkaya E, Davis CF, Morrison BA, Dorak MT (2010) An intronic polymorphism of IRF4 gene influences gene transcription in vitro and shows a risk association with childhood acute lymphoblastic leukemia in males. Biochim Biophys Acta 1802(2):292–300.  https://doi.org/10.1016/j.bbadis.2009.10.015 PubMedCrossRefGoogle Scholar
  111. 111.
    Adamaki M, Lambrou GI, Athanasiadou A, Tzanoudaki M, Vlahopoulos S et al (2013) Implication of IRF4 aberrant gene expression in the acute leukemias of childhood. PLoS One 8(8):e72326.  https://doi.org/10.1371/journal.pone.0072326 PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Yuan Y, Liu L, Chen H, Wang Y, Xu Y et al (2016) Comprehensive characterization of molecular differences in cancer between male and female patients. Cancer Cell 29(5):711–722.  https://doi.org/10.1016/j.ccell.2016.04.001 PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Kreuzer M, Boffetta P, Whitley E, Ahrens W, Gaborieau V et al (2000) Gender differences in lung cancer risk by smoking: a multicentre case-control study in Germany and Italy. Br J Cancer 82(1):227–233.  https://doi.org/10.1054/bjoc.1999.0904 PubMedCrossRefGoogle Scholar
  114. 114.
    Stabile LP, Davis AL, Gubish CT, Hopkins TM, Luketich JD et al (2002) Human non-small cell lung tumors and cells derived from normal lung express both estrogen receptor alpha and beta and show biological responses to estrogen. Cancer Res 62(7):2141–2150PubMedGoogle Scholar
  115. 115.
    Weige CC, Allred KF, Allred CD (2009) Estradiol alters cell growth in nonmalignant colonocytes and reduces the formation of preneoplastic lesions in the colon. Cancer Res 69(23):9118–9124.  https://doi.org/10.1158/0008-5472.CAN-09-2348 PubMedCrossRefGoogle Scholar
  116. 116.
    Naugler WE, Sakurai T, Kim S, Maeda S, Kim K et al (2007) Gender disparity in liver cancer due to sex differences in MyD88-dependent IL-6 production. Science 317(5834):121–124.  https://doi.org/10.1126/science.1140485 PubMedCrossRefGoogle Scholar
  117. 117.
    Hartwell HJ, Petrosky KY, Fox JG, Horseman ND, Rogers AB (2014) Prolactin prevents hepatocellular carcinoma by restricting innate immune activation of c-Myc in mice. Proc Natl Acad Sci U S A 111(31):11455–11460.  https://doi.org/10.1073/pnas.1404267111 PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Yan C, Yang Q, Gong Z (2017) Tumor-associated neutrophils and macrophages promote gender disparity in hepatocellular carcinoma in zebrafish. Cancer Res 77(6):1395–1407.  https://doi.org/10.1158/0008-5472.CAN-16-2200 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Humanitas University, Department of Biomedical SciencesPieve EmanueleItaly
  2. 2.Humanitas Clinical and Research CenterRozzanoItaly

Personalised recommendations