Advertisement

Clinical Reviews in Allergy & Immunology

, Volume 53, Issue 1, pp 40–53 | Cite as

Tumor Necrosis Factor-Alpha and Pregnancy: Focus on Biologics. An Updated and Comprehensive Review

  • Jaume Alijotas-ReigEmail author
  • Enrique Esteve-Valverde
  • Raquel Ferrer-Oliveras
  • Elisa Llurba
  • Josep Maria Gris
Article

Abstract

Tumor necrosis factor-α (TNF-α) is a central regulator of inflammation, and TNF-α antagonists may be effective in treating inflammatory disorders in which TNF-α plays a major pathogenic role. TNF-α has also been associated with inflammatory mechanisms related to implantation, placentation, and pregnancy outcome. TNF-α is secreted by immune cells and works by binding to TNFR1 and TNFR2 cell receptors. TNF-α is also related to JAK/STAT pathways, which opens up hypothetical new targets for modifying. The accurate balance between Th1 cytokines, mainly TNF-α, Th17, and Th2, particularly IL-10 is essential to achieve good obstetric outcomes. TNF-α targeted therapy could be rational in treating women with obstetric complication related to overproduction of TNF-α, such as recurrent pregnancy loss, early and severe pre-eclampsia, and recurrent implantation failure syndrome, all “idiopathic” or related to aPL positivity. Along the same lines, Th1 cytokines, mainly TNF- α, play a leading pathogenic role in rheumatic and systemic autoimmune diseases occurring in women and, to a lesser extent, in men of reproductive age. These disorders have to be clinically silent before pregnancy can be recommended, which is usually only possible to achieve after intensive anti-inflammatory and immunosuppressive treatment, TNF-α blockers included. Physicians should be aware of the theoretic potential but low embryo-fetal toxicity risk of these drugs during pregnancy. From an updated review in May 2016, we can conclude that TNF-α blockers are useful in certain “refractory” cases of inflammatory disorders related to poor obstetric outcomes and infertility. Furthermore, TNF-α blockers can be safely used during the implantation period and pregnancy. Breastfeeding is also permitted with all TNF-α inhibitors. Since data on the actual mechanism of action of JAK-STAT in inflammatory obstetric disorders including embryo implantation are scarce, for the time being, therapeutic interventions in this setting should be discouraged. Finally, adverse effects on sperm quality, or causing embryo-fetal anomalies, in men treated with TNF inhibitors have not been described.

Keywords

Antiphospholipid syndrome Implantation failure JAK-STAT Pre-eclampsia Recurrent abortion Th1-cytokines TNF-α blockers 

Notes

Acknowledgements

The authors thank Ms. Christine O’Hara for reviewing and correcting the style and grammar of the manuscript.

Compliance with Ethical Standards

Conflict of Interest

The author also state that they do not have any commercial or any other type of interest that may have influenced the drawing up and the results of this paper.

Funding

There is no funding source.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. 1.
    Saito S, Nakashima A, Shima T, Ito M (2010) Th1/Th2/Th17 and regulatory T-cell paradigm in pregnancy. Am J Reprod Immunol 63:601–610PubMedCrossRefGoogle Scholar
  2. 2.
    Knippen MA (2011) Michroquimerism: sharing genes in illness and in health. Intern Scholar Res Net. doi: 10.5402/2011/893819 Google Scholar
  3. 3.
    Trussell J, Lalla A, Doan Q, Reyes E, Pinto L, Gricar J (2009) Cost effectiveness of contraceptives in the United States. Contraception 79:5–14PubMedCrossRefGoogle Scholar
  4. 4.
    Skorpen CG, Hoelzenbein M, Tincani A, Fischer-Betz R, Elefant E, Chambers C et al (2016) The EULAR points to consider for use of antirheumatic drugs before pregnancy, and during pregnancy and lactation. Ann Rheum Dis 75:795–810CrossRefGoogle Scholar
  5. 5.
    Flint J, Panchal S, Hurrell A, van de Venne M, Gayed M, Schreiber K et al (2016) BSR and BHPR guidelines on prescribing drugs in pregnancy and breastfeeding—part I: standart and buiologic disease –modifying anti-rheumatic drugs and corticosteroids. Rheumatology. doi: 10.1093/rheumatology/kev404 Google Scholar
  6. 6.
    Majetschak M, Obertacke U, Schade FU, Bardenheuer M, Voggenreiter G, Bloemeke B et al (2002) Tumor necrosis factor gene polymorphisms, leukocyte function, and sepsis susceptibility in blunt trauma patients. Clin Diagn Lab Immunol 9:1205–1211PubMedPubMedCentralGoogle Scholar
  7. 7.
    Wajant H, Pfizenmaier K, Scheurich P (2003) Tumor necrosis factor signaling. Cell Death Differ 10:45–65PubMedCrossRefGoogle Scholar
  8. 8.
    Chen G, Goeddel DV (2002) TNF-R1 signaling: a beautiful pathway. Science 296:1634–1635PubMedCrossRefGoogle Scholar
  9. 9.
    Brogin Moreli J, Cirino Ruocco AM, Vernini JM, Rudge MV, Calderon IM (2012) Interleukin 10 and tumor necrosis factor-alpha in pregnancy: aspects of interest in clinical obstetrics. Obstet Gynecol 2012:230742Google Scholar
  10. 10.
    Alijotas-Reig J (2009) Immunological puzzle related to recurrent miscarriage: overview. Curr Immunol Rev 5:175–186CrossRefGoogle Scholar
  11. 11.
    Alijotas-Reig J, Llurba E, Gris JM (2014) Potentiating maternal immune tolerance in pregnancy: a new challenging role for regulatory T cells. Placenta 35:241–248PubMedCrossRefGoogle Scholar
  12. 12.
    Said EA, Dupuy FP, Trautmann L, Zhang Y, Shi Y, El-Far M et al (2010) Programmed death-1-induced interleukin-10 production by monocytes impairs CD4 + T cell activation during HIV infection. Nature Med 16:452–459PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Quenby S, Bates M, Doig T, Brewster J, Lewis-Jones DI, Johnson PM et al (1999) Pre-implantation endometrial leukocytes in women with recurrent miscarriage. Hum Reprod 14:2386–2391PubMedCrossRefGoogle Scholar
  14. 14.
    Banerjee P, Jana SK, Pasricha P, