Clinical Reviews in Allergy & Immunology

, Volume 52, Issue 3, pp 305–322 | Cite as

Mold and Human Health: a Reality Check

  • Andrea T. Borchers
  • Christopher Chang
  • M. Eric GershwinEmail author


There are possibly millions of mold species on earth. The vast majority of these mold spores live in harmony with humans, rarely causing disease. The rare species that does cause disease does so by triggering allergies or asthma, or may be involved in hypersensitivity diseases such as allergic bronchopulmonary aspergillosis or allergic fungal sinusitis. Other hypersensitivity diseases include those related to occupational or domiciliary exposures to certain mold species, as in the case of Pigeon Breeder’s disease, Farmer’s lung, or humidifier fever. The final proven category of fungal diseases is through infection, as in the case of onchomycosis or coccidiomycosis. These diseases can be treated using anti-fungal agents. Molds and fungi can also be particularly important in infections that occur in immunocompromised patients. Systemic candidiasis does not occur unless the individual is immunodeficient. Previous reports of “toxic mold syndrome” or “toxic black mold” have been shown to be no more than media hype and mass hysteria, partly stemming from the misinterpreted concept of the “sick building syndrome.” There is no scientific evidence that exposure to visible black mold in apartments and buildings can lead to the vague and subjective symptoms of memory loss, inability to focus, fatigue, and headaches that were reported by people who erroneously believed that they were suffering from “mycotoxicosis.” Similarly, a causal relationship between cases of infant pulmonary hemorrhage and exposure to “black mold” has never been proven. Finally, there is no evidence of a link between autoimmune disease and mold exposure.


Fungi Hypersensitivity pneumonitis Asthma Allergic rhinitis Allergic bronchopulmonary aspergillosis Allergic fungal sinusitis Mycotoxins Mycotoxicosis Sick building syndrome 


Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


There is no funding source.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. 1.
    Blackwell M (Mar 2011) The fungi: 1, 2, 3 ... 5.1 million species? Am J Bot 98(3):426–438PubMedCrossRefGoogle Scholar
  2. 2.
    Tedersoo L, Bahram M, Ryberg M, Otsing E, Koljalg U, Abarenkov K (2014) Global biogeography of the ectomycorrhizal/sebacina lineage (fungi, Sebacinales) as revealed from comparative phylogenetic analyses. Mol Ecol 23(16):4168–4183PubMedCrossRefGoogle Scholar
  3. 3.
    Eduard W (2009) Fungal spores: a critical review of the toxicological and epidemiological evidence as a basis for occupational exposure limit setting. Crit Rev Toxicol 39(10):799–864PubMedCrossRefGoogle Scholar
  4. 4.
    Chew GL, Rogers C, Burge HA, Muilenberg ML, Gold DR (2003) Dustborne and airborne fungal propagules represent a different spectrum of fungi with differing relations to home characteristics. Allergy 58(1):13–20PubMedCrossRefGoogle Scholar
  5. 5.
    Dallongeville A, Le Cann P, Zmirou-Navier D et al (2015) Concentration and determinants of molds and allergens in indoor air and house dust of French dwellings. Sci Total Environ 536:964–972PubMedCrossRefGoogle Scholar
  6. 6.
    Dassonville C, Demattei C, Detaint B, Barral S, Bex-Capelle V, Momas I (2008) Assessment and predictors determination of indoor airborne fungal concentrations in Paris newborn babies’ homes. Environ Res 108(1):80–85PubMedCrossRefGoogle Scholar
  7. 7.
    Rosenbaum PF, Crawford JA, Anagnost SE et al (2010) Indoor airborne fungi and wheeze in the first year of life among a cohort of infants at risk for asthma. J Expo Sci Environ Epidemiol 20(6):503–515PubMedCrossRefGoogle Scholar
  8. 8.
    Simoni M, Cai GH, Norback D et al (2011) Total viable molds and fungal DNA in classrooms and association with respiratory health and pulmonary function of European schoolchildren. Pediatr Allergy Immunol 22(8):843–852PubMedCrossRefGoogle Scholar
  9. 9.
    Green BJ, Sercombe JK, Tovey ER (2005) Fungal fragments and undocumented conidia function as new aeroallergen sources. J Allergy Clin Immunol 115(5):1043–1048PubMedCrossRefGoogle Scholar
  10. 10.
    Brasel TL, Martin JM, Carriker CG, Wilson SC, Straus DC (2005) Detection of airborne Stachybotrys chartarum macrocyclic trichothecene mycotoxins in the indoor environment. Appl Environ Microbiol 71(11):7376–7388PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Reponen T, Seo SC, Grimsley F, Lee T, Crawford C, Grinshpun SA (2007) Fungal fragments in moldy houses: a field study in homes in New Orleans and southern Ohio. Atmos Environ (1994) 41(37):8140–8149CrossRefGoogle Scholar
  12. 12.
    Meklin T, Reponen T, McKinstry C et al (2007) Comparison of mold concentrations quantified by MSQPCR in indoor and outdoor air sampled simultaneously. Sci Total Environ 382(1):130–134PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Lignell U, Meklin T, Rintala H et al (2008) Evaluation of quantitative PCR and culture methods for detection of house dust fungi and streptomycetes in relation to moisture damage of the house. Lett Appl Microbiol 47(4):303–308PubMedCrossRefGoogle Scholar
  14. 14.
    Pitkaranta M, Meklin T, Hyvarinen A et al (2008) Analysis of fungal flora in indoor dust by ribosomal DNA sequence analysis, quantitative PCR, and culture. Appl Environ Microbiol 74(1):233–244PubMedCrossRefGoogle Scholar
  15. 15.
    Pitkaranta M, Meklin T, Hyvarinen A et al (2011) Molecular profiling of fungal communities in moisture damaged buildings before and after remediation—a comparison of culture-dependent and culture-independent methods. BMC Microbiol 11:235PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Crameri R (2011) The problem of cross-reactivity in the diagnosis of fungal allergy. Clin Exp Allergy 41(3):302–304PubMedCrossRefGoogle Scholar
  17. 17.
    Green BJ, Tovey ER, Beezhold DH et al (2009) Surveillance of fungal allergic sensitization using the fluorescent halogen immunoassay. J Mycol Med 19(4):253–261PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Beezhold DH, Green BJ, Blachere FM et al (2008) Prevalence of allergic sensitization to indoor fungi in West Virginia. Allergy Asthma Proc 29(1):29–34PubMedCrossRefGoogle Scholar
  19. 19.
    Szewzyk R, Becker K, Hunken A, Pick-Fus H, Kolossa-Gehring M. Bundesumweltamt. Kinder-Umwelt-Survey (KUS) 2003/06. Sensibiliserungen Gegenuber Innenraumschimmelpilzen (German environmental survey for children 2003/06. Sensitization towards indoor molds). Dessau-Roblau, Germany. Bundesumweltamt (Federal Environment Agency). 2011.Google Scholar
  20. 20.
    Bousquet PJ, Chinn S, Janson C, Kogevinas M, Burney P, Jarvis D (2007) Geographical variation in the prevalence of positive skin tests to environmental aeroallergens in the European Community respiratory health survey I. Allergy 62(3):301–309PubMedCrossRefGoogle Scholar
  21. 21.
    Chu LM, Rennie DC, Cockcroft DW et al (2014) Prevalence and determinants of atopy and allergic diseases among school-age children in rural Saskatchewan Canada. Ann Allergy Asthma Immunol. 113(4):430–439PubMedCrossRefGoogle Scholar
  22. 22.
    Kespohl S, Maryska S, Zahradnik E, Sander I, Bruning T, Raulf-Heimsoth M (2013) Biochemical and immunological analysis of mould skin prick test solution: current status of standardization. Clin Exp Allergy 43(11):1286–1296PubMedCrossRefGoogle Scholar
  23. 23.
    Chowdhary A, Agarwal K, Kathuria S, Gaur SN, Randhawa HS, Meis JF (2014) Allergic bronchopulmonary mycosis due to fungi other than Aspergillus: a global overview. Crit Rev Microbiol 40(1):30–48PubMedCrossRefGoogle Scholar
  24. 24.
    WHO. Guidelines for indoor air quality. Dampness and mould. Copenhagen, Denmark 2009.Google Scholar
  25. 25.
    Denning DW, Pashley C, Hartl D et al (2014) Fungal allergy in asthma-state of the art and research needs. Clin Transl Allergy 4:14PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Badiee P, Hashemizadeh Z (2014) Opportunistic invasive fungal infections: diagnosis & clinical management. Indian J Med Res 139(2):195–204PubMedPubMedCentralGoogle Scholar
  27. 27.
    Vacher G, Niculita-Hirzel H, Roger T (2015) Immune responses to airborne fungi and non-invasive airway diseases. Semin Immunopathol 37(2):83–96PubMedCrossRefGoogle Scholar
  28. 28.
    Montone KT, Livolsi VA, Feldman MD et al (2012) Fungal rhinosinusitis: a retrospective microbiologic and pathologic review of 400 patients at a single university medical center. Int J Otolaryngol 2012:684835PubMedPubMedCentralGoogle Scholar
  29. 29.
    Quirce S, Vandenplas O, Campo P et al (2016) Occupational hypersensitivity pneumonitis: an EAACI position paper. Allergy 71(6):765–779PubMedCrossRefGoogle Scholar
  30. 30.
    Silva CI, Churg A, Muller NL (2007) Hypersensitivity pneumonitis: spectrum of high-resolution CT and pathologic findings. AJR Am J Roentgenol 188(2):334–344PubMedCrossRefGoogle Scholar
  31. 31.
    Selman M, Lacasse Y, Pardo A, Cormier Y (2010) Hypersensitivity pneumonitis caused by fungi. Proc Am Thorac Soc 7(3):229–236PubMedCrossRefGoogle Scholar
  32. 32.
    Koschel D, Stark W, Karmann F, Sennekamp J, Muller-Wening D (Aug 2005) Extrinsic allergic alveolitis caused by misting fountains. Respir Med 99(8):943–947PubMedCrossRefGoogle Scholar
  33. 33.
    Hanak V, Golbin JM, Ryu JH (2007) Causes and presenting features in 85 consecutive patients with hypersensitivity pneumonitis. Mayo Clin Proc 82(7):812–816PubMedCrossRefGoogle Scholar
  34. 34.
    Chiba S, Okada S, Suzuki Y et al (2009) Cladosporium species-related hypersensitivity pneumonitis in household environments. Intern Med 48(5):363–367PubMedCrossRefGoogle Scholar
  35. 35.
    Enriquez-Matas A, Quirce S, Hernandez E, Vereda A, Carnes J, Sastre J (2007) Hypersensitivity pneumonitis caused by domestic exposure to molds. J Investig Allergol Clin Immunol 17(2):126–127PubMedGoogle Scholar
  36. 36.
    Katayama N, Fujimura M, Yasui M, Ogawa H, Nakao S (2008) Hypersensitivity pneumonitis and bronchial asthma attacks caused by environmental fungi. Allergol Int 57(3):277–280PubMedCrossRefGoogle Scholar
  37. 37.
    Ramirez RM, Jacobs RL (2014) Hypersensitivity pneumonitis by Fusarium vasinfectum in a home environment. J Allergy Clin Immunol Pract 2(4):483–484PubMedCrossRefGoogle Scholar
  38. 38.
    Dickson SD, Tankersley MS (2015) Fatal hypersensitivity pneumonitis from exposure to Fusarium vasinfectum in a home environment: a case report. Int Arch Allergy Immunol 166(2):150–153PubMedCrossRefGoogle Scholar
  39. 39.
    Kosmidis C, Denning DW (2015) The clinical spectrum of pulmonary aspergillosis. Thorax 70(3):270–277PubMedCrossRefGoogle Scholar
  40. 40.
    Nucci M, Anaissie E (2007) Fusarium infections in immunocompromised patients. Clin Microbiol Rev 20(4):695–704PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Bennett JW, Klich M (2003) Mycotoxins. Clin Microbiol Rev 16(3):497–516PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Marin S, Ramos AJ, Cano-Sancho G, Sanchis V (2013) Mycotoxins: occurrence, toxicology, and exposure assessment. Food Chem Toxicol 60:218–237PubMedCrossRefGoogle Scholar
  43. 43.
    Centers for Disease Control and Prevention (CDC) (2004) Outbreak of aflatoxin poisoning—eastern and central provinces, Kenya, January–July 2004. MMWR Morb Mortal Wkly Rep 53(34):790–793Google Scholar
  44. 44.
