Cypress Pollinosis: from Tree to Clinic

  • Denis Charpin
  • Christian Pichot
  • Jordina Belmonte
  • Jean-Pierre Sutra
  • Jarmila Zidkova
  • Pascal Chanez
  • Youcef Shahali
  • Hélène Sénéchal
  • Pascal Poncet


Cypress (Cupressus is a genus within the Cupressaceae family. This family covers all of the Earth’s continents except for Antarctica, and it includes about 160 species. The most important taxa for allergic diseases belong to five different genera: Cupressus, Hesperocyparis, Juniperus, Cryptomeria, and Chamaecyparis. Cupressaceae species share a common pollen type that can even include the genus Taxus (Taxaceae) when this plant is also present. As Juniperus oxycedrus pollinates in October, Cupressus sempervirens in January and February, Hesperocyparis arizonica (prev. Cupressus arizonica) in February and March, and Juniperus communis in April, the symptomatic period is long-lasting. Due to global warming, the pollination period tends to last longer, and there is a trend for Cupressaceae bioclimate niches to migrate north. In Mediterranean areas, C. sempervirens (Italian cypress or Mediterranean cypress) is by far the most common pollinating species. It accounts for half of the total pollination level. The group 1 major allergens belong to the pectate-lyase family, and members share 70 to 97% sequence homology within the different Cupressaceae. Group 2 allergens correspond to the polygalacturonase protein family, while group 3, a minor allergen, belongs to the family of “thaumatin-like proteins,” a pathogenesis-related protein 5. Group 4 allergens are Ca++-binding protein (4 EF-hands). Aside from these four groups, about 15 other allergens have been reported. Prominent among these is a basic low-molecular mass cross-reactive allergen that was identified recently, and which is suspected to be involved in pollen food syndromes which are common with peach and citrus. The prevalence of cypress allergy in the general population ranges from 0.6 to 3%, depending on the degree of exposure to the pollen. Depending on the geographic area and the studied population, 9 to 65% of outpatients consulting an allergist may have sensitization to cypress pollen. Repeated cross-sectional studies performed at different time intervals have demonstrated a threefold increase in the percentage of cypress allergy around the Mediterranean area. Risk factors include a genetic predisposition and/or a strong exposure to pollen, and the natural history of cypress allergy allows identification of a subgroup of patients as allergic rather than atopic. Concerning the clinical expression, rhinitis is the most prevalent symptom, while conjunctivitis is the most disabling. Pharmacological treatment of cypress allergies is not different from that of other seasonal allergies. Immunotherapy has been used, initially by subcutaneous injections, but currently mostly through the sublingual route. Although clinical trials have included only a limited number of patients, it has proven effective and safe. Avoidance can be implemented at the individual level, as well as at the community level, through the use of alternative plants, low-pollinating cypresses, or by trimming hedges before pollination.


Cypress pollen Allergens Aerobiology Epidemiology Botanic, clinic 



molecular mass


isoelectric point


sodium dodecyl sulfate polyacrylamide gel electrophoresis


International Union of Immunological Societies


lipid transfer protein




basic protein 14 kDa


thaumatin-like proteins


pathogenesis-related proteins


isoflavone reductase


calcium-binding proteins


gibberellin-regulated protein


combinatorial peptide ligand library


phosphate buffer saline


heat shock protein


pollen food syndrome


annual pollen index


pollen grains per cubic meter of air


scanning electron microscopy



The authors wish to thank Dr. M. Thibaudon, National Network Monitoring Aerobiological, RNSA, Brussieu, (France), Dr. D. Vokou and Dr. A. Damialis. Dept. Ecology, School of Biology, and Dept. of Pulmonary Medicine, Faculty of Medicine, Aristotle University of Thessaloniki, (Greece), Dr. J. Subiza, Clínica Dr. Subiza, Madrid, (Spain), Dr. M. Msalle and S. Hadj Hamda, Laboratory of Palynology at the Olive Tree, Institute of Tunis, National Institute for the Agronomy, (Tunisia), Dr. N. M. Pinar, Ankara University, and Dr. Talip Çeter, Dr. Yavuz Türkmen, Kastamonu University (Turkey) who kindly contributed the aerobiological data used in this study.

Compliance with Ethical Standards


A part of the work on aerobiology was funded by the ICTA “Unit of Excellence” (MinECo, MDM2015-0552).

A part of the work on allergen identification was supported by the program Hubert Curien-Barrande 2015–2016 (France and Czech Republic scientific exchanges).

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

Human sera used for immunochemical studies (Allergens section) correspond to residues from biological analysis for diagnosis.

Informed Consent

Not applicable.


  1. 1.
    Charpin J, Aubert J, Charpin H, Giraud-Michel O (1957) Respiratory allergy to pollen in Provence. Biol Med (Paris) 46(6):617–631Google Scholar
  2. 2.
    Charpin J, Aubert J, Zafiropoulo A, Giraud-Michel O (1955) Etiology of pollinic respiratory disorders in Provence. J Fr Med Chir Thorac 9(4):408–411PubMedGoogle Scholar
  3. 3.
    Black JH (1929) Cedar hay fever. J Allergy 1:71–73CrossRefGoogle Scholar
  4. 4.
    Panzani R (1962) Respiratory allergy to Coniferophyta pollen. Rev Fr Allergie 2(3):164–168CrossRefGoogle Scholar
  5. 5.
    Ishizaki T, Koizumi K, Ikemori R, Ishiyama Y, Kushibiki E (1987) Studies of prevalence of Japanese cedar pollinosis among the residents in a densely cultivated area. Ann Allergy 58(4):265–270PubMedGoogle Scholar
  6. 6.
    Pham NH, Baldo BA, Bass DJ (1994) Cypress pollen allergy. Identification of allergens and crossreactivity between divergent species. Clin Exp Allergy 24(6):558–565PubMedCrossRefGoogle Scholar
  7. 7.
    Shahali Y, Pourpak Z, Moin M, Mari A, Majd A (2009) Instability of the structure and allergenic protein content in Arizona cypress pollen. Allergy 64(12):1773–1779PubMedCrossRefGoogle Scholar
  8. 8.
    Ordman D (1945) Cypress pollinosis in South Africa. S Afr Med J 19:142–146Google Scholar
  9. 9.
    Panzani R, Centanni G, Brunel M (1986) Increase of respiratory allergy to the pollens of cypresses in the south of France. Ann Allergy 56(6):460–463PubMedGoogle Scholar
  10. 10.
    Subiza J, Jerez M, Jimenez JA, Narganes MJ, Cabrera M, Varela S, Subiza E (1995) Allergenic pollen pollinosis in Madrid. J Allergy Clin Immunol 96(1):15–23PubMedCrossRefGoogle Scholar
  11. 11.
    Geller-Bernstein C, Waisel Y, Lahoz C (2000) Environment and sensitization to cypress in Israel. Allerg Immunol (Paris) 32(3):92–93Google Scholar
  12. 12.
    Afif H, Mokahli S, Bourra H, Aichane A, Bouayad Z (2006) Cutaneous sensitisation to cypress in Casablanca. Rev Fr Allergo Immunol Clin 46(7):633–639Google Scholar
  13. 13.
    Gioulekas D, Papakosta D, Damialis A, Spieksma F, Gioulekas P, Patakas D (2004) Allergenic pollen records (15 years) and sensitization in patients with respiratory allergy in Thessaloniki, Greece. Allergy 59:174–184PubMedCrossRefGoogle Scholar
  14. 14.
    Sin AZ, Ersoy R, Gulbahar O, Ardeniz O, Gokmen NM, Kokuludag A (2008) Prevalence of cypress pollen sensitization and its clinical importance in Izmir, Turkey, with cypress allergy assessed by nasal provocation. J Investig Allergol Clin Immunol 18(1):46–51PubMedGoogle Scholar
  15. 15.
    Priftanji A, Gjebrea E, Shkurti A (2000) Cupressaceae in Tirana (Albania) 1996-1998 aerobiological data and prevalence of Cupresaceae sensitization in allergic patients. Allerg Immunol (Paris) 32:122–124Google Scholar
  16. 16.
    Caiaffa MF, Macchia L, Strada S, Bariletto G, Scarpelli F, Tursi A (1993) Airborne Cupressaceae pollen in southern Italy. Ann Allergy 71(1):45–50PubMedGoogle Scholar
  17. 17.
    Shahali Y, Pourpak Z, Moin M, Zare A, Majd A (2009) Impacts of air pollution exposure on the allergenic properties of Arizona cypress pollens. J Phys Conf Ser 151(1):012027CrossRefGoogle Scholar
  18. 18.
    Wang Q, Morita J, N. S, Wu D, Gong X, Suzuki M, Miwa M, Nakajima D (2010) Field investigation on modification of Japanese cedar pollen allergen in urban air-polluted area. World Acad Sci Eng Technol 69:624–629Google Scholar
  19. 19.
    Suarez-Cervera M, Castells T, Vega-Maray A, Civantos E, del Pozo V, Fernandez-Gonzalez D, Moreno-Grau S, Moral A, Lopez-Iglesias C, Lahoz C, Seoane-Camba JA (2008) Effects of air pollution on cup a 3 allergen in Cupressus arizonica pollen grains. Ann Allergy Asthma Immunol 101(1):57–66PubMedCrossRefGoogle Scholar
  20. 20.
    Okuyama Y, Matsumoto K, Okochi H, Igawa M (2007) Adsorption of air pollutants on the grain surface of Japanese cedar pollen. Atmospheric Environ 41(2):253–260CrossRefGoogle Scholar
  21. 21.
    Jung J, Kawamura K (2011) Enhanced concentrations of citric acid in spring aerosols collected at the Gosan background site in East Asia. Atmos Environ 45(5266–72)Google Scholar
  22. 22.
    Mari A, Di Felice G, Afferni C, Barletta B, Tinghino R, Pini C (1997) Cypress allergy: An underestimated pollinosis. Allergy 52(3):355–356PubMedCrossRefGoogle Scholar
  23. 23.
    Di Felice G, Barletta B, Tinghino R, Pini C (2001) Cupressaceae pollinosis: Identification, purification and cloning of relevant allergens. Int Arch Allergy Immunol 125(4):280–289PubMedCrossRefGoogle Scholar
  24. 24.
    Ford SA, Baldo BA, Panzani R, Bass D (1991) Cypress (Cupressus sempervirens) pollen allergens: Identification by protein blotting and improved detection of specific IgE antibodies. Int Arch Allergy Appl Immunol 95(2–3):178–183PubMedCrossRefGoogle Scholar
  25. 25.
    Lewis WH, Vinay P, Zenger VE (1983) Airborne and allergenic pollen of North America. In: Press JH (ed). Baltimore, p 254Google Scholar
  26. 26.
    Little DP (2006) Evolution and circumscription of the true cypresses (Cupressaceae: Cupresssus). Syst Bot 31:461–480CrossRefGoogle Scholar
  27. 27.
    Mao K, Milne RI, Zhang L, Peng Y, Liu J, Thomas P, Mill RR, Renner SS (2012) Distribution of living Cupressaceae reflects the breakup of Pangea. Proc Natl Acad Sci U S A 109(20):7793–7798. doi: 10.1073/pnas.1114319109 PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Asam C, Hofer H, Wolf M, Aglas L, Wallner M (2015) Tree pollen allergens-an update from a molecular perspective. Allergy 70(10):1201–1211. doi: 10.1111/all.12696 PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Mothes N, Horak F, Valenta R (2004) Transition from a botanical to a molecular classification in tree pollen allergy: Implications for diagnosis and therapy. Int Arch Allergy Immunol 135(4):357–373. doi: 10.1159/000082332 PubMedCrossRefGoogle Scholar
  30. 30.
    Taniguchi Y, Ono A, Sawatani M, Nanba M, Kohno K, Usui M, Kurimoto M, Matuhasi T (1995) Cry j I, a major allergen of Japanese cedar pollen, has pectate lyase enzyme activity. Allergy 50(1):90–93PubMedCrossRefGoogle Scholar
  31. 31.
    Adams RP, Bartel JA, Price RA (2009) A new genus, Hesperocyparis, for the cypresses of the new World. Phytologia 91:160–185Google Scholar
  32. 32.
    Gangl K, Niederberger V, Valenta R, Nandy A (2015) Marker allergens and panallergens in tree and grass pollen allergy. Allergo J Int 24(Part 17 of the Series Molecular Allergology):158–169. doi: 10.1007/s40629-015-0055-3 CrossRefGoogle Scholar
  33. 33.
    Radauer C, Breiteneder H (2006) Pollen allergens are restricted to few protein families and show distinct patterns of species distribution. J Allergy Clin Immunol 117(1):141–147. doi: 10.1016/j.jaci.2005.09.010 PubMedCrossRefGoogle Scholar
  34. 34.
    Perez-Badia R, Rapp A, Vaquero C, Fernandez-Gonzalez F (2011) Aerobiological study in east-central Iberian Peninsula: Pollen diversity and dynamics for major taxa. Ann Agric Environ Med 18(1):99–111PubMedGoogle Scholar
  35. 35.
    Boi M, Llorens L (2013) Annual pollen spectrum in the air of Palma de Mallorca (Balearic Islands, Spain). Aerobiologia 29(3):385–397CrossRefGoogle Scholar
  36. 36.
    Docampo S, Recio M, Trigo MM, Melgar M, Cabezudo B (2007) Risk of pollen allergy in Nerja (southern Spain): A pollen calendar. Aerobiologia 23(3):189–199CrossRefGoogle Scholar
  37. 37.
    Hidalgo PJ, Galan C, Dominguez E (2003) Male phenology of three species of Cupressus: Correlation with airborne pollen. Trees 17:336–344Google Scholar
