Advertisement

Clinical Reviews in Allergy & Immunology

, Volume 55, Issue 3, pp 271–294 | Cite as

Clinical Features of Psoriatic Arthritis: a Comprehensive Review of Unmet Clinical Needs

  • Angela McArdle
  • Stephen Pennington
  • Oliver FitzGerald
Article

Abstract

Psoriatic arthritis (PsA) is a form of inflammatory arthritis (IA) affecting approximately 0.25% of the population. It is a heterogeneous disorder associated with joint damage, disability, disfiguring skin disease and in severe cases, premature mortality. Inherently irreversible and frequently progressive, the process of joint damage begins at, or before, the clinical onset of disease. Early recognition and intervention is thus crucial to patient outcome. At disease onset, however, PsA often resembles other forms of arthritis—especially rheumatoid arthritis (RA). Despite the similarities between PsA and RA, their distinctive pathologies require different treatments. For example, drugs that are effective in RA may not be effective in PsA and can even cause adverse effects. Since there is no currently validated test for PsA, the diagnosis is often missed or delayed and this has functional consequences for the patient. In the context of PsA and RA, making an accurate diagnosis is not the only challenge faced by rheumatologists. Choosing an effective and safe medication to manage the disease is another significant challenge and currently approximately 40% achieve meaningful responses such as minimal disease activity status. For the patient, several months may be lost as a result of trial and error testing—meanwhile, irreversible joint damage may occur. Clearly, more effective clinical tests are urgently needed to improve personalised patient care in PsA. Specifically, there is need to develop minimally invasive tests predictive of diagnosis, response to treatment and radiographic progression. In this review, we examined the biomarker development process, highlighted the importance of qualifying unmet clinical needs and emphasised the challenges that impede biomarker studies. We have compiled a comprehensive list of potentially clinically relevant biomarkers in PsA and provided a summary of proteomic technologies that might usefully support additional biomarker research in PsA.

Keywords

Psoriatic arthritis Unmet needs Biomarkers Proteomics 

Notes

Acknowledgments

This work was supported by the European Commission under the EU FP7 Programme ‘MIAMI’. UCD Conway Institute and is funded by the program for research in Third Level Institutions as administered by the Higher Education Authority of Ireland.

Compliance with Ethical Standards

The authors declare that this manuscript has been prepared according to the rules of good scientific practice and confirm that it has not been submitted to any other journal.

Competing Interests

The authors declare that they have no competing interests.

References

  1. 1.
  2. 2.
  3. 3.
    Gladman DD (2008) Trauma and inflammatory arthritis. The Workplace Safety and Insurance Appeals TribunalGoogle Scholar
  4. 4.
    Firestein GS (2003) Evolving concepts of rheumatoid arthritis. Nature 423(6937):356–361PubMedGoogle Scholar
  5. 5.
    Mc Ardle A, Flatley B, Pennington SR, FitzGerald O (2015) Early biomarkers of joint damage in rheumatoid and psoriatic arthritis. Arthritis Res Ther 17:141PubMedPubMedCentralGoogle Scholar
  6. 6.
    Sokolove J, Lepus CM (2013) Role of inflammation in the pathogenesis of osteoarthritis: latest findings and interpretations. Ther Adv Musculoskelet Dis 5(2):77–94PubMedPubMedCentralGoogle Scholar
  7. 7.
    Rahmati M, Mobasheri A, Mozafari M (2016) Inflammatory mediators in osteoarthritis: a critical review of the state-of-the-art, current prospects, and future challenges. Bone 85:81–90PubMedGoogle Scholar
  8. 8.
    Butt AQ, McArdle A, Gibson DS, FitzGerald O, Pennington SR (2015) Psoriatic arthritis under a proteomic spotlight: application of novel technologies to advance diagnosis and management. Curr Rheumatol Rep 17(5):35PubMedGoogle Scholar
  9. 9.
    Moll JM, Wright V (1973) Psoriatic arthritis. Semin Arthritis Rheum 3(1):55–78PubMedGoogle Scholar
  10. 10.
    Alamanos Y, Voulgari PV, Drosos AA (2008) Incidence and prevalence of psoriatic arthritis: a systematic review. J Rheumatol 35(7):1354–1358PubMedGoogle Scholar
  11. 11.
    Ogdie A, Weiss P (2015) The epidemiology of psoriatic arthritis. Rheum Dis Clin N Am 41(4):545–568Google Scholar
  12. 12.
    Ogdie A, Langan S, Love T, Haynes K, Shin D, Seminara N, Mehta NN, Troxel A, Choi H, Gelfand JM (2013) Prevalence and treatment patterns of psoriatic arthritis in the UK. Rheumatology (Oxford) 52(3):568–575Google Scholar
  13. 13.
    Coates LC, Moverley AR, McParland L, Brown S, Navarro-Coy N, O'Dwyer JL, Meads DM, Emery P, Conaghan PG, Helliwell PS (2015) Effect of tight control of inflammation in early psoriatic arthritis (TICOPA): a UK multicentre, open-label, randomised controlled trial. Lancet 386(10012):2489–2498PubMedPubMedCentralGoogle Scholar
  14. 14.
    Taylor W, Gladman D, Helliwell P, Marchesoni A, Mease P, Mielants H, Group CS (2006) Classification criteria for psoriatic arthritis: development of new criteria from a large international study. Arthritis Rheum 54(8):2665–2673PubMedGoogle Scholar
  15. 15.
    Chandran V (2012) Spondyloarthritis: CASPAR criteria in early psoriatic arthritis. Nat Rev Rheumatol 8(9):503–504PubMedGoogle Scholar
  16. 16.
    Coates LC, Conaghan PG, Emery P, Green MJ, Ibrahim G, MacIver H, Helliwell PS (2012) Sensitivity and specificity of the classification of psoriatic arthritis criteria in early psoriatic arthritis. Arthritis Rheum 64(10):3150–3155PubMedGoogle Scholar
  17. 17.
    Tam LS, Leung YY, Li EK (2009) Psoriatic arthritis in Asia. Rheumatology (Oxford) 48(12):1473–1477Google Scholar
  18. 18.
    Yang Q, Qu L, Tian H, Hu Y, Peng J, Yu X, Yu C, Pei Z, Wang G, Shi B et al (2011) Prevalence and characteristics of psoriatic arthritis in Chinese patients with psoriasis. J Eur Acad Dermatol Venereol 25(12):1409–1414PubMedGoogle Scholar
  19. 19.
    Leung YY, Tam LS, Li EK (2011) The perspective on psoriatic arthritis in Asia. Curr Rheumatol Rep 13(4):369–375PubMedGoogle Scholar
  20. 20.
    Gladman DD (2006) Clinical, radiological, and functional assessment in psoriatic arthritis: is it different from other inflammatory joint diseases? Ann Rheum Dis 65(Suppl 3):iii22–iii24PubMedPubMedCentralGoogle Scholar
  21. 21.
    Coates LC, Helliwell PS (2017) Psoriatic arthritis: state of the art review. Clin Med (Lond) 17(1):65–70Google Scholar
  22. 22.
    Wilson FC, Icen M, Crowson CS, McEvoy MT, Gabriel SE, Kremers HM (2009) Incidence and clinical predictors of psoriatic arthritis in patients with psoriasis: a population-based study. Arthritis Rheum 61(2):233–239PubMedPubMedCentralGoogle Scholar
  23. 23.
    Duarte GV, Faillace C, Freire de Carvalho J (2012) Psoriatic arthritis. Best Pract Res Clin Rheumatol 26(1):147–156PubMedGoogle Scholar
  24. 24.
    Pujalte GG, Albano-Aluquin SA (2015) Differential diagnosis of polyarticular arthritis. Am Fam Physician 92(1):35–41PubMedGoogle Scholar
  25. 25.
    Braun J, Sieper J (2007) Ankylosing spondylitis. Lancet 369(9570):1379–1390PubMedGoogle Scholar
  26. 26.
    Hannu T (2011) Reactive arthritis. Best Pract Res Clin Rheumatol 25:347–357PubMedGoogle Scholar
  27. 27.
    Kane D, Stafford L, Bresnihan B, FitzGerald O (2003) A prospective, clinical and radiological study of early psoriatic arthritis: an early synovitis clinic experience. Rheumatology (Oxford) 42(12):1460–1468Google Scholar
  28. 28.
    Finzel S, Englbrecht M, Engelke K, Stach C, Schett G (2011) A comparative study of periarticular bone lesions in rheumatoid arthritis and psoriatic arthritis. Ann Rheum Dis 70(1):122–127PubMedGoogle Scholar
  29. 29.
    Eastman PS, Manning WC, Qureshi F, Haney D, Cavet G, Alexander C, Hesterberg LK (2012) Characterization of a multiplex, 12-biomarker test for rheumatoid arthritis. J Pharm Biomed Anal 70:415–424PubMedGoogle Scholar
  30. 30.
    Albrecht A, Finzel S, Englbrecht M, Rech J, Hueber A, Schlechtweg P, Uder M, Schett G (2013) The structural basis of MRI bone erosions: an assessment by microCT. Ann Rheum Dis 72(8):1351–1357PubMedGoogle Scholar
  31. 31.
    Wiell C, Szkudlarek M, Hasselquist M, Moller JM, Vestergaard A, Norregaard J, Terslev L, Ostergaard M (2007) Ultrasonography, magnetic resonance imaging, radiography, and clinical assessment of inflammatory and destructive changes in fingers and toes of patients with psoriatic arthritis. Arthritis Res Ther 9(6):R119PubMedPubMedCentralGoogle Scholar
  32. 32.
    Frediani B, Falsetti P, Storri L, Allegri A, Bisogno S, Baldi F, Marcolongo R (2002) Ultrasound and clinical evaluation of quadricipital tendon enthesitis in patients with psoriatic arthritis and rheumatoid arthritis. Clin Rheumatol 21(4):294–298PubMedGoogle Scholar
  33. 33.
    Healy PJ, Helliwell PS (2007) Measuring dactylitis in clinical trials: which is the best instrument to use? J Rheumatol 34(6):1302–1306PubMedGoogle Scholar
  34. 34.
    Marsal S, Armadans-Gil L, Martinez M, Gallardo D, Ribera A, Lience E (1999) Clinical, radiographic and HLA associations as markers for different patterns of psoriatic arthritis. Rheumatology (Oxford) 38(4):332–337Google Scholar
  35. 35.
    van Kuijk AW, Tak PP (2011) Synovitis in psoriatic arthritis: immunohistochemistry, comparisons with rheumatoid arthritis, and effects of therapy. Curr Rheumatol Rep 13(4):353–359PubMedPubMedCentralGoogle Scholar
  36. 36.
    Reece RJ, Canete JD, Parsons WJ, Emery P, Veale DJ (1999) Distinct vascular patterns of early synovitis in psoriatic, reactive, and rheumatoid arthritis. Arthritis Rheum 42(7):1481–1484PubMedGoogle Scholar
  37. 37.
    Veale D, Yanni G, Rogers S, Barnes L, Bresnihan B, Fitzgerald O (1993) Reduced synovial membrane macrophage numbers, ELAM-1 expression, and lining layer hyperplasia in psoriatic arthritis as compared with rheumatoid arthritis. Arthritis Rheum 36(7):893–900PubMedGoogle Scholar
  38. 38.
    Veale DJ, Ritchlin C, FitzGerald O (2005) Immunopathology of psoriasis and psoriatic arthritis. Ann Rheum Dis 64(Suppl 2):ii26–ii29PubMedPubMedCentralGoogle Scholar
  39. 39.
    Haroon M, Winchester R, Giles JT, Heffernan E, FitzGerald O (2016) Certain class I HLA alleles and haplotypes implicated in susceptibility play a role in determining specific features of the psoriatic arthritis phenotype. Ann Rheum Dis 75(1):155–162PubMedGoogle Scholar
  40. 40.
    Eder L, Chandran V, Pellet F, Shanmugarajah S, Rosen CF, Bull SB, Gladman DD (2012) Human leucocyte antigen risk alleles for psoriatic arthritis among patients with psoriasis. Ann Rheum Dis 71(1):50–55PubMedGoogle Scholar
  41. 41.
    Winchester R, Minevich G, Steshenko V, Kirby B, Kane D, Greenberg DA, FitzGerald O (2012) HLA associations reveal genetic heterogeneity in psoriatic arthritis and in the psoriasis phenotype. Arthritis Rheum 64(4):1134–1144PubMedGoogle Scholar
  42. 42.
    Haroon M, Winchester R, Giles JT, Heffernan E, FitzGerald O (2017) Clinical and genetic associations of radiographic sacroiliitis and its different patterns in psoriatic arthritis. Clin Exp Rheumatol 35(2):270–276PubMedGoogle Scholar
  43. 43.
    FitzGerald O, Haroon M, Giles JT, Winchester R (2015) Concepts of pathogenesis in psoriatic arthritis: genotype determines clinical phenotype. Arthritis Res Ther 17:115PubMedPubMedCentralGoogle Scholar
  44. 44.
    Ritchlin C (2007) Psoriatic disease—from skin to bone. Nat Clin Pract Rheumatol 3(12):698–706PubMedGoogle Scholar
  45. 45.
    Veale DJ, FitzGerald O (2002) Psoriatic arthritis—pathogenesis and epidemiology. Clin Exp Rheumatol 20(6 Suppl 28):S27–S33PubMedGoogle Scholar
  46. 46.
    McGonagle D, Tan AL, Benjamin M (2008) The biomechanical link between skin and joint disease in psoriasis and psoriatic arthritis: what every dermatologist needs to know. Ann Rheum Dis 67(1):1–4PubMedGoogle Scholar
  47. 47.
    Diani M, Altomare G, Reali E (2015) T cell responses in psoriasis and psoriatic arthritis. Autoimmun Rev 14(4):286–292PubMedGoogle Scholar
  48. 48.
    Gladman DD, Shuckett R, Russell ML, Thorne JC, Schachter RK (1987) Psoriatic arthritis (PSA)–an analysis of 220 patients. Q J Med 62(238):127–141PubMedGoogle Scholar
  49. 49.
    Ritchlin C (2006) Newer therapeutic approaches: spondyloarthritis and uveitis. Rheum Dis Clin N Am 32(1):75–90 viii Google Scholar
  50. 50.
    Mahrle G, Schulze HJ, Brautigam M, Mischer P, Schopf R, Jung EG, Weidinger G, Farber L (1996) Anti-inflammatory efficacy of low-dose cyclosporin A in psoriatic arthritis. A prospective multicentre study. Br J Dermatol 135(5):752–757PubMedGoogle Scholar
  51. 51.
    Bechtel M, Sanders C, Bechtel A (2009) Neurological complications of biologic therapy in psoriasis: a review. J Clin Aesthet Dermatol 2(11):27–32PubMedPubMedCentralGoogle Scholar
  52. 52.
    Costello PJ, Winchester RJ, Curran SA, Peterson KS, Kane DJ, Bresnihan B, FitzGerald OM (2001) Psoriatic arthritis joint fluids are characterized by CD8 and CD4 T cell clonal expansions appear antigen driven. J Immunol 166(4):2878–2886PubMedGoogle Scholar
  53. 53.
    Borgato L, Puccetti A, Beri R, Codella O, Frigo A, Simeoni S, Pacor ML, Corrocher R, Lunardi C (2002) The T cell receptor repertoire in psoriatic synovitis is restricted and T lymphocytes expressing the same TCR are present in joint and skin lesions. J Rheumatol 29(9):1914–1919PubMedGoogle Scholar
  54. 54.
    Menon B, Gullick NJ, Walter GJ, Rajasekhar M, Garrood T, Evans HG, Taams LS, Kirkham BW (2014) Interleukin-17+CD8+ T cells are enriched in the joints of patients with psoriatic arthritis and correlate with disease activity and joint damage progression. Arthritis Rheumatol 66(5):1272–1281PubMedPubMedCentralGoogle Scholar
  55. 55.
    Chimenti MS, Ballanti E, Perricone C, Cipriani P, Giacomelli R, Perricone R (2013) Immunomodulation in psoriatic arthritis: focus on cellular and molecular pathways. Autoimmun Rev 12(5):599–606PubMedGoogle Scholar
  56. 56.
    van Kuijk AW, Reinders-Blankert P, Smeets TJ, Dijkmans BA, Tak PP (2006) Detailed analysis of the cell infiltrate and the expression of mediators of synovial inflammation and joint destruction in the synovium of patients with psoriatic arthritis: implications for treatment. Ann Rheum Dis 65(12):1551–1557PubMedPubMedCentralGoogle Scholar
  57. 57.
    Nash P, Clegg DO (2005) Psoriatic arthritis therapy: NSAIDs and traditional DMARDs. Ann Rheum Dis 64(Suppl 2):ii74–ii77PubMedPubMedCentralGoogle Scholar
  58. 58.
    Gossec L, Smolen JS, Ramiro S, de Wit M, Cutolo M, Dougados M, Emery P, Landewe R, Oliver S, Aletaha D et al (2016) European League Against Rheumatism (EULAR) recommendations for the management of psoriatic arthritis with pharmacological therapies: 2015 update. Ann Rheum Dis 75(3):499–510PubMedGoogle Scholar
  59. 59.
    Lie E, van der Heijde D, Uhlig T, Heiberg MS, Koldingsnes W, Rodevand E, Kaufmann C, Mikkelsen K, Kvien TK (2010) Effectiveness and retention rates of methotrexate in psoriatic arthritis in comparison with methotrexate-treated patients with rheumatoid arthritis. Ann Rheum Dis 69(4):671–676PubMedGoogle Scholar
  60. 60.
    Gladman DD (2008) Adalimumab, etanercept and infliximab are equally effective treatments for patients with psoriatic arthritis. Nat Clin Pract Rheumatol 4(10):510–511PubMedGoogle Scholar