    Autrup JL, Schmidt J, Seremet T, Autrup H (1991) Determination of exposure to aflatoxins among Danish workers in animal-feed production through the analysis of aflatoxin B1 adducts to serum albumin. Scand J Work Environ Health 17(6):436–440PubMedCrossRefGoogle Scholar
  45. 45.
    Viegas S, Veiga L, Almeida A, dos Santos M, Carolino E, Viegas C (2016) Occupational exposure to aflatoxin B1 in a Portuguese poultry slaughterhouse. Ann Occup Hyg. 60(2):176–183PubMedCrossRefGoogle Scholar
  46. 46.
    Viegas S, Veiga L, Figueiredo P, Almeida A, Carolino E, Viegas C (2015) Assessment of workers’ exposure to aflatoxin B1 in a Portuguese waste industry. Ann Occup Hyg 59(2):173–181PubMedGoogle Scholar
  47. 47.
    Seifert SA, Von Essen S, Jacobitz K, Crouch R, Lintner CP (2003) Organic dust toxic syndrome: a review. J Toxicol Clin Toxicol 41(2):185–193PubMedCrossRefGoogle Scholar
  48. 48.
    Madsen AM, Zervas A, Tendal K, Nielsen JL (2015) Microbial diversity in bioaerosol samples causing ODTS compared to reference bioaerosol samples as measured using Illumina sequencing and MALDI-TOF. Environ Res 140:255–267PubMedCrossRefGoogle Scholar
  49. 49.
    Institute of Medicine (US) Committee on Damp Indoor Spaces and Health (2004) Damp indoor spaces and health. National Academies Press (US), Washington, DCGoogle Scholar
  50. 50.
    Bornehag CG, Blomquist G, Gyntelberg F et al (2001) Dampness in buildings and health. Nordic interdisciplinary review of the scientific evidence on associations between exposure to “dampness” in buildings and health effects (NORDDAMP). Indoor Air 11(2):72–86PubMedCrossRefGoogle Scholar
  51. 51.
    Bornehag CG, Sundell J, Bonini S et al (2004) Dampness in buildings as a risk factor for health effects, EUROEXPO: a multidisciplinary review of the literature (1998–2000) on dampness and mite exposure in buildings and health effects. Indoor Air 14(4):243–257PubMedCrossRefGoogle Scholar
  52. 52.
    Bornehag CG, Sundell J, Sigsgaard T (2004) Dampness in buildings and health (DBH): report from an ongoing epidemiological investigation on the association between indoor environmental factors and health effects among children in Sweden. Indoor Air 14(Suppl 7):59–66PubMedCrossRefGoogle Scholar
  53. 53.
    Mendell MJ, Mirer AG, Cheung K, Tong M, Douwes J (2011) Respiratory and allergic health effects of dampness, mold, and dampness-related agents: a review of the epidemiologic evidence. Environ Health Perspect 119(6):748–756PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Sahlberg B, Gunnbjornsdottir M, Soon A et al (2013) Airborne molds and bacteria, microbial volatile organic compounds (MVOC), plasticizers and formaldehyde in dwellings in three north European cities in relation to sick building syndrome (SBS). Sci Total Environ 444:433–440PubMedCrossRefGoogle Scholar
  55. 55.
    Verhoeff AP, van Reenen-Hoekstra ES, Samson RA, Brunekreef B, van Wijnen JH (1994) Fungal propagules in house dust. I. Comparison of analytic methods and their value as estimators of potential exposure. Allergy 49(7):533–539PubMedCrossRefGoogle Scholar
  56. 56.
    Verhoeff AP, van Wijnen JH, Brunekreef B, Fischer P, van Reenen-Hoekstra ES, Samson RA (1992) Presence of viable mould propagules in indoor air in relation to house damp and outdoor air. Allergy 47(2 Pt 1):83–91PubMedCrossRefGoogle Scholar
  57. 57.
    Verhoeff AP, van Wijnen JH, van Reenen-Hoekstra ES, Samson RA, van Strien RT, Brunekreef B (1994) Fungal propagules in house dust. II. Relation with residential characteristics and respiratory symptoms. Allergy 49(7):540–547PubMedCrossRefGoogle Scholar
  58. 58.
    Holme J, Hagerhed-Engman L, Mattsson J, Sundell J, Bornehag CG (2010) Culturable mold in indoor air and its association with moisture-related problems and asthma and allergy among Swedish children. Indoor Air 20(4):329–340PubMedCrossRefGoogle Scholar
  59. 59.
    Muller A, Lehmann I, Seiffart A et al (2002) Increased incidence of allergic sensitisation and respiratory diseases due to mould exposure: results of the Leipzig allergy risk children study (LARS). Int J Hyg Environ Health 204(5–6):363–365PubMedCrossRefGoogle Scholar
  60. 60.
    Ren P, Jankun TM, Belanger K, Bracken MB, Leaderer BP (2001) The relation between fungal propagules in indoor air and home characteristics. Allergy 56(5):419–424PubMedCrossRefGoogle Scholar
  61. 61.
    Choi H, Byrne S, Larsen LS et al (2014) Residential culturable fungi, (1-3, 1-6)-beta-d-glucan, and ergosterol concentrations in dust are not associated with asthma, rhinitis, or eczema diagnoses in children. Indoor Air 24(2):158–170PubMedCrossRefGoogle Scholar
  62. 62.
    Leppanen HK, Nevalainen A, Vepsalainen A et al (2014) Determinants, reproducibility, and seasonal variation of ergosterol levels in house dust. Indoor Air 24(3):248–259PubMedCrossRefGoogle Scholar
  63. 63.
    Park JH, Cox-Ganser JM, Kreiss K, White SK, Rao CY (2008) Hydrophilic fungi and ergosterol associated with respiratory illness in a water-damaged building. Environ Health Perspect 116(1):45–50PubMedCrossRefGoogle Scholar
  64. 64.
    Vesper SJ, McKinstry C, Yang C et al (2006) Specific molds associated with asthma in water-damaged homes. J Occup Environ Med 48(8):852–858PubMedCrossRefGoogle Scholar
  65. 65.
    Vesper SJ, Varma M, Wymer LJ, Dearborn DG, Sobolewski J, Haugland RA (2004) Quantitative polymerase chain reaction analysis of fungi in dust from homes of infants who developed idiopathic pulmonary hemorrhaging. J Occup Environ Med 46(6):596–601PubMedCrossRefGoogle Scholar
  66. 66.