  38. 38.
    Belmonte J, Canela M, Guàrdia R, Guàrdia RA, Sbai L, Vendrell M, Cariñanos P, Díaz de la Guardia C, Dopazo A, Fernandez D, Gutiérrez M, Trigo MM (1999) Aerobiological dynamics of Cupressaceae pollen in Spain, 1992-98. Polen 10:25–36Google Scholar
  39. 39.
    Pichot C, El Maâtaoui M (2000) Unreduced diploid nuclei in Cupressus dupreziana A. Camus pollen. Theor Appl Genet 101:574–579CrossRefGoogle Scholar
  40. 40.
    Danti R, Della Rocca G, Mori B, Torraca G, Calamassi R, Mariotti Lippi M (2010) Old World and new World Cupressus pollen: Morphological and cytological remarks. Plant Syst Evol 287:167–177CrossRefGoogle Scholar
  41. 41.
    Aboulaïch N, Bouziane H, El Kadiri M, Riadi H (2008) Male phenology and pollen production of Cupressus sempervirens in Tetouan (Morocco). Grana 47(2):130–138. doi: 10.1080/00173130802151700 CrossRefGoogle Scholar
  42. 42.
    Hidalgo PJ, Galan C, Dominguez E (1999) Pollen production of the genus Cupressus. Grana 38:296–300CrossRefGoogle Scholar
  43. 43.
    D’Amato G, Cecchi L, Bonini S, Nunes C, Annesi-Maesano I, Behrendt H, Liccardi G, Popov T, van Cauwenberge P (2007) Allergenic pollen and pollen allergy in Europe. Allergy 62(9):976–990. doi: 10.1111/j.1398-9995.2007.01393.x PubMedCrossRefGoogle Scholar
  44. 44.
    Skjoth CA, Sikoparija B, Jäger S, EAN-Network (2013) Pollen sources. In: Sofiev M, Bergmann KC (eds) Allergenic pollen: A review of the production, release, distribution and health impacts. Springer Science and Business Media, Dordrecht. doi: 10.1007/978-94-007-4881-1_2 Google Scholar
  45. 45.
    Lamy E, Savournin C, Balansard G (2001). Allergol Immunol 33(103–4)Google Scholar
  46. 46.
    Tosunoglu A, Altunoglu MK, Bicakci A, Kilic O, Gonca T, Yilmazer I, Malyer H (2015) Atmospheric pollen concentrations in Antalya, South Turkey. Aerobiologia 31(1):99–109CrossRefGoogle Scholar
  47. 47.
    Celenk S, Bicakci A, Tamay Z, Guler N, Altunoglu MK, Canitez Y, Ones U (2010) Airborne pollen in European and Asian parts of Istanbul. Environ Monit Assess 164(1–4):391–402PubMedCrossRefGoogle Scholar
  48. 48.
    Gioulekas D, Balafoutis C, Damialis A, Papakosta D, Gioulekas G, Patakas D (2004) Fifteen years’ record of airborne allergenic pollen and meteorological parameters in Thessaloniki, Greece. Int J Biometeorol 48(3):128–136PubMedCrossRefGoogle Scholar
  49. 49.
    Perez-Badia R, A. R, Morales C, Sardinero S, Galan C, Garcia-Mozo H (2010) Pollen spectrum and risk of pollen allergy in central Spain. Ann Agric Environ Med 17(1):139–151PubMedGoogle Scholar
  50. 50.
    Ozturk M, Guvensen A, Gucel SA, Altay V (2013) An overview of the atmospheric pollen in Turkey and the northern Cyprus. Pak J Bot 45:191–195Google Scholar
  51. 51.
    Melgar M, Trigo MM, Recio M, Docampo S, García-Sánchez J, Cabezudo B (2012) Atmospheric pollen dynamics in Münster, north-western Germany: A three-year study (2004-2006). Aerobiologia 28(4):423–434CrossRefGoogle Scholar
  52. 52.
    Murray MG, Galán C, Villamil CB (2010) Airborne pollen in Bahía Blanca, Argentina: Seasonal distribution of pollen types. Aerobiologia 26(3):195–207CrossRefGoogle Scholar
  53. 53.
    Calderón-Ezquerro MC, Guerrero-Guerra C, Martínez-López B, Fuentes-Rojas F, Téllez-Unzueta F, López-Espinoza ED, E. C-SM, A. MA, Trigo-Pérez MM (2015) First airborne pollen calendar for Mexico City and its relationship with bioclimatic factors. Aerobiologia 31:1–20CrossRefGoogle Scholar
  54. 54.
    Kosisky SE, Marks MS, Nelson MR (2010) Pollen aeroallergens in the Washington, DC, metropolitan area: A 10-year volumetric survey (1998-2007). Ann Allergy Asthma Immunol 104(3):223–235. doi: 10.1016/j.anai.2010.01.005 PubMedCrossRefGoogle Scholar
  55. 55.
    Dvorin DJ, Lee JJ, Belecanech GA, Goldstein MF, Dunsky EH (2001) A comparative, volumetric survey of airborne pollen in Philadelphia, Pennsylvania (1991-1997) and Cherry Hill, New Jersey (1995-1997). Ann Allergy Asthma Immunol 87(5):394–404. doi: 10.1016/S1081-1206(10)62921-3 PubMedCrossRefGoogle Scholar
  56. 56.
    White JF, Bernstein DI (2003) Key pollen allergens in North America. Ann Allergy Asthma Immunol 91(5):425–435 . doi: 10.1016/S1081-1206(10)61509-8 quiz 435-426, 492PubMedCrossRefGoogle Scholar
  57. 57.
    Mohanty RP, Buchheim MA, Levetin E (2017) Molecular approaches for the analysis of airborne pollen: A case study of Juniperus pollen. Ann Allergy Asthma Immunol 118(2):204–211 . doi: 10.1016/j.anai.2016.11.015 e202PubMedCrossRefGoogle Scholar
  58. 58.
    Fang R, Xie S, Wei F (2001) Pollen survey and clinical research in Yunnan. China Aerobiologia 17(2):165–169CrossRefGoogle Scholar
  59. 59.
    Kishikawa R, Kotoh E, Oshikawa C, Soh N, Shimoda T, Saito A, Sahashi N, Enomoto T, Usami A, Teranishi H, Fujisaki Y, Yokoyama T, Murayama K, Imai T, Fukutomi Y, Taniguchi M, Iwanaga T (2017) Longitudinal monitoring of tree airborne pollen in Japan. Arerugi 66(2):97–111. doi: 10.15036/arerugi.66.97 PubMedGoogle Scholar
  60. 60.
    Belmonte J, Cuevas E, Poza P, González R, Roure JM, Puigdemunt P, Alonso-Pérez S, Grau F (2010) Aerobiología y alergias respiratorias de Tenerife. In: AEdM (ed) AEMET. Ministerio de Medio Ambiente y Medio Rural y Marino, Spain, p 59Google Scholar
  61. 61.
    Hirst JM (1952) An automatic volumetric spore-trap system. Ann Appl Biol 39:257–265CrossRefGoogle Scholar
  62. 62.
    Cour P (1974) New techniques for the detection of pollen fluxes and fallouts: Study of pollen and spore sedimentation on the soil surface. Pollen Spores 16:103–141Google Scholar
  63. 63.
    Charpin D, Calleja M, Lahoz C, Pichot C, Waisel Y (2005) Allergy to cypress pollen. Allergy 60(3):293–301. doi: 10.1111/j.1398-9995.2005.00731.x PubMedCrossRefGoogle Scholar
  64. 64.
    Damialis A, Halley JM, Gioulekas D, Vokou D (2007) Long-term trends in atmospheric pollen levels in the city of Thessaloniki, Greece. Atmospheric Environ 41:7011–7021CrossRefGoogle Scholar
  65. 65.
    Ziello C, Sparks TH, Estrella N, Belmonte J, Bergmann KC, Bucher E, Brighetti MA, Damialis A, Detandt M, Galan C, Gehrig R, Grewling L, Gutierrez Bustillo AM, Hallsdottir M, Kockhans-Bieda MC, De Linares C, Myszkowska D, Paldy A, Sanchez A, Smith M, Thibaudon M, Travaglini A, Uruska A, Valencia-Barrera RM, Vokou D, Wachter R, de Weger LA, Menzel A (2012) Changes to airborne pollen counts across Europe. PLoS One 7(4):e34076. doi: 10.1371/journal.pone.0034076 PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Ariano R, Canonica GW, Passalacqua G (2010) Possible role of climate changes in variations in pollen seasons and allergic sensitizations during 27 years. Ann Allergy Asthma Immunol 104(3):215–222. doi: 10.1016/j.anai.2009.12.005 PubMedCrossRefGoogle Scholar
  67. 67.
    De Weger L, Bergmann KC, Rantio-Lehtimäki A, Dahl A, Buters J, Déchamp C, Belmonte J, Thibaudon M, Cecchi L, Besancenot JP, Galán C, Waisel Y (2013) Impact of pollen. In: Sofiev M, Bergmann KC (eds) Allergenic pollen: A review of the production, release, distribution and health impacts. Springer Science Business Media, Dordrecht. doi: 10.1007/978-94-007-4881-1_2 Google Scholar
  68. 68.
    Konishi S, Ng CF, Stickley A, Nishihata S, Shinsugi C, Ueda K, Takami A, Watanabe C (2014) Particulate matter modifies the association between airborne pollen and daily medical consultations for pollinosis in Tokyo. Sci Total Environ 499:125–132. doi: 10.1016/j.scitotenv.2014.08.045 PubMedCrossRefGoogle Scholar
  69. 69.
    Yasueda H, Yui Y, Shimizu T, Shida T (1983) Isolation and partial characterization of the major allergen from Japanese cedar (Cryptomeria japonica) pollen. J Allergy Clin Immunol 71(1 Pt 1):77–86PubMedCrossRefGoogle Scholar
  70. 70.
    Panzani R, Yasueda H, Shimizu T, Shida T (1986) Cross-reactivity between the pollens of Cupressus sempervirens (common cypress) and of Cryptomeria japonica (Japanese cedar). Ann Allergy 57(1):26–30PubMedGoogle Scholar
  71. 71.
    Di Felice G, Caiaffa MF, Bariletto G, Afferni C, Di Paola R, Mari A, Palumbo S, Tinghino R, Sallusto F, Tursi A et al (1994) Allergens of Arizona cypress (Cupressus arizonica) pollen: Characterization of the pollen extract and identification of the allergenic components. J Allergy Clin Immunol 94(3 Pt 1):547–555PubMedCrossRefGoogle Scholar
  72. 72.
    Danti R, Della Rocca G, Calamassi R, Mori B, Mariotti Lippi M (2011) Insights into a hydration regulating system in Cupressus pollen grains. Ann Bot 108(2):299–306. doi: 10.1093/aob/mcr144 PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Suarez-Cervera M, Takahashi Y, Vega-Maray A, Seoane-Camba J-A (2003) Immunocytochemical localization of cry j 1, the major allergen of Cryptomeria japonica (Taxodiaceae) in Cupressus arizonica and Cupressus sempervirens (Cupressaceae) pollen grains. Sex Plant Reprod 16:9–15Google Scholar
  74. 74.
    Wang Q, Nakamura S, Lu S, Xiu G, Nakajima D, Suzuki M, Sakamoto K, Miwa M (2012) Release behavior of small sized daughter allergens from Cryptomeria japonica pollen grains during urban rainfall event. Aerobiologia 28(1):71–81. doi: 10.1007/s10453-011-9212-4 CrossRefGoogle Scholar
  75. 75.
    Canini A, Giovinazzi J, Iacovacci P, Pini C, Grilli Caiola M (2004) Localisation of a carbohydrate epitope recognised by human IgE in pollen of Cupressaceae. J Plant Res 117(2):147–153. doi: 10.1007/s10265-003-0139-x PubMedCrossRefGoogle Scholar
  76. 76.
    Nakamura S, Sato F, Nakamura N (2004) Immunocytochemical localization of cry j 1 and cry j 2 - the allergenic proteins of Japonese cedar pollen - in the germinated pollen. Japanese Journal of Palynology 50(1):15–22Google Scholar
  77. 77.
    Gong X, Wang Q, Lu S, Suzuki M, Nakajima D, Sekiguchi K, Miwa M (2017) Size distribution of allergenic cry j 2 released from airborne Cryptomeria japonica pollen grains during the pollen scattering seasons. Aerobiologia 33(1):59–69CrossRefGoogle Scholar
  78. 78.
    Sénéchal H, Visez N, Charpin D, Shahali Y, Peltre G, Biolley J-P, Lhuissier F, Couderc R, Yamada O, Malrat-Domenge A, Pham-Thi N, Poncet P, Sutra J-P (2015) A review of the effects of major atmospheric pollutants on pollen grains, pollen content, and allergenicity. The Scientific World J 2015:1–29CrossRefGoogle Scholar
  79. 79.
    Abou Chakra O, Rogerieux F, Poncet P, Sutra JP, Peltre G, Senechal H, Lacroix G (2011) Ability of pollen cytoplasmic granules to induce biased allergic responses in a rat model. Int Arch Allergy Immunol 154(2):128–136. doi: 10.1159/000320227 PubMedCrossRefGoogle Scholar
  80. 80.
    Kamijo S, Takai T, Kuhara T, Tokura T, Ushio H, Ota M, Harada N, Ogawa H, Okumura K (2009) Cupressaceae pollen grains modulate dendritic cell response and exhibit IgE-inducing adjuvant activity in vivo. J Immunol 183(10):6087–6094. doi: 10.4049/jimmunol.0901039 PubMedCrossRefGoogle Scholar
  81. 81.
    Russano AM, Agea E, Casciari C, de Benedictis FM, Spinozzi F (2008) Complementary roles for lipid and protein allergens in triggering innate and adaptive immune systems. Allergy 63(11):1428–1437. doi: 10.1111/j.1398-9995.2008.01810.x PubMedCrossRefGoogle Scholar
  82. 82.
    Gilles S, Mariani V, Bryce M, Mueller MJ, Ring J, Behrendt H, Jakob T, Traidl-Hoffmann C (2009) Pollen allergens do not come alone: Pollen associated lipid mediators (PALMS) shift the human immune systems towards a T(H)2-dominated response. Allergy Asthma Clin Immunol 5(1):1–6. doi: 10.1186/1710-1492-5-3 CrossRefGoogle Scholar
  83. 83.
    Boldogh I, Bacsi A, Choudhury BK, Dharajiya N, Alam R, Hazra TK, Mitra S, Goldblum RM, Sur S (2005) ROS generated by pollen NADPH oxidase provide a signal that augments antigen-induced allergic airway inflammation. J Clin Invest 115(8):2169–2179. doi: 10.1172/JCI24422 PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Dharajiya NG, Bacsi A, Boldogh I, Sur S (2007) Pollen NAD(P)H oxidases and their contribution to allergic inflammation. Immunol Allergy Clin N Am 27(1):45–63. doi: 10.1016/j.iac.2006.11.007 CrossRefGoogle Scholar
  85. 85.
    Wang XL, Takai T, Kamijo S, Gunawan H, Ogawa H, Okumura K (2009) NADPH oxidase activity in allergenic pollen grains of different plant species. Biochem Biophys Res Commun 387(3):430–434. doi: 10.1016/j.bbrc.2009.07.020 PubMedCrossRefGoogle Scholar
  86. 86.
    Bacsi A, Choudhury BK, Dharajiya N, Sur S, Boldogh I (2006) Subpollen particles: Carriers of allergenic proteins and oxidases. J Allergy Clin Immunol 118(4):844–850PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Behrendt H, Kasche A, Ebner von Eschenbach C, Risse U, Huss-Marp J, Ring J (2001) Secretion of proinflammatory eicosanoid-like substances precedes allergen release from pollen grains in the initiation of allergic sensitization. Int Arch Allergy Immunol 124(1–3):121–125PubMedGoogle Scholar
  88. 88.
    Traidl-Hoffmann C, Kasche A, Jakob T, Huger M, Plotz S, Feussner I, Ring J, Behrendt H (2002) Lipid mediators from pollen act as chemoattractants and activators of polymorphonuclear granulocytes. J Allergy Clin Immunol 109(5):831–838PubMedCrossRefGoogle Scholar
  89. 89.
    Plotz SG, Traidl-Hoffmann C, Feussner I, Kasche A, Feser A, Ring J, Jakob T, Behrendt H (2004) Chemotaxis and activation of human peripheral blood eosinophils induced by pollen-associatedlipid mediators. J Allergy Clin Immunol 113(6):1152–1160. doi: 10.1016/j.jaci.2004.03.011 PubMedCrossRefGoogle Scholar
  90. 90.
    Gutermuth J, Bewersdorff M, Traidl-Hoffmann C, Ring J, Mueller MJ, Behrendt H, Jakob T (2007) Immunomodulatory effects of aqueous birch pollen extracts and phytoprostanes on primary immune responses in vivo. J Allergy Clin Immunol 120(2):293–299. doi: 10.1016/j.jaci.2007.03.017 PubMedCrossRefGoogle Scholar
  91. 91.
    Mariani V, Gilles S, Jakob T, Thiel M, Mueller MJ, Ring J, Behrendt H, Traidl-Hoffmann C (2007) Immunomodulatory mediators from pollen enhance the migratory capacity of dendritic cells and license them for Th2 attraction. J Immunol 178(12):7623–7631PubMedCrossRefGoogle Scholar
  92. 92.
    Alisi C, Afferni C, Iacovacci P, Barletta B, Tinghino R, Butteroni C, Puggioni EM, Wilson IB, Federico R, Schinina ME, Ariano R, Di Felice G, Pini C (2001) Rapid isolation, characterization, and glycan analysis of cup a 1, the major allergen of Arizona cypress (Cupressus arizonica) pollen. Allergy 56(10):978–984PubMedGoogle Scholar
  93. 93.
    Aceituno E, Del Pozo V, Minguez A, Arrieta I, Cortegano I, Cardaba B, Gallardo S, Rojo M, Palomino P, Lahoz C (2000) Molecular cloning of major allergen from Cupressus arizonica pollen: Cup a 1. Clin Exp Allergy 30(12):1750–1758PubMedCrossRefGoogle Scholar
  94. 94.
    Arilla MC, Ibarrola I, Martinez A, Asturias JA (2004) Quantification assay for the major allergen of Cupressus sempervirens pollen, cup s 1, by sandwich ELISA. Allergol Immunopathol (Madr) 32(6):319–325CrossRefGoogle Scholar
  95. 95.
    Pichler U, Hauser M, Wolf M, Bernardi ML, Gadermaier G, Weiss R, Ebner C, Yokoi H, Takai T, Didierlaurent A, Rafaiani C, Briza P, Mari A, Behrendt H, Wallner M, Ferreira F (2015) Pectate lyase pollen allergens: Sensitization profiles and cross-reactivity pattern. PLoS One 10(5):e0120038. doi: 10.1371/journal.pone.0120038 PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Scala E, Alessandri C, Bernardi ML, Ferrara R, Palazzo P, Pomponi D, Quaratino D, Rasi C, Zaffiro A, Zennaro D, Mari A (2010) Cross-sectional survey on immunoglobulin E reactivity in 23 077 subjects using an allergenic molecule-based microarray detection system. Clin Exp Allergy 40(6):911–921PubMedCrossRefGoogle Scholar
  97. 97.
    Shahali Y, Sutra JP, Charpin D, Mari A, Guilloux L, Sénéchal H, Poncet P (2012) Differential IgE sensitization to cypress pollen associated to a basic allergen of 14 kDa. FEBS J 279(8):1445–1455. doi: 10.1111/j.1742-4658.2012.08536.x PubMedCrossRefGoogle Scholar
  98. 98.
    Ohtsuki T, Taniguchi Y, Kohno K, Fukuda S, Usui M, Kurimoto M (1995) Cry j 2, a major allergen of Japanese cedar pollen, shows polymethylgalacturonase activity. Allergy 50(6):483–488PubMedCrossRefGoogle Scholar
  99. 99.
    Hashimoto M, Nigi H, Sakaguchi M, Inouye S, Imaoka K, Miyazawa H, Taniguchi Y, Kurimoto M, Yasueda H, Ogawa T (1995) Sensitivity to two major allergens (cry j I and cry j II) in patients with Japanese cedar (Cryptomeria japonica) pollinosis. Clin Exp Allergy 25(9):848–852PubMedCrossRefGoogle Scholar
  100. 100.
    Afferni C, Iacovacci P, Barletta B, Di Felice G, Tinghino R, Mari A, Pini C (1999) Role of carbohydrate moieties in IgE binding to allergenic components of Cupressus arizonica pollen extract. Clin Exp Allergy 29(8):1087–1094PubMedCrossRefGoogle Scholar
  101. 101.
    Barletta B, Tinghino R, Corinti S, Afferni C, Iacovacci P, Mari A, Pini C, Di Felice G (1998) Arizona cypress (Cupressus arizonica) pollen allergens. Identification of crossreactive periodate-resistant and sensitive epitopes with monoclonal antibodies. Allergy 53(6):586–593PubMedCrossRefGoogle Scholar
  102. 102.
    Iacovacci P, Afferni C, Butteroni C, Pironi L, Puggioni EM, Orlandi A, Barletta B, Tinghino R, Ariano R, Panzani RC, Di Felice G, Pini C (2002) Comparison between the native glycosylated and the recombinant cup a1 allergen: Role of carbohydrates in the histamine release from basophils. Clin Exp Allergy 32(11):1620–1627PubMedCrossRefGoogle Scholar
  103. 103.
    Kimura Y, Kuroki M, Maeda M, Okano M, Yokoyama M, Kino K (2008) Glycoform analysis of Japanese cypress pollen allergen, cha o 1: A comparison of the glycoforms of cedar and cypress pollen allergens. Biosci Biotechnol Biochem 72(2):485–491. doi: 10.1271/bbb.70572 PubMedCrossRefGoogle Scholar
  104. 104.
    Miyaji K, Okamoto N, Saito A, Yasueda H, Takase Y, Shimakura H, Saito S, Sakaguchi M (2016) Cross-reactivity between major IgE core epitopes on cry j 2 allergen of Japanese cedar pollen and relevant sequences on cha o 2 allergen of Japanese cypress pollen. Allergol Int Open access:1–7. doi: 10.1016/j.alit.2016.01.003
  105. 105.
    Ibarrola I, Arilla MC, Martinez A, Asturias JA (2004) Identification of a polygalacturonase as a major allergen (Pla a 2) from Platanus acerifolia pollen. J Allergy Clin Immunol 113(6):1185–1191. doi: 10.1016/j.jaci.2004.02.031 PubMedCrossRefGoogle Scholar
  106. 106.
    Petersen A, Suck R, Hagen S, Cromwell O, Fiebig H, Becker WM (2001) Group 13 grass allergens: Structural variability between different grass species and analysis of proteolytic stability. J Allergy Clin Immunol 107(5):856–862. doi: 10.1067/mai.2001.114114 PubMedCrossRefGoogle Scholar
  107. 107.
    Kondo Y, Tokuda R, Urisu A, Matsuda T (2002) Assessment of cross-reactivity between Japanese cedar (Cryptomeria japonica) pollen and tomato fruit extracts by RAST inhibition and immunoblot inhibition. Clin Exp Allergy 32(4):590–594PubMedCrossRefGoogle Scholar
  108. 108.
    Tomassen MM, Barrett DM, van der Valk HC, Woltering EJ (2007) Isolation and characterization of a tomato non-specific lipid transfer protein involved in polygalacturonase-mediated pectin degradation. J Exp Bot 58(5):1151–1160. doi: 10.1093/jxb/erl288 PubMedCrossRefGoogle Scholar
  109. 109.
    Cortegano I, Civantos E, Aceituno E, del Moral A, Lopez E, Lombardero M, del Pozo V, Lahoz C (2004) Cloning and expression of a major allergen from Cupressus arizonica pollen, cup a 3, a PR-5 protein expressed under polluted environment. Allergy 59(5):485–490PubMedCrossRefGoogle Scholar
  110. 110.
    Togawa A, Panzani RC, Garza MA, Kishikawa R, Goldblum RM, Midoro-Horiuti T (2006) Identification of italian cypress (Cupressus sempervirens) pollen allergen cup s 3 using homology and cross-reactivity. Ann Allergy Asthma Immunol 97(3):336–342PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Palacin A, Rivas LA, Gomez-Casado C, Aguirre J, Tordesillas L, Bartra J, Blanco C, Carrillo T, Cuesta-Herranz J, Bonny JA, Flores E, Garcia-Alvarez-Eire MG, Garcia-Nunez I, Fernandez FJ, Gamboa P, Munoz R, Sanchez-Monge R, Torres M, Losada SV, Villalba M, Vega F, Parro V, Blanca M, Salcedo G, Diaz-Perales A (2012) The involvement of thaumatin-like proteins in plant food cross-reactivity: A multicenter study using a specific protein microarray. PLoS One 7(9):e44088. doi: 10.1371/journal.pone.004408 PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Pico de Coana Y, Parody N, Fuertes MA, Carnes J, Roncarolo D, Ariano R, Sastre J, Mistrello G, Alonso C (2010) Molecular cloning and characterization of cup a 4, a new allergen from Cupressus arizonica. Biochem Biophys Res Commun 401(3):451–457. doi: 10.1016/j.bbrc.2010.09.079 PubMedCrossRefGoogle Scholar
  113. 113.
    Shahali Y, Nicaise P, Brazdova A, Charpin D, Scala E, Mari A, Sutra JP, Chollet-Martin S, Senechal H, Poncet P (2014) Complementarity between microarray and immunoblot for the comparative evaluation of IgE repertoire of French and Italian cypress pollen allergic patients. Folia Biol (Praha) 60(4):192–201Google Scholar
  114. 114.
    Shahali Y, Sutra J, Haddad I, Vinh J, Guilloux L, Peltre G, Sénéchal H, Poncet P (2012) Proteomics of cypress pollen allergens using double and triple one-dimensional electrophoresis. Electrophoresis 33(3):462–469PubMedCrossRefGoogle Scholar
  115. 115.
    Shahali Y, Sutra J-P, Peltre G, Charpin D, Sénéchal H, Poncet P (2010) IgE reactivity to common cypress (C. sempervirens) pollen extracts: Evidence for novel allergens. World Allergy Organization J 3(8):229–234CrossRefGoogle Scholar
  116. 116.
    Ibrahim AR, Kawamoto S, Nishimura M, Pak S, Aki T, Diaz-Perales A, Salcedo G, Asturias JA, Hayashi T, Ono K (2010) A new lipid transfer protein homolog identified as an IgE-binding antigen from Japanese cedar pollen. Biosci Biotechnol Biochem 74(3):504–509PubMedCrossRefGoogle Scholar
  117. 117.
    Sanchez-Lopez J, Asturias JA, Enrique E, Suarez-Cervera M, Bartra J (2011) Cupressus arizonica Pollen: A new pollen involved in the lipid transfer protein syndrome? J Investig allergol Clin immunol 21(7):522–526PubMedGoogle Scholar
  118. 118.
    Nahirnak V, Almasia NI, Hopp HE, Vazquez-Rovere C (2012) Snakin/GASA proteins: Involvement in hormone crosstalk and redox homeostasis. Plant Signal Behav 7(8):1004–1008. doi: 10.4161/psb.20813 PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Inomata N, Okazaki F, Moriyama T, Nomura Y, Yamaguchi Y, Honjoh T, Kawamura Y, Narita H, Aihara M (2014) Identification of peamaclein as a marker allergen related to systemic reactions in peach allergy. Ann Allergy Asthma Immunol 112(2):175–177 . doi: 10.1016/j.anai.2013.11.003 e173 PubMedCrossRefGoogle Scholar