  61. 61.
    Mease PJ, Fleischmann R, Deodhar AA, Wollenhaupt J, Khraishi M, Kielar D, Woltering F, Stach C, Hoepken B, Arledge T et al (2014) Effect of certolizumab pegol on signs and symptoms in patients with psoriatic arthritis: 24-week results of a phase 3 double-blind randomised placebo-controlled study (RAPID-PsA). Ann Rheum Dis 73(1):48–55PubMedPubMedCentralGoogle Scholar
  62. 62.
    Girolomoni G, Mrowietz U, Paul C (2012) Psoriasis: rationale for targeting interleukin-17. Br J Dermatol 167(4):717–724PubMedGoogle Scholar
  63. 63.
    Gossec L, Smolen JS, Gaujoux-Viala C, Ash Z, Marzo-Ortega H, van der Heijde D, FitzGerald O, Aletaha D, Balint P, Boumpas D et al (2012) European League Against Rheumatism recommendations for the management of psoriatic arthritis with pharmacological therapies. Ann Rheum Dis 71(1):4–12PubMedGoogle Scholar
  64. 64.
    Ungprasert P, Thongprayoon C, Davis JM 3rd (2016) Indirect comparisons of the efficacy of biological agents in patients with psoriatic arthritis with an inadequate response to traditional disease-modifying anti-rheumatic drugs or to non-steroidal anti-inflammatory drugs: a meta-analysis. Semin Arthritis Rheum 45(4):428–438PubMedGoogle Scholar
  65. 65.
    Griffiths CE, Strober BE, van de Kerkhof P, Ho V, Fidelus-Gort R, Yeilding N, Guzzo C, Xia Y, Zhou B, Li S et al (2010) Comparison of ustekinumab and etanercept for moderate-to-severe psoriasis. N Engl J Med 362(2):118–128PubMedGoogle Scholar
  66. 66.
    Mease P, McInnes IB (2016) Secukinumab: a new treatment option for psoriatic arthritis. Rheumatol Ther 3(1):5–29PubMedPubMedCentralGoogle Scholar
  67. 67.
    Mease PJ, van der Heijde D, Ritchlin CT, Okada M, Cuchacovich RS, Shuler CL, Lin CY, Braun DK, Lee CH, Gladman DD et al (2017) Ixekizumab, an interleukin-17A specific monoclonal antibody, for the treatment of biologic-naive patients with active psoriatic arthritis: results from the 24-week randomised, double-blind, placebo-controlled and active (adalimumab)-controlled period of the phase III trial SPIRIT-P1. Ann Rheum Dis 76(1):79–87PubMedGoogle Scholar
  68. 68.
    Leonardi C, Matheson R, Zachariae C, Cameron G, Li L, Edson-Heredia E, Braun D, Banerjee S (2012) Anti-interleukin-17 monoclonal antibody ixekizumab in chronic plaque psoriasis. N Engl J Med 366(13):1190–1199PubMedGoogle Scholar
  69. 69.
    Helliwell PS, Firth J, Ibrahim GH, Melsom RD, Shah I, Turner DE (2005) Development of an assessment tool for dactylitis in patients with psoriatic arthritis. J Rheumatol 32(9):1745–1750PubMedGoogle Scholar
  70. 70.
    Healy PJ, Helliwell PS (2008) Measuring clinical enthesitis in psoriatic arthritis: assessment of existing measures and development of an instrument specific to psoriatic arthritis. Arthritis Rheum 59(5):686–691PubMedGoogle Scholar
  71. 71.
    Clegg DO, Reda DJ, Mejias E, Cannon GW, Weisman MH, Taylor T, Budiman-Mak E, Blackburn WD, Vasey FB, Mahowald ML et al (1996) Comparison of sulfasalazine and placebo in the treatment of psoriatic arthritis. A Department of Veterans Affairs Cooperative Study. Arthritis Rheum 39(12):2013–2020PubMedGoogle Scholar
  72. 72.
    Coates LC, Helliwell PS (2010) Validation of minimal disease activity criteria for psoriatic arthritis using interventional trial data. Arthritis Care Res (Hoboken) 62(7):965–969Google Scholar
  73. 73.
    Schoels M, Aletaha D, Funovits J, Kavanaugh A, Baker D, Smolen JS (2010) Application of the DAREA/DAPSA score for assessment of disease activity in psoriatic arthritis. Ann Rheum Dis 69(8):1441–1447PubMedGoogle Scholar
  74. 74.
    Gladman DD, Tom BD, Mease PJ, Farewell VT (2010) Informing response criteria for psoriatic arthritis (PsA). II: further considerations and a proposal—the PsA joint activity index. J Rheumatol 37(12):2559–2565PubMedGoogle Scholar
  75. 75.
    Mumtaz A, Gallagher P, Kirby B, Waxman R, Coates LC, Veale JD, Helliwell P, FitzGerald O (2011) Development of a preliminary composite disease activity index in psoriatic arthritis. Ann Rheum Dis 70(2):272–277PubMedGoogle Scholar
  76. 76.
    Helliwell PS, FitzGerald O, Fransen J, Gladman DD, Kreuger GG, Callis-Duffin K, McHugh N, Mease PJ, Strand V, Waxman R et al (2013) The development of candidate composite disease activity and responder indices for psoriatic arthritis (GRACE project). Ann Rheum Dis 72(6):986–991PubMedGoogle Scholar
  77. 77.
    Gossec L, de Wit M, Kiltz U, Braun J, Kalyoncu U, Scrivo R, Maccarone M, Carton L, Otsa K, Sooaar I et al (2014) A patient-derived and patient-reported outcome measure for assessing psoriatic arthritis: elaboration and preliminary validation of the psoriatic arthritis impact of disease (PsAID) questionnaire, a 13-country EULAR initiative. Ann Rheum Dis 73(6):1012–1019PubMedGoogle Scholar
  78. 78.
    U.S. Department of Health and Human Food and Drug Administration Center for Drug Evaluation and Research (CDER). Center for Biologics Evaluation and Research (CDER), Guidance for Industry Expedited Programs for Serious conditions- Drugs and Biologics. https://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm358301.pdf
  79. 79.
    Monaghan PJ, Lord SJ, St John A, Sandberg S, Cobbaert CM, Lennartz L, Verhagen-Kamerbeek WD, Ebert C, Bossuyt PM, Horvath AR et al (2016) Biomarker development targeting unmet clinical needs. Clin Chim Acta 460:211–219PubMedGoogle Scholar
  80. 80.
    Zolg JW, Langen H (2004) How industry is approaching the search for new diagnostic markers and biomarkers. Mol Cell Proteomics 3(4):345–354PubMedGoogle Scholar
  81. 81.
    Tillett W, Costa L, Jadon D, Wallis D, Cavill C, McHugh J, Korendowych E, McHugh N (2012) The classification for psoriatic arthritis (CASPAR) criteria—a retrospective feasibility, sensitivity, and specificity study. J Rheumatol 39(1):154–156PubMedGoogle Scholar
  82. 82.
    van Tubergen A, Weber U (2012) Diagnosis and classification in spondyloarthritis: identifying a chameleon. Nat Rev Rheumatol 8(5):253–261PubMedGoogle Scholar
  83. 83.
    Helliwell PS, Taylor WJ (2005) Classification and diagnostic criteria for psoriatic arthritis. Ann Rheum Dis 64(Suppl 2):ii3–ii8PubMedPubMedCentralGoogle Scholar
  84. 84.