    Chew GL, Douwes J, Doekes G et al (2001) Fungal extracellular polysaccharides, beta (1-->3)-glucans and culturable fungi in repeated sampling of house dust. Indoor Air 11(3):171–178PubMedCrossRefGoogle Scholar
  67. 67.
    Madureira J, Paciencia I, Cavaleiro-Rufo J, Fernandes EO (2016) Indoor air risk factors for schoolchildren’s health in Portuguese homes: results from a case-control survey. J Toxicol Environ Health A. 79(20):938–953PubMedCrossRefGoogle Scholar
  68. 68.
    Mendes A, Papoila AL, Carreiro-Martins P et al (2016) The impact of indoor air quality and contaminants on respiratory health of older people living in long-term care residences in Porto. Age Ageing 45(1):136–142PubMedCrossRefGoogle Scholar
  69. 69.
    Celtik C, Okten S, Okutan O et al (2011) Investigation of indoor molds and allergic diseases in public primary schools in Edirne city of Turkey. Asian Pac J Allergy Immunol 29(1):42–49PubMedGoogle Scholar
  70. 70.
    Holst GJ, Host A, Doekes G et al (2016) Allergy and respiratory health effects of dampness and dampness-related agents in schools and homes: a cross-sectional study in Danish pupils. Indoor Air 26(6):880–891PubMedCrossRefGoogle Scholar
  71. 71.
    Jacobs J, Borras-Santos A, Krop E et al (2014) Dampness, bacterial and fungal components in dust in primary schools and respiratory health in schoolchildren across Europe. Occup Environ Med 71(10):704–712PubMedCrossRefGoogle Scholar
  72. 72.
    Tischer C, Zock JP, Valkonen M et al (2015) Predictors of microbial agents in dust and respiratory health in the Ecrhs. BMC Pulm Med 15:48PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Saijo Y, Kanazawa A, Araki A et al (2011) Relationships between mite allergen levels, mold concentrations, and sick building syndrome symptoms in newly built dwellings in Japan. Indoor Air 21(3):253–263PubMedCrossRefGoogle Scholar
  74. 74.
    Bundy KW, Gent JF, Beckett W et al (2009) Household airborne Penicillium associated with peak expiratory flow variability in asthmatic children. Ann Allergy Asthma Immunol. 103(1):26–30PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Cai GH, Hashim JH, Hashim Z et al (2011) Fungal DNA, allergens, mycotoxins and associations with asthmatic symptoms among pupils in schools from Johor Bahru, Malaysia. Pediatr Allergy Immunol 22(3):290–297PubMedCrossRefGoogle Scholar
  76. 76.
    Norback D, Hashim JH, Markowicz P et al (2016) Endotoxin, ergosterol, muramic acid and fungal DNA in dust from schools in Johor Bahru, Malaysia—associations with rhinitis and sick building syndrome (SBS) in junior high school students. Sci Total Environ 545-546:95–103PubMedCrossRefGoogle Scholar
  77. 77.
    Norback D, Hashim JH, Cai GH et al (2016) Rhinitis, ocular, throat and dermal symptoms, headache and tiredness among students in schools from Johor Bahru, Malaysia: associations with fungal DNA and mycotoxins in classroom dust. PLoS One 11(2):e0147996PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    LeBouf R, Yesse L, Rossner A (2008) Seasonal and diurnal variability in airborne mold from an indoor residential environment in northern New York. J Air Waste Manag Assoc. 58(5):684–692PubMedCrossRefGoogle Scholar
  79. 79.
    Mentese S, Rad AY, Arisoy M, Gullu G (2012) Multiple comparisons of organic, microbial, and fine particulate pollutants in typical indoor environments: diurnal and seasonal variations. J Air Waste Manag Assoc 62(12):1380–1393CrossRefGoogle Scholar
  80. 80.
    Su HJ, Wu PC, Chen HL, Lee FC, Lin LL (Feb 2001) Exposure assessment of indoor allergens, endotoxin, and airborne fungi for homes in southern Taiwan. Environ Res 85(2):135–144PubMedCrossRefGoogle Scholar
  81. 81.
    Kaarakainen P, Rintala H, Vepsalainen A, Hyvarinen A, Nevalainen A, Meklin T (2009) Microbial content of house dust samples determined with qPCR. Sci Total Environ 407(16):4673–4680PubMedCrossRefGoogle Scholar
  82. 82.
    Cho SJ, Ramachandran G, Grengs J, Ryan AD, Eberly LE, Adgate JL (2008) Longitudinal evaluation of allergen and culturable fungal concentrations in inner-city households. J Occup Environ Hyg 5(2):107–118PubMedCrossRefGoogle Scholar
  83. 83.
    Heinrich J, Holscher B, Douwes J et al (2003) Reproducibility of allergen, endotoxin and fungi measurements in the indoor environment. J Expo Anal Environ Epidemiol 13(2):152–160PubMedCrossRefGoogle Scholar
  84. 84.
    Spicer R, Gangloff H (2005) Establishing site specific reference levels for fungi in outdoor air for building evaluation. J Occup Environ Hyg 2(5):257–266PubMedCrossRefGoogle Scholar
  85. 85.
    Makkonen K, Viitala KI, Parkkila S, Niemela O (2001) Serum IgG and IgE antibodies against mold-derived antigens in patients with symptoms of hypersensitivity. Clin Chim Acta 305(1–2):89–98PubMedCrossRefGoogle Scholar
  86. 86.
    Hyvarinen A, Husman T, Laitinen S et al (May 2003) Microbial exposure and mold-specific serum IgG levels among children with respiratory symptoms in 2 school buildings. Arch Environ Health 58(5):275–283PubMedGoogle Scholar
  87. 87.
    Immonen J, Laitinen S, Taskinen T, Pekkanen J, Nevalainen A, Korppi M (2002) Mould-specific immunoglobulin G antibodies in students from moisture- and mould-damaged schools: a 3-year follow-up study. Pediatr Allergy Immunol 13(2):125–128PubMedCrossRefGoogle Scholar
  88. 88.
    Taskinen TM, Laitinen S, Nevalainen A et al (2002) Immunoglobulin G antibodies to moulds in school-children from moisture problem schools. Allergy 57(1):9–16PubMedCrossRefGoogle Scholar
  89. 89.
    Mussalo-Rauhamaa H, Nikulin M, Koukila-Kahkola P, Hintikka EL, Malmberg M, Haahtela T (2010) Health effects of residents exposed to Stachybotrys in water-damaged houses in Finland. Indoor Built Environ 19(4):476–485CrossRefGoogle Scholar
  90. 90.
    Brauer C, Budtz-Jorgensen E, Mikkelsen S (2008) Structural equation analysis of the causal relationship between health and perceived indoor environment. Int Arch Occup Environ Health 81(6):769–776PubMedCrossRefGoogle Scholar
  91. 91.
    Brauer C, Kolstad H, Orbaek P, Mikkelsen S (2006) The sick building syndrome: a chicken and egg situation? Int Arch Occup Environ Health 79(6):465–471PubMedCrossRefGoogle Scholar
  92. 92.
    Brodie EL, DeSantis TZ, Parker JP, Zubietta IX, Piceno YM, Andersen GL (2007) Urban aerosols harbor diverse and dynamic bacterial populations. Proc Natl Acad Sci U S A 104(1):299–304PubMedCrossRefGoogle Scholar
  93. 93.
    Rintala H, Pitkaranta M, Toivola M, Paulin L, Nevalainen A (2008) Diversity and seasonal dynamics of bacterial community in indoor environment. BMC Microbiol 8:56PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Schleibinger H, Laussmann D, Bornehag CG, Eis D, Rueden H (2008) Microbial volatile organic compounds in the air of moldy and mold-free indoor environments. Indoor Air 18(2):113–124PubMedCrossRefGoogle Scholar
  95. 95.
    Markowicz P, Larsson L (2015) Influence of relative humidity on VOC concentrations in indoor air. Environ Sci Pollut Res Int 22(8):5772–5779PubMedCrossRefGoogle Scholar
  96. 96.
    Korpi A, Jarnberg J, Pasanen AL (2009) Microbial volatile organic compounds. Crit Rev Toxicol 39(2):139–193PubMedCrossRefGoogle Scholar
  97. 97.
    Lorentzen JC, Juran SA, Nilsson M, Nordin S, Johanson G (2016) Chloroanisoles may explain mold odor and represent a major indoor environment problem in Sweden. Indoor Air 26(2):207–218PubMedCrossRefGoogle Scholar
  98. 98.
    Dennison JE, Bigelow PL, Mumtaz MM, Andersen ME, Dobrev ID, Yang RS (2005) Evaluation of potential toxicity from co-exposure to three CNS depressants (toluene, ethylbenzene, and xylene) under resting and working conditions using PBPK modeling. J Occup Environ Hyg 2(3):127–135PubMedCrossRefGoogle Scholar
  99. 99.
    Silva E, Rajapakse N, Kortenkamp A (2002) Something from “nothing”—eight weak estrogenic chemicals combined at concentrations below NOECs produce significant mixture effects. Environ Sci Technol 36(8):1751–1756PubMedCrossRefGoogle Scholar
  100. 100.
    Huttunen K, Pelkonen J, Nielsen KF, Nuutinen U, Jussila J, Hirvonen MR (2004) Synergistic interaction in simultaneous exposure to Streptomyces californicus and Stachybotrys chartarum. Environ Health Perspect 112(6):659–665PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Murtoniemi T, Penttinen P, Nevalainen A, Hirvonen MR (2005) Effects of microbial cocultivation on inflammatory and cytotoxic potential of spores. Inhal Toxicol 17(12):681–693PubMedCrossRefGoogle Scholar
  102. 102.
    Yli-Pirila T, Huttunen K, Nevalainen A, Seuri M, Hirvonen MR (2007) Effects of co-culture of amoebae with indoor microbes on their cytotoxic and proinflammatory potential. Environ Toxicol 22(4):357–367PubMedCrossRefGoogle Scholar
  103. 103.
    Penttinen P, Huttunen K, Pelkonen J, Hirvonen MR (2005) The proportions of Streptomyces californicus and Stachybotrys chartarum in simultaneous exposure affect inflammatory responses in mouse RAW264.7 macrophages. Inhal Toxicol 17(2):79–85PubMedCrossRefGoogle Scholar
  104. 104.
    Penttinen P, Pelkonen J, Huttunen K, Hirvonen MR (2006) Co-cultivation of Streptomyces californicus and Stachybotrys chartarum stimulates the production of cytostatic compound(s) with immunotoxic properties. Toxicol Appl Pharmacol 217(3):342–351PubMedCrossRefGoogle Scholar
  105. 105.
    Penttinen P, Pelkonen J, Huttunen K, Toivola M, Hirvonen MR (2005) Interactions between Streptomyces californicus and Stachybotrys chartarum can induce apoptosis and cell cycle arrest in mouse RAW264.7 macrophages. Toxicol Appl Pharmacol 202(3):278–288PubMedCrossRefGoogle Scholar
  106. 106.
    1994) Acute pulmonary hemorrhage/hemosiderosis among infants—Cleveland, January 1993–November 1994. MMWR Morb Mortal Wkly Rep 43(48):881–883Google Scholar
  107. 107.
    2000) Update: pulmonary hemorrhage/hemosiderosis among infants—Cleveland, Ohio, 1993–1996. MMWR Morb Mortal Wkly Rep 49(9):180–184Google Scholar
  108. 108.
    Edmondson DA, Nordness ME, Zacharisen MC, Kurup VP, Fink JN (2005) Allergy and “toxic mold syndrome”. Ann Allergy Asthma Immunol. 94(2):234–239PubMedCrossRefGoogle Scholar
  109. 109.
    Khalili B, Montanaro MT, Bardana EJ Jr (2005) Inhalational mold toxicity: fact or fiction? A clinical review of 50 cases. Ann Allergy Asthma Immunol 95(3):239–246PubMedCrossRefGoogle Scholar
  110. 110.
    Hong SB, Lee M, Kim DH, Chung SH, Shin HD, Samson RA (2013) The proportion of non-aflatoxigenic strains of the Aspergillus flavus/oryzae complex from meju by analyses of the aflatoxin biosynthetic genes. J Microbiol 51(6):766–772PubMedCrossRefGoogle Scholar
  111. 111.
    Panaccione DG, Coyle CM (2005) Abundant respirable ergot alkaloids from the common airborne fungus Aspergillus fumigatus. Appl Environ Microbiol 71(6):3106–3111PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Razzaghi-Abyaneh M, Shams-Ghahfarokhi M, Allameh A et al (2006) A survey on distribution of Aspergillus section Flavi in corn field soils in Iran: population patterns based on aflatoxins, cyclopiazonic acid and sclerotia production. Mycopathologia 161(3):183–192PubMedCrossRefGoogle Scholar
  113. 113.
    Andersen B, Nielsen KF, Jarvis BB (2002) Characterization of Stachybotrys from water-damaged buildings based on morphology, growth, and metabolite production. Mycologia 94(3):392–403PubMedCrossRefGoogle Scholar
  114. 114.
    Andersen B, Nielsen KF, Thrane U, Szaro T, Taylor JW, Jarvis BB (2003) Molecular and phenotypic descriptions of Stachybotrys chlorohalonata sp. nov. and two chemotypes of Stachybotrys chartarum found in water-damaged buildings. Mycologia 95(6):1227–1238PubMedCrossRefGoogle Scholar
  115. 115.
    Engelhart S, Loock A, Skutlarek D et al (2002) Occurrence of toxigenic Aspergillus versicolor isolates and sterigmatocystin in carpet dust from damp indoor environments. Appl Environ Microbiol 68(8):3886–3890PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Calvo AM, Wilson RA, Bok JW, Keller NP (2002) Relationship between secondary metabolism and fungal development. Microbiol Mol Biol Rev 66(3):447–459PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Skaug MA, Eduard W, Stormer FC (2001) Ochratoxin A in airborne dust and fungal conidia. Mycopathologia 151(2):93–98PubMedCrossRefGoogle Scholar
  118. 118.
    Sorenson WG, Frazer DG, Jarvis BB, Simpson J, Robinson VA (1987) Trichothecene mycotoxins in aerosolized conidia of Stachybotrys atra. Appl Environ Microbiol 53(6):1370–1375PubMedPubMedCentralGoogle Scholar
  119. 119.
    Gareis M, Gottschalk C (Aug 2014) Stachybotrys spp. and the guttation phenomenon. Mycotoxin Res 30(3):151–159PubMedCrossRefGoogle Scholar
  120. 120.
    Bellanger AP, Reboux G, Roussel S et al (2009) Indoor fungal contamination of moisture-damaged and allergic patient housing analysed using real-time PCR. Lett Appl Microbiol 49(2):260–266PubMedCrossRefGoogle Scholar
  121. 121.
    Shelton BG, Kirkland KH, Flanders WD, Morris GK (2002) Profiles of airborne fungi in buildings and outdoor environments in the United States. Appl Environ Microbiol 68(4):1743–1753PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Chew GL, Wilson J, Rabito FA et al (2006) Mold and endotoxin levels in the aftermath of hurricane Katrina: a pilot project of homes in New Orleans undergoing renovation. Environ Health Perspect 114(12):1883–1889PubMedPubMedCentralGoogle Scholar
  123. 123.
    Bloom E, Grimsley LF, Pehrson C, Lewis J, Larsson L (2009) Molds and mycotoxins in dust from water-damaged homes in New Orleans after hurricane Katrina. Indoor Air 19(2):153–158PubMedCrossRefGoogle Scholar
  124. 124.
    Iossifova Y, Reponen T, Sucharew H, Succop P, Vesper S (2008) Use of (1-3)-beta-d-glucan concentrations in dust as a surrogate method for estimating specific fungal exposures. Indoor Air 18(3):225–232PubMedCrossRefGoogle Scholar
  125. 125.
    Hardin BD, Robbins CA, Fallah P, Kelman BJ (2009) The concentration of no toxicologic concern (CoNTC) and airborne mycotoxins. J Toxicol Environ Health A 72(9):585–598PubMedCrossRefGoogle Scholar
  126. 126.
    Gottschalk C, Bauer J, Meyer K (2008) Detection of satratoxin G and H in indoor air from a water-damaged building. Mycopathologia 166(2):103–107PubMedCrossRefGoogle Scholar
  127. 127.
    Pottier D, Andre V, Rioult JP, Bourreau A, Duhamel C, Bouchart VK (2014) Airborne molds and mycotoins in Serpula lacrymans-damaged homes. Atmos Pollut Res 5(2):325–334CrossRefGoogle Scholar
  128. 128.
    Polizzi V, Delmulle B, Adams A et al (2009) JEM spotlight: fungi, mycotoxins and microbial volatile organic compounds in mouldy interiors from water-damaged buildings. J Environ Monit 11(10):1849–1858PubMedCrossRefGoogle Scholar
  129. 129.
    Bloom E, Bal K, Nyman E, Must A, Larsson L (2007) Mass spectrometry-based strategy for direct detection and quantification of some mycotoxins produced by Stachybotrys and Aspergillus spp. in indoor environments. Appl Environ Microbiol 73(13):4211–4217PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Degen H (2011) Tools for investigating workplace-related risks from mycotoxin exposure. World Mycotoxin J 4(3):315–327CrossRefGoogle Scholar
  131. 131.
    Mo X, Lai H, Yang Y et al (2014) How does airway exposure of aflatoxin B1 affect serum albumin adduct concentrations? Evidence based on epidemiological study and animal experimentation. J Toxicol Sci 39(4):645–653PubMedCrossRefGoogle Scholar
  132. 132.
    Viegas S, Veiga L, Malta-Vacas J et al (2012) Occupational exposure to aflatoxin (AFB (1)) in poultry production. J Toxicol Environ Health A. 75(22–23):1330–1340PubMedCrossRefGoogle Scholar
  133. 133.
    Yike I, Distler AM, Ziady AG, Dearborn DG (2006) Mycotoxin adducts on human serum albumin: biomarkers of exposure to Stachybotrys chartarum. Environ Health Perspect 114(8):1221–1226PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Amuzie CJ, Harkema JR, Pestka JJ (2008) Tissue distribution and proinflammatory cytokine induction by the trichothecene deoxynivalenol in the mouse: comparison of nasal vs. oral exposure. Toxicology 248(1):39–44PubMedCrossRefGoogle Scholar
  135. 135.
    Creasia DA, Thurman JD, Jones LJ (1987) 3rd, et al. acute inhalation toxicity of T-2 mycotoxin in mice. Fundam Appl Toxicol 8(2):230–235PubMedCrossRefGoogle Scholar
  136. 136.