  120. 120.
    Tuppo L, Alessandri C, Pomponi D, Picone D, Tamburrini M, Ferrara R, Petriccione M, Mangone I, Palazzo P, Liso M, Giangrieco I, Crescenzo R, Bernardi ML, Zennaro D, Helmer-Citterich M, Mari A, Ciardiello MA (2013) Peamaclein--a new peach allergenic protein: Similarities, differences and misleading features compared to Pru p 3. Clin Exp Allergy 43(1):128–140. doi: 10.1111/cea.12028 PubMedCrossRefGoogle Scholar
  121. 121.
    Tuppo L, Spadaccini R, Alessandri C, Wienk H, Boelens R, Giangrieco I, Tamburrini M, Mari A, Picone D, Ciardiello MA (2014) Structure, stability, and IgE binding of the peach allergen Peamaclein (Pru p 7). Biopolymers 102(5):416–425. doi: 10.1002/bip.22530 PubMedCrossRefGoogle Scholar
  122. 122.
    Fujimura T, Shigeta S, Suwa T, Kawamoto S, Aki T, Masubuchi M, Hayashi T, Hide M, Ono K (2005) Molecular cloning of a class IV chitinase allergen from Japanese cedar (Cryptomeria japonica) pollen and competitive inhibition of its immunoglobulin E-binding capacity by latex C-serum. Clin Exp Allergy 35(2):234–243. doi: 10.1111/j.1365-2222.2005.02167.x PubMedCrossRefGoogle Scholar
  123. 123.
    Ibrahim AR, Kawamoto S, Aki T, Shimada Y, Rikimaru S, Onishi N, Babiker EE, Oiso I, Hashimoto K, Hayashi T, Ono K (2010) Molecular cloning and immunochemical characterization of a novel major Japanese cedar pollen allergen belonging to the aspartic protease family. Int Arch Allergy Immunol 152(3):207–218. doi: 10.1159/000283026 PubMedCrossRefGoogle Scholar
  124. 124.
    Ibrahim AR, Kawamoto S, Mizuno K, Shimada Y, Rikimaru S, Onishi N, Hashimoto K, Aki T, Hayashi T, Ono K (2010) Molecular cloning and immunochemical characterization of a new Japanese cedar pollen allergen homologous to plant subtilisin-like serine protease. World Allergy Organ J 3(11):262–265. doi: 10.1097/WOX.0b013e318201d81d PubMedCrossRefGoogle Scholar
  125. 125.
    Kawamoto S, Fujimura T, Nishida M, Tanaka T, Aki T, Masubuchi M, Hayashi T, Suzuki O, Shigeta S, Ono K (2002) Molecular cloning and characterization of a new Japanese cedar pollen allergen homologous to plant isoflavone reductase family. Clin Exp Allergy 32(7):1064–1070PubMedCrossRefGoogle Scholar
  126. 126.
    Bistoni O, Emiliani C, Agea E, Russano AM, Mencarelli S, Orlacchio A, Spinozzi F (2005) Biochemical and immunological characterization of pollen-derived beta-galactosidase reveals a new cross-reactive class of allergens among Mediterranean trees. Int Arch Allergy Immunol 136(2):123–133. doi: 10.1159/000083319 PubMedCrossRefGoogle Scholar
  127. 127.
    Castro L, Crespo JF, Rodriguez J, Rodriguez R, Villalba M (2015) Immunoproteomic tools are used to identify masked allergens: Ole e 12, an allergenic isoflavone reductase from olive (Olea europaea) pollen. Biochim Biophys Acta 1854(12):1871–1880. doi: 10.1016/j.bbapap.2015.09.004 PubMedCrossRefGoogle Scholar
  128. 128.
    Barderas R, Villalba M, Rodriguez R (2004) Recombinant expression, purification and cross-reactivity of chenopod profilin: rChe a 2 as a good marker for profilin sensitization. Biol Chem 385(8):731–737. doi: 10.1515/BC.2004.089 PubMedCrossRefGoogle Scholar
  129. 129.
    Harada T, Asaka N (2012) New allergen derived from pollen of Chamaecyparis obtusa. Japan Patent WO 2012105541-A 1Google Scholar
  130. 130.
    Boschetti E, Bindschedler LV, Tang C, Fasoli E, Righetti PG (2009) Combinatorial peptide ligand libraries and plant proteomics: A winning strategy at a price. J Chromatogr A 1216(8):1215–1222. doi: 10.1016/j.chroma.2008.11.098 PubMedCrossRefGoogle Scholar
  131. 131.
    Shahali Y, Sutra JP, Fasoli E, D’Amato A, Righetti PG, Futamura N, Boschetti E, Sénéchal H, Poncet P (2012) Allergomic study of cypress pollen via combinatorial peptide ligand libraries. J Proteome 77:101–110. doi: 10.1016/j.jprot.2012.07.010 CrossRefGoogle Scholar
  132. 132.
    Bar Dayan Y, Keynan N, Waisel Y, Pick AI, Tamir R (1995) Podocarpus gracilior and Callitris verrucosa: Newly identified allergens that crossreact with Cupressus sempervirens. Clin Exp Allergy 25(5):456–460PubMedCrossRefGoogle Scholar
  133. 133.
    Gastaminza G, Lombardero M, Bernaola G, Antepara I, Munoz D, Gamboa PM, Audicana MT, Marcos C, Ansotegui IJ (2009) Allergenicity and cross-reactivity of pine pollen. Clin Exp Allergy 39(9):1438–1446. doi: 10.1111/j.1365-2222.2009.03308.x PubMedCrossRefGoogle Scholar
  134. 134.
    Weber RW (2003) Patterns of pollen cross-allergenicity. J Allergy Clin Immunol 112(2):229–239PubMedCrossRefGoogle Scholar
  135. 135.
    Werfel T, Asero R, Ballmer-Weber B, Beyer K, Enrique E, Knulst A, Mari A, Muraro A, Ollert M, Poulsen L, Vieths S, Worm M, Hoffmann-Sommergruber K (2015) Position paper of the EAACI: Food allergy due to immunological cross-reactions with common inhalant allergens. Allergy 70(September):1079–1090PubMedCrossRefGoogle Scholar
  136. 136.
    Ishida T, Muai K, Yasuda T, Satou T, Sejima T, Kitumura K (2000) Oral allergy symptom in patients with Japanese cedar pollinosis. Nippon Jibiinkoka Gakkai Kaiho 103:199–203PubMedCrossRefGoogle Scholar
  137. 137.
    Caimmi D, Barber D, Hoffmann-Sommergruber K, Amrane H, Bousquet P, Dhivert-Donnadieu H, Demoly P (2013) Understanding the molecular sensitization for cypress pollen and peach in the Languedoc-Roussillon area. Allergy 68(February):249–251PubMedCrossRefGoogle Scholar
  138. 138.
    Hugues B, Didierlaurent A, Charpin D (2006) Cross-reactivity between cypress pollen and peach: A report of seven cases. Allergy 61(10):1241–1243PubMedCrossRefGoogle Scholar
  139. 139.
    Palomares O, Villalba M, Quiralte J, Polo F, Rodriguez R (2005) 1,3-beta-glucanases as candidates in latex-pollen-vegetable food cross-reactivity. Clin Exp Allergy 35(3):345–351. doi: 10.1111/j.1365-2222.2004.02186.x PubMedCrossRefGoogle Scholar
  140. 140.
    Asero R, Pravettoni V (2013) Anaphylaxis to plant-foods and pollen allergens in patients with lipid transfer protein syndrome. Curr Opin Allergy Clin Immunol 13(4):379–385. doi: 10.1097/ACI.0b013e32835f5b07 PubMedCrossRefGoogle Scholar
  141. 141.
    Inuo C, Kondo Y, Tanaka K, Nakajima Y, Nomura T, Ando H, Suzuki S, Tsuge I, Yoshikawa T, Urisu A (2015) Japanese cedar pollen-based subcutaneous immunotherapy decreases tomato fruit-specific basophil activation. Int Arch Allergy Immunol 167(2):137–145. doi: 10.1159/000437325 PubMedCrossRefGoogle Scholar
  142. 142.
    Martinez S, Gouitaa M, Tummino C, Chanez P, Charpin D (2015) The cypress/citrus syndrome. Rev Fr Allergol 55(4):305–307. doi: 10.1016/j.reval.2014.12.008 CrossRefGoogle Scholar
  143. 143.
    Martinez S, Gouitaa M, Alter M, Longé C, Brazdova A, Couderc R, Sénéchal H, Sutra J-P, Charpin D, Poncet P The cypress/citrus syndrome. In: 10th Congrès Francophone d’Allergologie, Paris, France. 34th l’EAACI meeting, Barcelona, Spain., June 6, 2015 2015Google Scholar
  144. 144.
    Inomata N, Miyagawa M, Aihara M (2015) Identification of orange Peamaclein as a new allergen in orange allergy. EAACI Online Library, 34th EAACI meeting, Barcelona, Spain Abstract (June 6, 2015)Google Scholar
  145. 145.
    Popescu FD (2015) Cross-reactivity between aeroallergens and food allergens. World J Methodol 5(2):31–50. doi: 10.5662/wjm.v5.i2.31 PubMedPubMedCentralGoogle Scholar
  146. 146.
    Yoshida K, Adachi Y, Akashi M, Itazawa T, Murakami Y, Odajima H, Ohya Y, Akasawa A (2013) Cedar and cypress pollen counts are associated with the prevalence of allergic diseases in Japanese schoolchildren. Allergy 68(6):757–763. doi: 10.1111/all.12164 PubMedCrossRefGoogle Scholar
  147. 147.
    Charpin D, Hugues B, Mallea M, Sutra J-P, Balansard G, Vervloet D (1993) Seasonal allergic symptoms and their relation to pollen exposure in Southeast France. Clin Exp Allergy 23:435–439PubMedCrossRefGoogle Scholar
  148. 148.
    Charpin D (2000) Epidemiology of cypress pollen allergy. Allerg Immunol 32:83–85Google Scholar
  149. 149.
    Agea E, Bistoni O, Russano A, Corazzi L, Minelli L, Bassotti G, de Benedictis FM, Spinozzi F (2002) The biology of cypress allergy. Allergy 57(10):959–960PubMedCrossRefGoogle Scholar
  150. 150.
    Okuda M (2003) Epidemiology of Japanese cedar pollinosis throughout Japan. Ann Allergy Asthma Immunol 91(3):288–296. doi: 10.1016/S1081-1206(10)63532-6 PubMedCrossRefGoogle Scholar
  151. 151.
    Copula M, Carta G, Sessini F, Faedda A, Corona GB, Carboni G, Corrias A (2006) Epidemiologic investigation of the pollen allergy to Cupressaceae in a population at risk for atopy. Pediatr Med Chir 28(4–6):91–94PubMedGoogle Scholar
  152. 152.
    Guneser S, Atici A, Cengizler I, Alparslan N (1996) Inhalant allergens: As a cause of respiratory allergy in east Mediterranean area, Turkey. Allergol Immunopathol (Madr) 24(3):116–119Google Scholar
  153. 153.
    Bousquet PJ, Gallega MP, Dhivert-Donnadieu H, Demoly P (2005) Latex is not essential in a standardized skin prick test battery. Allergy 60(3):407–408. doi: 10.1111/j.1398-9995.2004.00667.x PubMedCrossRefGoogle Scholar
  154. 154.
    Fiorina A, Scordamaglia A, Guerra L, Canonica GW, Passalacqua G (2002) Prevalence of allergy to cypress. Allergy 57(9):861–862PubMedCrossRefGoogle Scholar
  155. 155.
    Papa G, Romano A, Quaratino D, Di Fonso M, Viola M, Artesani MC, Sernia S, Di Gioacchino M, Venuti A (2001) Prevalence of sensitization to Cupressus sempervirens: A 4-year retrospective study. Sci Total Environ 270(1–3):83–87PubMedCrossRefGoogle Scholar
  156. 156.
    Scichilone N, Sanfilippo A, Sorino C, Giuliano L, Misseri M, Bellia V (2013) Allergen sensitizations in southern Italy: A 5-year retrospective study in allergic respiratory patients. Eur Ann Allergy Clin Immunol 45(3):97–102PubMedGoogle Scholar
  157. 157.
    Aerobiology IAo (2002) An epidemiological study of Cupressaceae pollinosis in Italy. J Investig Allergol Clin Immunol 12:287–292Google Scholar
  158. 158.
    Sposato B, Liccardi G, Russo M, Folletti I, Siracusa A, Scichilone N, Ventura MT, Rolla G, Raie A, Milanese M, Pio R, Pio A, Scala R, Pareo C, Micucci C, Micheletto C, Billeri L, Musarra A, Cavaliere C, Agolli G, Masieri S, Scalese M, Capitani D (2014) Cypress pollen: An unexpected major sensitizing agent in different regions of Italy. J Investig Allergol Clin Immunol 24(1):23–28PubMedGoogle Scholar
  159. 159.
    Ariano R, Passalacqua G, Panzani R, Scordamaglia A, Venturi S, Zoccali P, Canonica GW (1999) Airborne pollens and prevalence of pollinosis in western Liguria: A 10-year study. J Investig Allergol Clin Immunol 9(4):229–234PubMedGoogle Scholar
  160. 160.
    Muranaka M, Suzuki S, Koizumi K, Takafuji S, Miyamoto T, Ikemori R, Tokiwa H (1986) Adjuvant activity of diesel-exhaust particulates for the production of IgE antibody in mice. J Allergy Clin Immunol 77(4):616–623PubMedCrossRefGoogle Scholar
  161. 161.
    Ito H, Baba S, Mitani K (1995) Connection between NO (x) and SO (x) collected from the Japanese cedar tree and pollinosis. Acta Otolaryngol Suppl 52:79–84Google Scholar
  162. 162.
    Ariano R, Panzani RC, Chiapella M, Augeri G (1994) Pollinosis in a Mediterranean area (Riviera Ligure, Italy): Ten years of pollen counts, correlation with clinical sensitization and meteorological data. J Investig allergol Clin immunol 4(2):81–86PubMedGoogle Scholar
  163. 163.
    Shahali Y, Poncet P, Sénéchal H (2013) Cupressaceae pollinosis and air pollution. Revue Française d’Allergologie 53(5):468–472CrossRefGoogle Scholar
  164. 164.
    Wang Q, Gong X, Nakamura S, Kurihara K, Suzuki M, Sakamoto K, Lu S (2009) Air pollutant deposition effect and morphological change of Cryptomeria japonica pollen during its transport in urban and mountainous areas of Japan. Environmental Health Risk V, Biomedicine and Health 14:77–89Google Scholar
  165. 165.
    Rezanejad F (2009) Air pollution effects on structure, proteins and flavonoids in pollen grains of Thuja orientalis L.(Cupressaceae). Grana 48(3):205–213CrossRefGoogle Scholar
  166. 166.
    Yamamoto N, Nishikawa J, Sakamoto M, Shimizu T, Matsuki H (2010) Indoor and outdoor concentrations of Japanese cedar pollens and total suspended particulates: A case study at a kindergarten in Japan. Build Environ 45(3):792–797CrossRefGoogle Scholar
  167. 167.
    Visez N, Chassard G, Gosselin M, Choël M, Petitprez D Differential uptake kinetics of nitrogen dioxide on various pollen grains. In: European Aerosol Conference, Prague, Czek Republik September, 1st-6th, 2013 2013. Particle-Lung InteractionsGoogle Scholar
  168. 168.
    Ramirez DA (1984) The natural history of mountain cedar pollinosis. J Allergy Clin Immunol 73(1 Pt 1):88–93PubMedCrossRefGoogle Scholar
  169. 169.
    Bousquet J, Knani J, Hejjaoui A, Ferrando R, Cour P, Dhivert H, Michel FB (1993) Heterogeneity of atopy. I. Clinical and immunologic characteristics of patients allergic to cypress pollen. Allergy 48(3):183–188PubMedCrossRefGoogle Scholar
  170. 170.
    Boutin-Forzano S, Gouitaa M, Hammou Y, Ramadour M, Charpin D (2005) Personal risk factors for cypress pollen allergy. Allergy 60(4):533–535. doi: 10.1111/j.1398-9995.2005.00744.x PubMedCrossRefGoogle Scholar
  171. 171.
    Merget R, Kulzer R, Dierkes-Globisch A, Breitstadt R, Gebler A, Kniffka A, Artelt S, Koenig HP, Alt F, Vormberg R, Baur X, Schultze-Werninghaus G (2000) Exposure-effect relationship of platinum salt allergy in a catalyst production plant: Conclusions from a 5-year prospective cohort study. J Allergy Clin Immunol 105(2 Pt 1):364–370PubMedCrossRefGoogle Scholar
  172. 172.
    Truong van ut C, Trébuchon F, Birnbaum J, Agell M, Navarro-Rouimi R, Gentile G, Charpin D (2012) Knowledge and behavior of patients with allergic rhinitis during a consultation with primary care in general practitioner. Rev Fr Allerg 52(6):429–436CrossRefGoogle Scholar
  173. 173.
    Caimmi D, Raschetti R, Pons P, Dhivert-Donnadieu H, Bousquet PJ, Bousquet J, Demoly P (2012) Epidemiology of cypress pollen allergy in Montpellier. J Investig Allergol Clin Immunol 22(4):280–285PubMedGoogle Scholar
  174. 174.
    Bobolea I, Barranco P, Sastre B, Fernandez-Nieto M, del Pozo V, Quirce S (2011) Seasonal eosinophilic bronchitis due to allergy to Cupressus arizonica pollen. Ann Allergy Asthma Immunol 106(5):448–449. doi: 10.1016/j.anai.2011.02.004 PubMedCrossRefGoogle Scholar
  175. 175.
    Ogihara H, Yuta A, Miyamoto Y, Kitano M, Takeo T, Takeuchi K (2011) Increased throat symptoms in Japanese cypress pollinosis. Nihon Jibiinkoka Gakkai Kaiho 114(2):78–83PubMedCrossRefGoogle Scholar
  176. 176.
    Galan I, Prieto A, Rubio M, Herrero T, Cervigon P, Cantero JL, Gurbindo MD, Martinez MI, Tobias A (2010) Association between airborne pollen and epidemic asthma in Madrid, Spain: A case-control study. Thorax 65(5):398–402. doi: 10.1136/thx.2009.118992 PubMedCrossRefGoogle Scholar
  177. 177.
    Delimi B, Dhivert-Donnadieu H, Demoly P (2007) Cypress-peach allergies: Cross reactivities or coincidence. Rev Fr Allergol Clin Immunol 47:350–354Google Scholar
  178. 178.
    Panzani R, Ariano R, Mistrello G (2010) Cypress pollen does not cross-react to plant-derived foods. Eur Ann Allergy Clin Immunol 42(3):125–126PubMedGoogle Scholar
  179. 179.
    Stringari G, Tripodi S, Caffarelli C, Dondi A, Asero R, Di Rienzo BA, Bianchi A, Candelotti P, Ricci G, Bellini F, Maiello N, Miraglia del Giudice M, Frediani T, Sodano S, Dello Iacono I, Macri F, Peparini I, Povesi Dascola C, Patria MF, Varin E, Peroni D, Comberiati P, Chini L, Moschese V, Lucarelli S, Bernardini R, Pingitore G, Pelosi U, Tosca M, Cirisano A, Faggian D, Travaglini A, Plebani M, Matricardi PM (2014) The effect of component-resolved diagnosis on specific immunotherapy prescription in children with hay fever. J Allergy Clin Immunol 134(1):75–81. doi: 10.1016/j.jaci.2014.01.042 PubMedCrossRefGoogle Scholar
  180. 180.
    Klingebiel C, Charpin D, Mège JL, Vitte J (2016) Laboratory diagnosis of respiratory allergy to Cupressaceae: Better performance using juniper pollen extract rather than cypress pollen extract. Rev Fr Allerg. doi: 10.1016/j.reval.2016.03.004i Google Scholar
  181. 181.
    Campo P, Salas M, Blanca-Lopez N, Rondon C (2016) Local allergic rhinitis. Immunol Allergy Clin N Am 36(2):321–332. doi: 10.1016/j.iac.2015.12.008 CrossRefGoogle Scholar
  182. 182.
    Macchia L, Caiaffa MF, Di Paola R, De Michele G, Bariletto G, Iudice A, Tursi A (2001) Second generation antihistamines in the treatment of seasonal allergic rhinitis due to Parietaria and cypress pollen. Pharmacol Res 44(6):461–466. doi: 10.1006/phrs.2001.0878 PubMedCrossRefGoogle Scholar
  183. 183.
    Demoly P, Dreyfus I, Dhivert-Donnadieu H, Mesbah K (2009) Desloratadine for the treatment of cypress pollen-induced allergic rhinitis. Ann Allergy Asthma Immunol 103(3):260–266. doi: 10.1016/S1081-1206(10)60191-3 PubMedCrossRefGoogle Scholar
  184. 184.
    Makihara S, Okano M, Fujiwara T, Kimura M, Higaki T, Haruna T, Noda Y, Kanai K, Kariya S, Nishizaki K (2012) Early interventional treatment with intranasal mometasone furoate in Japanese cedar/cypress pollinosis: A randomized placebo-controlled trial. Allergol Int 61:2995–2304CrossRefGoogle Scholar
  185. 185.
    Ariano R, Panzani RC, Mistrello G (2005) Efficacy of sublingual coseasonal immunotherapy with a monomeric allergoid in Cupressaceae pollen allergy--preliminary data. Eur Ann Allergy Clin Immunol 37(3):103–108PubMedGoogle Scholar
  186. 186.
    Di Rienzo V, Pucci S, D’Alo S, Di Cara G, Incorvaia C, Frati F, Romano A (2006) Effect of high dose sublingual immunotherapy on quality of life in patients with cypress-induced rhinitis: A placebo-controlled study. Clin Exp Allergy Rev 6:67–70CrossRefGoogle Scholar
  187. 187.
    Moriguchi S, Okamoto Y, Yonekura S, Okawa T, Kunii N, Yamamoto H (2008) Lowered effectiveness of immunotherapy for cypress pollinosis using Japanese cedar pollen extract. Aerugi 57:558–562Google Scholar
  188. 188.
    Ventura MT, Carretta A, Tummolo RA, Buquicchio R, Arsieni A, Murgia N (2009) Clinical data and inflammation parameters in patients with cypress allergy treated with sublingual swallow therapy and subcutaneous immunotherapy. Int J Immunopathol Pharmacol 22(2):403–413PubMedCrossRefGoogle Scholar
  189. 189.
    Penel V, de Clerq G (2011) Personalized pollen counts using the pollinic content of patient’s hair. Aerobiological monographs 25:223–233Google Scholar
  190. 190.
    Jantunen J, Saarinen N (2009) Intrusion of airborne pollen through open windows and doors. Aerobiologia 25:193–201CrossRefGoogle Scholar
  191. 191.
    Takahashi Y, Takano K, Suzuki M, Nagai S, Yokosuka M, Takeshita T, Saito A, Yasueda H, Enomoto T (2008) Two routes for pollen entering indoors: Ventilation and clothes. J Investig Allergol Clin Immunol 18(5):382–388PubMedGoogle Scholar
  192. 192.
    Bosch-Cano F, Bernard N, Sudre B, Gillet F, Thibaudon M, Richard H, P.M. B, Ruffaldi P (2011) Human exposure to allergenic pollens: A comparison between urban and rural areas. Environ Res 111(5):619–625PubMedCrossRefGoogle Scholar
  193. 193.
    Velasco-Jiménez MJ, Alcázar P, Valle A, Trigo MM, Minero F, Domínguez-Vilches E, Galán C (2014) Aerobiological and ecological study of the potentially allergenic ornamental plants in south Spain. Aerobiologia 30(1):91–101CrossRefGoogle Scholar
  194. 194.
    Cariñanos P, Adinolfi C, Díaz de la Guardia C, De Linares C, Casares-Porcel M (2016) Characterization of allergen emission sources in urban areas. J Environ Qual 45(1):244–252. doi: 10.2134/jeq2015.02.0075 PubMedCrossRefGoogle Scholar
  195. 195.
    Carinanos P, Casares-Porcel M, Quesada-Rubio JM (2014) Estimating the allergenic potential of urban green spaces: A case-study in Granada, Spain. Landsc Urban Plan 123:134–144CrossRefGoogle Scholar
  196. 196.
    Pichot C, Calleja M, Penel V, Bues-Charbit M, Charpin D (2015) Inference of the pollen penetration and remanence into dwellings using seasonal variation of indoor/outdoor pollen counts. Aerobiologia 31:1–8CrossRefGoogle Scholar
  197. 197.
    Shahali Y, Brazdova A, Calleja M, Charpin D, Sénéchal H, Poncet P (2013) Indoor, long-term persistence of cypress pollen allergenic potency: A 10-month study. Ann Allergy Asthma Immunol 111(5):428–430. doi: 10.1016/j.anai.2013.08.017 PubMedCrossRefGoogle Scholar
  198. 198.
    Charpin D, Pichot C, Calleja M (2011) Trimming cypress tree hedges and its effects on subsequent pollination. Ann Allergy Asthma Immunol 106(3):259–260PubMedCrossRefGoogle Scholar
  199. 199.
    Saito M (2010) Breeding strategy for the pollinosis preventive cultivars of Cryptomeria japonica D. Don. J Jpn For Soc 92(Special issue: For Countermeasures against Sugi Pollinosis in Forest Science):316–323CrossRefGoogle Scholar
  200. 200.
    Hirooka Y, Akiba M, Ichihara Y, Masuya H, Takahata Y, Suda T, Yada Y, Yamamoto S, Kubono T (2013) A novel approach of preventing Japanese cedar pollen dispersal that is the cause of Japanese cedar pollinosis (JCP) using pollen-specific fungal infection. PLoS One 8(5):e62875. doi: 10.1371/journal.pone.0062875 PubMedPubMedCentralCrossRefGoogle Scholar
  201. 201.
    Pichot C, Liens B, Nava JLR, Bachelier JB, El Maâtaoui M (2008) Cypress surrogate mother produces haploid progeny from alien pollen. Genetics 178(1):379–383PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Denis Charpin
    • 1
  • Christian Pichot
    • 2
  • Jordina Belmonte
    • 3
    • 4
  • Jean-Pierre Sutra
    • 5
  • Jarmila Zidkova
    • 6
  • Pascal Chanez
    • 1
  • Youcef Shahali
    • 7
  • Hélène Sénéchal
    • 5
  • Pascal Poncet
    • 5
    • 8
  1. 1.Department of Pneumonology and Allergy, APHM and Inserm U1067 CNRS UMR 7333Aix-Marseille UniversityMarseilleFrance
  2. 2.UR 629 Ecology of Mediterranean Forests Unit, I.N.R.AAvignonFrance
  3. 3.Institute of Environmental Science and Technology, Universitat Autònoma de BarcelonaBarcelonaSpain
  4. 4.Department of Animal Biology, Plant Biology and EcologyUniversitat Autònoma de BarcelonaBarcelonaSpain
  5. 5.Armand Trousseau Children Hospital, AP-HP, Biochemistry Department, Allergy and Environment Research teamParisFrance
  6. 6.University of Chemistry and TechnologyPragueCzech Republic
  7. 7.Agricultural Research, Education and Extension Organisation (AREEO)Razi Vaccine and Serum Research InstituteKarajIran
  8. 8.CITECH DepartmentPasteur InstituteParisFrance

Personalised recommendations