    McArdle A, Qasim Butt A, Szentpetery A, de Jager W, de Roock S, FitzGerald O, Pennington SR (2016) Developing clinically relevant biomarkers in inflammatory arthritis: a multiplatform approach for serum candidate protein discovery. Proteomics Clin Appl 10(6):691–698PubMedGoogle Scholar
  85. 85.
    Haroon M, Gallagher P, FitzGerald O (2015) Diagnostic delay of more than 6 months contributes to poor radiographic and functional outcome in psoriatic arthritis. Ann Rheum Dis 74(6):1045–1050PubMedGoogle Scholar
  86. 86.
    Villani AP, Rouzaud M, Sevrain M, Barnetche T, Paul C, Richard MA, Beylot-Barry M, Misery L, Joly P, Aractingi S et al (2014) Symptoms dermatologists should look for in daily practice to improve detection of psoriatic arthritis in psoriasis patients: an expert group consensus. J Eur Acad Dermatol Venereol 28(Suppl 5):27–32PubMedGoogle Scholar
  87. 87.
    Villani AP, Rouzaud M, Sevrain M, Barnetche T, Paul C, Richard MA, Beylot-Barry M, Misery L, Joly P, Le Maitre M et al (2015) Prevalence of undiagnosed psoriatic arthritis among psoriasis patients: systematic review and meta-analysis. J Am Acad Dermatol 73(2):242–248PubMedGoogle Scholar
  88. 88.
    Jones SM, Harris CP, Lloyd J, Stirling CA, Reckless JP, McHugh NJ (2000) Lipoproteins and their subfractions in psoriatic arthritis: identification of an atherogenic profile with active joint disease. Ann Rheum Dis 59(11):904–909PubMedPubMedCentralGoogle Scholar
  89. 89.
    Husted JA, Gladman DD, Farewell VT, Cook RJ (2001) Health-related quality of life of patients with psoriatic arthritis: a comparison with patients with rheumatoid arthritis. Arthritis Rheum 45(2):151–158PubMedGoogle Scholar
  90. 90.
    Sokoll KB, Helliwell PS (2001) Comparison of disability and quality of life in rheumatoid and psoriatic arthritis. J Rheumatol 28(8):1842–1846PubMedGoogle Scholar
  91. 91.
    Lindqvist UR, Alenius GM, Husmark T, Theander E, Holmstrom G, Larsson PT (2008) Psoriatic Arthritis Group of the Society for R: the Swedish early psoriatic arthritis register—2-year follow-up: a comparison with early rheumatoid arthritis. J Rheumatol 35(4):668–673PubMedGoogle Scholar
  92. 92.
    Ali Y, Tom BD, Schentag CT, Farewell VT, Gladman DD (2007) Improved survival in psoriatic arthritis with calendar time. Arthritis Rheum 56(8):2708–2714PubMedGoogle Scholar
  93. 93.
    Gonzalez-Juanatey C, Llorca J, Amigo-Diaz E, Dierssen T, Martin J, Gonzalez-Gay MA (2007) High prevalence of subclinical atherosclerosis in psoriatic arthritis patients without clinically evident cardiovascular disease or classic atherosclerosis risk factors. Arthritis Rheum 57(6):1074–1080PubMedGoogle Scholar
  94. 94.
    Tam LS, Shang Q, Li EK, Tomlinson B, Chu TT, Li M, Leung YY, Kwok LW, Wong KC, Li TK et al (2008) Subclinical carotid atherosclerosis in patients with psoriatic arthritis. Arthritis Rheum 59(9):1322–1331PubMedGoogle Scholar
  95. 95.
    Ibanez-Bosch R, Restrepo-Velez J, Medina-Malone M, Garrido-Courel L, Paniagua-Zudaire I, Loza-Cortina E (2017) High prevalence of subclinical atherosclerosis in psoriatic arthritis patients: a study based on carotid ultrasound. Rheumatol Int 37(1):107–112PubMedGoogle Scholar
  96. 96.
    Lee S, Mendelsohn A, Sarnes E (2010) The burden of psoriatic arthritis: a literature review from a global health systems perspective. P T 35(12):680–689PubMedPubMedCentralGoogle Scholar
  97. 97.
    Leung YY, Tam LS, Kun EW, Li EK (2007) Psoriatic arthritis as a distinct disease entity. J Postgrad Med 53(1):63–71PubMedGoogle Scholar
  98. 98.
    Ritchlin CT, Kavanaugh A, Gladman DD, Mease PJ, Helliwell P, Boehncke WH, de Vlam K, Fiorentino D, Fitzgerald O, Gottlieb AB et al (2009) Treatment recommendations for psoriatic arthritis. Ann Rheum Dis 68(9):1387–1394PubMedGoogle Scholar
  99. 99.
    Kirkham B, de Vlam K, Li W, Boggs R, Mallbris L, Nab HW, Tarallo M (2015) Early treatment of psoriatic arthritis is associated with improved patient-reported outcomes: findings from the etanercept PRESTA trial. Clin Exp Rheumatol 33(1):11–19PubMedGoogle Scholar
  100. 100.
    Bowes J, Barton A (2010) The genetics of psoriatic arthritis: lessons from genome-wide association studies. Discov Med 10(52):177–183PubMedGoogle Scholar
  101. 101.
    FitzGerald O (2014) Spondyloarthropathies: apremilast: welcome advance in treatment of psoriatic arthritis. Nat Rev Rheumatol 10(7):385–386PubMedGoogle Scholar
  102. 102.
    Combe B, Landewe R, Daien CI, Hua C, Aletaha D, Alvaro-Gracia JM, Bakkers M, Brodin N, Burmester GR, Codreanu C et al (2017) 2016 update of the EULAR recommendations for the management of early arthritis. Ann Rheum Dis 76(6):948–959PubMedGoogle Scholar
  103. 103.
    Boehncke WH, Boehncke S (2008) Cardiovascular morbidity in psoriasis: epidemiology, pathomechanisms, and clinical consequences. G Ital Dermatol Venereol 143(5):307–313PubMedGoogle Scholar
  104. 104.
    Raychaudhuri SK, Chatterjee S, Nguyen C, Kaur M, Jialal I, Raychaudhuri SP (2010) Increased prevalence of the metabolic syndrome in patients with psoriatic arthritis. Metab Syndr Relat Disord 8(4):331–334PubMedPubMedCentralGoogle Scholar
  105. 105.
    Horreau C, Pouplard C, Brenaut E, Barnetche T, Misery L, Cribier B, Jullien D, Aractingi S, Aubin F, Joly P et al (2013) Cardiovascular morbidity and mortality in psoriasis and psoriatic arthritis: a systematic literature review. J Eur Acad Dermatol Venereol 27(Suppl 3):12–29PubMedGoogle Scholar
  106. 106.
    Haroon M, Gallagher P, Heffernan E, FitzGerald O (2014) High prevalence of metabolic syndrome and of insulin resistance in psoriatic arthritis is associated with the severity of underlying disease. J Rheumatol 41(7):1357–1365PubMedGoogle Scholar
  107. 107.
    Wong K, Gladman DD, Husted J, Long JA, Farewell VT (1997) Mortality studies in psoriatic arthritis: results from a single outpatient clinic. I. Causes and risk of death. Arthritis Rheum 40(10):1868–1872PubMedGoogle Scholar
  108. 108.
    Mayeux R (2004) Biomarkers: potential uses and limitations. NeuroRx 1(2):182–188PubMedPubMedCentralGoogle Scholar
  109. 109.
    Gibson DS, Rooney ME, Finnegan S, Qiu J, Thompson DC, Labaer J, Pennington SR, Duncan MW (2012) Biomarkers in rheumatology, now and in the future. Rheumatology (Oxford) 51(3):423–433Google Scholar
  110. 110.
    Schett G, Coates LC, Ash ZR, Finzel S, Conaghan PG (2011) Structural damage in rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis: traditional views, novel insights gained from TNF blockade, and concepts for the future. Arthritis Res Ther 13(Suppl 1):S4PubMedPubMedCentralGoogle Scholar
  111. 111.
    Bizzaro N, Mazzanti G, Tonutti E, Villalta D, Tozzoli R (2001) Diagnostic accuracy of the anti-citrulline antibody assay for rheumatoid arthritis. Clin Chem 47(6):1089–1093PubMedGoogle Scholar
  112. 112.
    Alenius GM, Berglin E, Rantapaa Dahlqvist S (2006) Antibodies against cyclic citrullinated peptide (CCP) in psoriatic patients with or without joint inflammation. Ann Rheum Dis 65(3):398–400PubMedGoogle Scholar
  113. 113.
    Cretu D, Liang K, Saraon P, Batruch I, Diamandis EP, Chandran V (2015) Quantitative tandem mass-spectrometry of skin tissue reveals putative psoriatic arthritis biomarkers. Clin Proteomics 12(1):1PubMedPubMedCentralGoogle Scholar
  114. 114.
    Muntyanu A, Abji F, Liang K, Pollock RA, Chandran V, Gladman DD (2016) Differential gene and protein expression of chemokines and cytokines in synovial fluid of patients with arthritis. Arthritis Res Ther 18(1):296PubMedPubMedCentralGoogle Scholar
  115. 115.
    Jensen P, Wiell C, Milting K, Poggenborg RP, Ostergaard M, Johansen JS, Skov L (2013) Plasma YKL-40: a potential biomarker for psoriatic arthritis? J Eur Acad Dermatol Venereol 27(7):815–819PubMedGoogle Scholar
  116. 116.
    Cretu D, Prassas I, Saraon P, Batruch I, Gandhi R, Diamandis EP, Chandran V (2014) Identification of psoriatic arthritis mediators in synovial fluid by quantitative mass spectrometry. Clin Proteomics 11(1):27PubMedPubMedCentralGoogle Scholar
  117. 117.
    Dolcino M, Ottria A, Barbieri A, Patuzzo G, Tinazzi E, Argentino G, Beri R, Lunardi C, Puccetti A (2015) Gene expression profiling in peripheral blood cells and synovial membranes of patients with psoriatic arthritis. PLoS One 10(6):e0128262PubMedPubMedCentralGoogle Scholar
  118. 118.
    Dalmady S, Kiss M, Kepiro L, Kovacs L, Sonkodi G, Kemeny L, Gyulai R (2013) Higher levels of autoantibodies targeting mutated citrullinated vimentin in patients with psoriatic arthritis than in patients with psoriasis vulgaris. Clin Dev Immunol 2013:474028PubMedPubMedCentralGoogle Scholar
  119. 119.
    Chandran V, Cook RJ, Edwin J, Shen H, Pellett FJ, Shanmugarajah S, Rosen CF, Gladman DD (2010) Soluble biomarkers differentiate patients with psoriatic arthritis from those with psoriasis without arthritis. Rheumatology (Oxford) 49(7):1399–1405Google Scholar
  120. 120.
    Page TH, Charles PJ, Piccinini AM, Nicolaidou V, Taylor PC, Midwood KS (2012) Raised circulating tenascin-C in rheumatoid arthritis. Arthritis Res Ther 14(6):R260PubMedPubMedCentralGoogle Scholar
  121. 121.
    Siebert S, Porter D, Paterson C, Hampson R, Gaya D, Latosinska A, Mischak H, Schanstra J, Mullen W, McInnes I (2017) Urinary proteomics can define distinct diagnostic inflammatory arthritis subgroups. Sci Rep 7:40473PubMedPubMedCentralGoogle Scholar
  122. 122.
    Fearon U, Griosios K, Fraser A, Reece R, Emery P, Jones PF, Veale DJ (2003) Angiopoietins, growth factors, and vascular morphology in early arthritis. J Rheumatol 30(2):260–268PubMedGoogle Scholar
  123. 123.
    Ademowo OS, Hernandez B, Collins E, Rooney C, Fearon U, van Kuijk AW, Tak PP, Gerlag DM, FitzGerald O, Pennington SR (2016) Discovery and confirmation of a protein biomarker panel with potential to predict response to biological therapy in psoriatic arthritis. Ann Rheum Dis 75(1):234–241PubMedGoogle Scholar
  124. 124.
    Chandran V, Shen H, Pollock RA, Pellett FJ, Carty A, Cook RJ, Gladman DD (2013) Soluble biomarkers associated with response to treatment with tumor necrosis factor inhibitors in psoriatic arthritis. J Rheumatol 40(6):866–871PubMedGoogle Scholar
  125. 125.
    van Kuijk AW, DeGroot J, Koeman RC, Sakkee N, Baeten DL, Gerlag DM, Tak PP (2010) Soluble biomarkers of cartilage and bone metabolism in early proof of concept trials in psoriatic arthritis: effects of adalimumab versus placebo. PLoS One 5(9)Google Scholar
  126. 126.
    Wagner CL, Visvanathan S, Elashoff M, McInnes IB, Mease PJ, Krueger GG, Murphy FT, Papp K, Gomez-Reino JJ, Mack M et al (2013) Markers of inflammation and bone remodelling associated with improvement in clinical response measures in psoriatic arthritis patients treated with golimumab. Ann Rheum Dis 72(1):83–88PubMedGoogle Scholar
  127. 127.
    Schafer PH, Chen P, Fang L, Wang A, Chopra R (2015) The pharmacodynamic impact of apremilast, an oral phosphodiesterase 4 inhibitor, on circulating levels of inflammatory biomarkers in patients with psoriatic arthritis: substudy results from a phase III, randomized, placebo-controlled trial (PALACE 1). J Immunol Res 2015:906349PubMedPubMedCentralGoogle Scholar
  128. 128.
    Punzi L, Bertazzolo N, Pianon M, Rizzi E, Rossini P, Gambari P (1996) Value of synovial fluid interleukin-1 beta determination in predicting the outcome of psoriatic monoarthritis. Ann Rheum Dis 55(9):642–644PubMedPubMedCentralGoogle Scholar
  129. 129.
    Fink AM, Cauza E, Hassfeld W, Dunky A, Bayer PM, Jurecka W, Steiner A (2007) Vascular endothelial growth factor in patients with psoriatic arthritis. Clin Exp Rheumatol 25(2):305–308PubMedGoogle Scholar
  130. 130.
    Szodoray P, Alex P, Chappell-Woodward CM, Madland TM, Knowlton N, Dozmorov I, Zeher M, Jarvis JN, Nakken B, Brun JG et al (2007) Circulating cytokines in Norwegian patients with psoriatic arthritis determined by a multiplex cytokine array system. Rheumatology (Oxford) 46(3):417–425Google Scholar
  131. 131.
    Aochi S, Tsuji K, Sakaguchi M, Huh N, Tsuda T, Yamanishi K, Komine M, Iwatsuki K (2011) Markedly elevated serum levels of calcium-binding S100A8/A9 proteins in psoriatic arthritis are due to activated monocytes/macrophages. J Am Acad Dermatol 64(5):879–887PubMedGoogle Scholar
  132. 132.
    Dalbeth N, Pool B, Smith T, Callon KE, Lobo M, Taylor WJ, Jones PB, Cornish J, McQueen FM (2010) Circulating mediators of bone remodeling in psoriatic arthritis: implications for disordered osteoclastogenesis and bone erosion. Arthritis Res Ther 12(4):R164PubMedPubMedCentralGoogle Scholar
  133. 133.