    Creasia DA, Thurman JD, Wannemacher RW Jr, Bunner DL (1990) Acute inhalation toxicity of T-2 mycotoxin in the rat and guinea pig. Fundam Appl Toxicol 14(1):54–59PubMedCrossRefGoogle Scholar
  137. 137.
    Coulombe RA Jr, Sharma RP (1985) Clearance and excretion of intratracheally and orally administered aflatoxin B1 in the rat. Food Chem Toxicol 23(9):827–830PubMedCrossRefGoogle Scholar
  138. 138.
    Kelman BJ, Robbins CA, Swenson LJ, Hardin BD (2004) Risk from inhaled mycotoxins in indoor office and residential environments. Int J Toxicol 23(1):3–10PubMedCrossRefGoogle Scholar
  139. 139.
    Hardin BD, Kelman BJ, Saxon A (2003) Adverse human health effects associated with molds in the indoor environment. J Occup Environ Med 45(5):470–478PubMedCrossRefGoogle Scholar
  140. 140.
    Flemming J, Hudson B, Rand TG (2004) Comparison of inflammatory and cytotoxic lung responses in mice after intratracheal exposure to spores of two different Stachybotrys chartarum strains. Toxicol Sci 78(2):267–275PubMedCrossRefGoogle Scholar
  141. 141.
    Rosenblum Lichtenstein JH, Molina RM, Donaghey TC et al (2016) Repeated mouse lung exposures to Stachybotrys chartarum shift immune response from type 1 to type 2. Am J Respir Cell Mol Biol 55(4):521–531PubMedCrossRefGoogle Scholar
  142. 142.
    Hudson B, Flemming J, Sun G, Rand TG (2005) Comparison of immunomodulator mRNA and protein expression in the lungs of Stachybotrys chartarum spore-exposed mice. J Toxicol Environ Health A. 68(15):1321–1335PubMedCrossRefGoogle Scholar
  143. 143.
    Leino M, Makela M, Reijula K et al (2003) Intranasal exposure to a damp building mould, Stachybotrys chartarum, induces lung inflammation in mice by satratoxin-independent mechanisms. Clin Exp Allergy 33(11):1603–1610PubMedCrossRefGoogle Scholar
  144. 144.
    Yaniv G, Twig G, Shor DB et al (2015) A volcanic explosion of autoantibodies in systemic lupus erythematosus: a diversity of 180 different antibodies found in SLE patients. Autoimmun Rev 14(1):75–79PubMedCrossRefGoogle Scholar
  145. 145.
    Seldin MF (2015) The genetics of human autoimmune disease: a perspective on progress in the field and future directions. J Autoimmun 64:1–12PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Teruel M, Alarcon-Riquelme ME (2016) The genetic basis of systemic lupus erythematosus: what are the risk factors and what have we learned. J Autoimmun 74:161–175PubMedCrossRefGoogle Scholar
  147. 147.
    Zhang Z, Zhang R (2015) Epigenetics in autoimmune diseases: pathogenesis and prospects for therapy. Autoimmun Rev 14(10):854–863PubMedCrossRefGoogle Scholar
  148. 148.
    Pollock RA, Abji F, Gladman DD. Epigenetics of psoriatic disease: a systematic review and critical appraisal. J Autoimmun. 2016.Google Scholar
  149. 149.
    Wu H, Zhao M, Tan L, Lu Q (2016) The key culprit in the pathogenesis of systemic lupus erythematosus: aberrant DNA methylation. Autoimmun Rev 15(7):684–689PubMedCrossRefGoogle Scholar
  150. 150.
    Floreani A, Leung PS, Gershwin ME (2016) Environmental basis of autoimmunity. Clin Rev Allergy Immunol 50(3):287–300PubMedCrossRefGoogle Scholar
  151. 151.
    Wu H, Zhao M, Yoshimura A, Chang C, Lu Q (2016) Critical link between epigenetics and transcription factors in the induction of autoimmunity: a comprehensive review. Clin Rev Allergy Immunol. 50(3):333–344PubMedCrossRefGoogle Scholar
  152. 152.
    Shu Y, Hu Q, Long H, Chang C, Lu Q, Xiao R. Epigenetic Variability of CD4+CD25+ Tregs contributes to the pathogenesis of autoimmune diseases. Clin Rev Allergy Immunol. 2016.Google Scholar
  153. 153.
    Bao Y, Cao X (2016) Epigenetic control of B cell development and B cell-related immune disorders. Clin Rev Allergy Immunol. 50(3):301–311PubMedCrossRefGoogle Scholar
  154. 154.
    Selmi C (2016) Autoimmunity in 2015. Clin Rev Allergy Immunol. 51(1):110–119PubMedCrossRefGoogle Scholar
  155. 155.
    Hirschfield GM, Siminovitch KA (2015) Genetics in PBC: what do the “risk genes” teach us? Clin Rev Allergy Immunol. 48(2–3):176–181PubMedCrossRefGoogle Scholar
  156. 156.
    Qian Y, Culton DA, Jeong JS, Trupiano N, Valenzuela JG, Diaz LA (2016) Non-infectious environmental antigens as a trigger for the initiation of an autoimmune skin disease. Autoimmun Rev 15(9):923–930PubMedCrossRefGoogle Scholar
  157. 157.
    Kadowaki A, Miyake S, Saga R, Chiba A, Mochizuki H, Yamamura T (2016) Gut environment-induced intraepithelial autoreactive CD4(+) T cells suppress central nervous system autoimmunity via LAG-3. Nat Commun 7:11639PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Onuora S (2016) Autoimmunity: human gut bacteria induce TH17 cells. Nat Rev Rheumatol 13(1):2Google Scholar
  159. 159.
    Shamriz O, Mizrahi H, Werbner M, Shoenfeld Y, Avni O, Koren O (2016) Microbiota at the crossroads of autoimmunity. Autoimmun Rev 15(9):859–869PubMedCrossRefGoogle Scholar
  160. 160.
    Dwivedi M, Kumar P, Laddha NC, Kemp EH (2016) Induction of regulatory T cells: a role for probiotics and prebiotics to suppress autoimmunity. Autoimmun Rev 15(4):379–392PubMedCrossRefGoogle Scholar
  161. 161.
    Uusitalo U, Liu X, Yang J et al (2016) Association of early exposure of probiotics and islet autoimmunity in the TEDDY study. JAMA Pediatr 170(1):20–28PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Tomer Y, Dolan LM, Kahaly G et al (2015) Genome wide identification of new genes and pathways in patients with both autoimmune thyroiditis and type 1 diabetes. J Autoimmun 60:32–39PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    Webb GJ, Hirschfield GM (2016) Using GWAS to identify genetic predisposition in hepatic autoimmunity. J Autoimmun 66:25–39PubMedCrossRefGoogle Scholar
  164. 164.
    Jeltsch-David H, Muller S (2016) Autoimmunity, neuroinflammation, pathogen load: a decisive crosstalk in neuropsychiatric SLE. J Autoimmun 74:13–26PubMedCrossRefGoogle Scholar
  165. 165.
    Onuora S (2016) Autoimmunity: TFH cells link gut microbiota and arthritis. Nat Rev Rheumatol 12(3):133PubMedCrossRefGoogle Scholar
  166. 166.
    Zhu Y, Zou L, Liu YC (2016) T follicular helper cells, T follicular regulatory cells and autoimmunity. Int Immunol 28(4):173–179PubMedCrossRefGoogle Scholar
  167. 167.
    Audia S, Rossato M, Trad M et al (2017) B cell depleting therapy regulates splenic and circulating T follicular helper cells in immune thrombocytopenia. J Autoimmun 77:89–95PubMedCrossRefGoogle Scholar
  168. 168.
    Doherty DG (2016) Immunity, tolerance and autoimmunity in the liver: a comprehensive review. J Autoimmun 66:60–75PubMedCrossRefGoogle Scholar
  169. 169.
    Yang CA, Chiang BL (2015) Inflammasomes and human autoimmunity: a comprehensive review. J Autoimmun 61:1–8PubMedCrossRefGoogle Scholar
  170. 170.
    Franks SE, Getahun A, Hogarth PM, Cambier JC (2016) Targeting B cells in treatment of autoimmunity. Curr Opin Immunol 43:39–45PubMedCrossRefGoogle Scholar
  171. 171.
    Domeier PP, Chodisetti SB, Soni C et al (2016) IFN-gamma receptor and STAT1 signaling in B cells are central to spontaneous germinal center formation and autoimmunity. J Exp Med 213(5):715–732PubMedPubMedCentralCrossRefGoogle Scholar
  172. 172.
    Thompson G, John M, Chopra A (2016) Triple threats: tracking antigen-specific T cells in a case of concurrent autoimmunity, infectious disease and possible malignancy. Pathology 48(Suppl 1):S44CrossRefGoogle Scholar
  173. 173.
    Anderson AC, Sullivan JM, Tan DJ, Lee DH, Kuchroo VK (2015) A T cell extrinsic mechanism by which IL-2 dampens Th17 differentiation. J Autoimmun 59:38–42PubMedPubMedCentralCrossRefGoogle Scholar
  174. 174.
    Hou L, Cooley J, Swanson R et al (2015) The protease cathepsin L regulates Th17 cell differentiation. J Autoimmun 65:56–63PubMedPubMedCentralCrossRefGoogle Scholar
  175. 175.
    Hou MS, Huang ST, Tsai MH et al (2015) The interleukin-15 system suppresses T cell-mediated autoimmunity by regulating negative selection and nT (H)17 cell homeostasis in the thymus. J Autoimmun 56:118–129PubMedCrossRefGoogle Scholar
  176. 176.
    Hua C, Audo R, Yeremenko N et al (2016) A proliferation inducing ligand (APRIL) promotes IL-10 production and regulatory functions of human B cells. J Autoimmun 73:64–72PubMedCrossRefGoogle Scholar
  177. 177.
    Isailovic N, Daigo K, Mantovani A, Selmi C (2015) Interleukin-17 and innate immunity in infections and chronic inflammation. J Autoimmun 60:1–11PubMedCrossRefGoogle Scholar
  178. 178.
    Jones SA, Perera DN, Fan H, Russ BE, Harris J, Morand EF (2015) GILZ regulates Th17 responses and restrains IL-17-mediated skin inflammation. J Autoimmun 61:73–80PubMedCrossRefGoogle Scholar
  179. 179.
    Lu X, Tang Q, Lindh M, et al. The host defense peptide LL-37 a possible inducer of the type I interferon system in patients with polymyositis and dermatomyositis. J Autoimmun. 2016.Google Scholar
  180. 180.
    Barbati C, Alessandri C, Vomero M et al (2015) Autoantibodies specific to D4GDI modulate rho GTPase mediated cytoskeleton remodeling and induce autophagy in T lymphocytes. J Autoimmun 58:78–89PubMedCrossRefGoogle Scholar
  181. 181.
    Leventhal JS, Ross MJ (2016) LAPping up dead cells to prevent lupus nephritis: a novel role for noncanonical autophagy in autoimmunity. Kidney Int 90(2):238–239PubMedCrossRefGoogle Scholar
  182. 182.
    Gray MR, Thrasher JD, Crago R et al (2003) Mixed mold mycotoxicosis: immunological changes in humans following exposure in water-damaged buildings. Arch Environ Health 58(7):410–420PubMedGoogle Scholar
  183. 183.
    Borchers AT, Gershwin ME (Oct 2015) Fibromyalgia: a critical and comprehensive review. Clin Rev Allergy Immunol. 49(2):100–151PubMedCrossRefGoogle Scholar
  184. 184.
    Rinaldi M, Perricone R, Blank M, Perricone C, Shoenfeld Y (2013) Anti-Saccharomyces cerevisiae autoantibodies in autoimmune diseases: from bread baking to autoimmunity. Clin Rev Allergy Immunol. 45(2):152–161PubMedCrossRefGoogle Scholar
  185. 185.
    Bloom E, Bal K, Nyman E, Larsson L (2007) Optimizing a GC-MS method for screening of Stachybotrys mycotoxins in indoor environments. J Environ Monit 9(2):151–156PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Andrea T. Borchers
    • 1
  • Christopher Chang
    • 1
  • M. Eric Gershwin
    • 1
    Email author
  1. 1.Division of Rheumatology, Allergy and Clinical Immunology, Davis School of MedicineUniversity of CaliforniaDavisUSA

Personalised recommendations