    Skates SJ, Gillette MA, LaBaer J, Carr SA, Anderson L, Liebler DC, Ransohoff D, Rifai N, Kondratovich M, Tezak Z et al (2013) Statistical design for biospecimen cohort size in proteomics-based biomarker discovery and verification studies. J Proteome Res 12(12):5383–5394PubMedPubMedCentralGoogle Scholar
  134. 134.
    Langham S, Langham J, Goertz HP, Ratcliffe M (2011) Large-scale, prospective, observational studies in patients with psoriasis and psoriatic arthritis: a systematic and critical review. BMC Med Res Methodol 11:32PubMedPubMedCentralGoogle Scholar
  135. 135.
    Song JW, Chung KC (2010) Observational studies: cohort and case-control studies. Plast Reconstr Surg 126(6):2234–2242PubMedPubMedCentralGoogle Scholar
  136. 136.
    Mamdani M, Sykora K, Li P, Normand SL, Streiner DL, Austin PC, Rochon PA, Anderson GM (2005) Reader's guide to critical appraisal of cohort studies: 2. Assessing potential for confounding. BMJ 330(7497):960–962PubMedPubMedCentralGoogle Scholar
  137. 137.
    Fu Q, Schoenhoff FS, Savage WJ, Zhang P, Van Eyk JE (2010) Multiplex assays for biomarker research and clinical application: translational science coming of age. Proteomics Clin Appl 4(3):271–284PubMedGoogle Scholar
  138. 138.
    Murray CI, Van Eyk JE (2012) A twist on quantification: measuring the site occupancy of S-nitrosylation. Circ Res 111(10):1253–1255PubMedPubMedCentralGoogle Scholar
  139. 139.
    Veale DJ, Fearon U (2015) What makes psoriatic and rheumatoid arthritis so different? RMD Open 1(1):e000025PubMedPubMedCentralGoogle Scholar
  140. 140.
    Elshal MF, McCoy JP (2006) Multiplex bead array assays: performance evaluation and comparison of sensitivity to ELISA. Methods 38(4):317–323PubMedPubMedCentralGoogle Scholar
  141. 141.
    Curtis JR, van der Helm-van Mil AH, Knevel R, Huizinga TW, Haney DJ, Shen Y, Ramanujan S, Cavet G, Centola M, Hesterberg LK et al (2012) Validation of a novel multibiomarker test to assess rheumatoid arthritis disease activity. Arthritis Care Res (Hoboken) 64(12):1794–1803Google Scholar
  142. 142.
    al. Me: Preliminary Assessment of a Multi-Biomarker Disease Activity Test for Axial Spondyloarthritis. American College of Rheumatology Abstract number 2615 http://acrabstracts.org/abstract/preliminary-assessment-of-a-multi-biomarker-disease-activity-test-for-axial-spondyloarthritis/
  143. 143.
    Gonzalez-Gonzalez M, Jara-Acevedo R, Matarraz S, Jara-Acevedo M, Paradinas S, Sayagues JM, Orfao A, Fuentes M (2012) Nanotechniques in proteomics: protein microarrays and novel detection platforms. Eur J Pharm Sci 45(4):499–506PubMedGoogle Scholar
  144. 144.
    Diez P, Gonzalez-Gonzalez M, Lourido L, Degano RM, Ibarrola N, Casado-Vela J, LaBaer J, Fuentes M (2015) NAPPA as a real new method for protein microarray generation. Microarrays (Basel) 4(2):214–227Google Scholar
  145. 145.
    Chowdhury F, Williams A, Johnson P (2009) Validation and comparison of two multiplex technologies, Luminex and mesoscale discovery, for human cytokine profiling. J Immunol Methods 340(1):55–64PubMedGoogle Scholar
  146. 146.
    Fiocco U, Martini V, Accordi B, Caso F, Costa L, Oliviero F, Scanu A, Facco M, Boso D, Gatto M et al (2015) Transcriptional network profile on synovial fluid T cells in psoriatic arthritis. Clin Rheumatol 34(9):1571–1580PubMedGoogle Scholar
  147. 147.
    Leng SX, McElhaney JE, Walston JD, Xie D, Fedarko NS, Kuchel GA (2008) ELISA and multiplex technologies for cytokine measurement in inflammation and aging research. J Gerontol A Biol Sci Med Sci 63(8):879–884PubMedPubMedCentralGoogle Scholar
  148. 148.
    Gillette MA, Carr SA (2013) Quantitative analysis of peptides and proteins in biomedicine by targeted mass spectrometry. Nat Methods 10(1):28–34PubMedPubMedCentralGoogle Scholar
  149. 149.
    Picotti P, Bodenmiller B, Aebersold R (2013) Proteomics meets the scientific method. Nat Methods 10(1):24–27PubMedGoogle Scholar
  150. 150.
    Gold L, Ayers D, Bertino J, Bock C, Bock A, Brody EN, Carter J, Dalby AB, Eaton BE, Fitzwater T et al (2010) Aptamer-based multiplexed proteomic technology for biomarker discovery. PLoS One 5(12):e15004PubMedPubMedCentralGoogle Scholar
  151. 151.
    Wilson R (2011) High-content aptamer-based proteomics. J Proteome 74(10):1852–1854Google Scholar
  152. 152.
    Sattlecker M, Kiddle SJ, Newhouse S, Proitsi P, Nelson S, Williams S, Johnston C, Killick R, Simmons A, Westman E et al (2014) Alzheimer’s disease biomarker discovery using SOMAscan multiplexed protein technology. Alzheimers Dement 10(6):724–734PubMedGoogle Scholar
  153. 153.
  154. 154.
    Glish GL, Vachet RW (2003) The basics of mass spectrometry in the twenty-first century. Nat Rev Drug Discov 2(2):140–150PubMedGoogle Scholar
  155. 155.
    Aebersold R, Mann M (2003) Mass spectrometry-based proteomics. Nature 422(6928):198–207PubMedGoogle Scholar
  156. 156.
    Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM (1989) Electrospray ionization for mass spectrometry of large biomolecules. Science 246(4926):64–71Google Scholar
  157. 157.
    M. K, D. B, U. B (1987) Matrix-associated ultraviolet laser desorption of non-volatile compounds. Int J Mass Spectrom Ion Process 78:53–68Google Scholar
  158. 158.
    Levin Y, Bahn S (2010) Quantification of proteins by label-free LC-MS/MS. Methods Mol Biol 658:217–231PubMedGoogle Scholar
  159. 159.
    Gillet LC, Navarro P, Tate S, Rost H, Selevsek N, Reiter L, Bonner R, Aebersold R (2012) Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. Mol Cell Proteomics 11(6):O111 016717PubMedPubMedCentralGoogle Scholar
  160. 160.
    Kislinger T, Gramolini AO, MacLennan DH, Emili A (2005) Multidimensional protein identification technology (MudPIT): technical overview of a profiling method optimized for the comprehensive proteomic investigation of normal and diseased heart tissue. J Am Soc Mass Spectrom 16(8):1207–1220PubMedGoogle Scholar
  161. 161.
    Neilson KA, Ali NA, Muralidharan S, Mirzaei M, Mariani M, Assadourian G, Lee A, van Sluyter SC, Haynes PA (2011) Less label, more free: approaches in label-free quantitative mass spectrometry. Proteomics 11(4):535–553PubMedGoogle Scholar
  162. 162.
    Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 17(10):994–999PubMedGoogle Scholar
  163. 163.
    Karp NA, Huber W, Sadowski PG, Charles PD, Hester SV, Lilley KS (2010) Addressing accuracy and precision issues in iTRAQ quantitation. Mol Cell Proteomics 9(9):1885–1897PubMedPubMedCentralGoogle Scholar
  164. 164.
    Agilent, Technologies (2007) Agilent human 14 multiple affinity removal system columns for the fractionation of high-abundant proteins from human proteomic samplesGoogle Scholar
  165. 165.
    Collins BC, Miller CA, Sposny A, Hewitt P, Wells M, Gallagher WM, Pennington SR (2012) Development of a pharmaceutical hepatotoxicity biomarker panel using a discovery to targeted proteomics approach. Mol Cell Proteomics 11(8):394–410PubMedPubMedCentralGoogle Scholar
  166. 166.
    Adkins JN, Varnum SM, Auberry KJ, Moore RJ, Angell NH, Smith RD, Springer DL, Pounds JG (2002) Toward a human blood serum proteome: analysis by multidimensional separation coupled with mass spectrometry. Mol Cell Proteomics 1(12):947–955PubMedGoogle Scholar
  167. 167.
    Agilent 6500 Series Q-TOF LC/MS System). AgilentGoogle Scholar
  168. 168.
    Holewinski RJ, Jin Z, Powell MJ, Maust MD, Van Eyk JE (2013) A fast and reproducible method for albumin isolation and depletion from serum and cerebrospinal fluid. Proteomics 13(5):743–750PubMedPubMedCentralGoogle Scholar
  169. 169.
    Bauer M, Ahrne E, Baron AP, Glatter T, Fava LL, Santamaria A, Nigg EA, Schmidt A (2014) Evaluation of data-dependent and -independent mass spectrometric workflows for sensitive quantification of proteins and phosphorylation sites. J Proteome Res 13(12):5973–5988PubMedGoogle Scholar
  170. 170.
    Crutchfield CA, Thomas SN, Sokoll LJ, Chan DW (2016) Advances in mass spectrometry-based clinical biomarker discovery. Clin Proteomics 13:1PubMedPubMedCentralGoogle Scholar
  171. 171.
    Bateman KP, Castro-Perez J, Wrona M, Shockcor JP, Yu K, Oballa R, Nicoll-Griffith DA (2007) MSE with mass defect filtering for in vitro and in vivo metabolite identification. Rapid Commun Mass Spectrom 21(9):1485–1496PubMedGoogle Scholar
  172. 172.
    Lange V, Picotti P, Domon B, Aebersold R (2008) Selected reaction monitoring for quantitative proteomics: a tutorial. Mol Syst Biol 4:222PubMedPubMedCentralGoogle Scholar
  173. 173.
    Chang CY, Picotti P, Huttenhain R, Heinzelmann-Schwarz V, Jovanovic M, Aebersold R, Vitek O (2012) Protein significance analysis in selected reaction monitoring (SRM) measurements. Mol Cell Proteomics 11(4):M111 014662PubMedGoogle Scholar
  174. 174.
    Stuanton L, Clancy T, Tonry C, Ademowo OS (2014) Protein quantification by MRM for biomarker validation. In Eyers CE, Gaskell SJ (eds) New developments in mass spectrometry. Royal Society of ChemistryGoogle Scholar
  175. 175.
    Liebler DC, Zimmerman LJ (2013) Targeted quantitation of proteins by mass spectrometry. Biochemistry 52(22):3797–3806PubMedPubMedCentralGoogle Scholar
  176. 176.
    Taylor PJ, Cooper DP, Gordon RD, Stowasser M (2009) Measurement of aldosterone in human plasma by semiautomated HPLC-tandem mass spectrometry. Clin Chem 55(6):1155–1162PubMedGoogle Scholar
  177. 177.
    Honour JW (2011) Development and validation of a quantitative assay based on tandem mass spectrometry. Ann Clin Biochem 48(Pt 2):97–111PubMedGoogle Scholar
  178. 178.
    Carr SA, Abbatiello SE, Ackermann BL, Borchers C, Domon B, Deutsch EW, Grant RP, Hoofnagle AN, Huttenhain R, Koomen JM et al (2014) Targeted peptide measurements in biology and medicine: best practices for mass spectrometry-based assay development using a fit-for-purpose approach. Mol Cell Proteomics 13(3):907–917PubMedPubMedCentralGoogle Scholar
  179. 179.
    Li XJ, Hayward C, Fong PY, Dominguez M, Hunsucker SW, Lee LW, McLean M, Law S, Butler H, Schirm M et al (2013) A blood-based proteomic classifier for the molecular characterization of pulmonary nodules. Sci Transl Med 5(207):207ra142PubMedPubMedCentralGoogle Scholar
  180. 180.
    Morrissey B, O'Shea C, Armstrong J, Rooney C, Staunton L, Sheehan M, Shannon AM, Pennington SR (2013) Development of a label-free LC-MS/MS strategy to approach the identification of candidate protein biomarkers of disease recurrence in prostate cancer patients in a clinical trial of combined hormone and radiation therapy. Proteomics Clin Appl 7(5–6):316–326PubMedGoogle Scholar
  181. 181.
    Enko D, Kriegshauser G, Stolba R, Worf E, Halwachs-Baumann G (2015) Method evaluation study of a new generation of vitamin D assays. Biochem Med (Zagreb) 25(2):203–212Google Scholar
  182. 182.
    Liebisch G, Matysik S (2015) Accurate and reliable quantification of 25-hydroxy-vitamin D species by liquid chromatography high-resolution tandem mass spectrometry. J Lipid Res 56(6):1234–1239PubMedPubMedCentralGoogle Scholar
  183. 183.
    Pamir N, Hutchins P, Ronsein G, Vaisar T, Reardon CA, Getz GS, Lusis AJ, Heinecke JW (2016) Proteomic analysis of HDL from inbred mouse strains implicates APOE associated with HDL in reduced cholesterol efflux capacity via the ABCA1 pathway. J Lipid Res 57(2):246–257PubMedPubMedCentralGoogle Scholar
  184. 184.
    Wanichthanarak K, Fahrmann JF, Grapov D (2015) Genomic, proteomic, and metabolomic data integration strategies. Biomark Insights 10(Suppl 4):1–6PubMedPubMedCentralGoogle Scholar
  185. 185.
    Manzoni C, Kia DA, Vandrovcova J, Hardy J, Wood NW, Lewis PA, Ferrari R (2016) Genome, transcriptome and proteome: the rise of omics data and their integration in biomedical sciences. Brief BioinformGoogle Scholar
  186. 186.
    Alevizos I, Illei GG (2010) MicroRNAs as biomarkers in rheumatic diseases. Nat Rev Rheumatol 6(7):391–398PubMedPubMedCentralGoogle Scholar
  187. 187.
    Passetti F, Ferreira CG, Costa FF (2009) The impact of microRNAs and alternative splicing in pharmacogenomics. Pharmacogenomics J 9(1):1–13PubMedGoogle Scholar
  188. 188.
    Haroon M, Kirby B, FitzGerald O (2013) High prevalence of psoriatic arthritis in patients with severe psoriasis with suboptimal performance of screening questionnaires. Ann Rheum Dis 72(5):736–740PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Conway Institute of Biomedical ResearchUniversity College DublinDublinIreland
  2. 2.Department of Rheumatology, St. Vincent’s University Hospital and Conway Institute for Biomolecular ResearchUniversity College DublinDublinIreland

Personalised recommendations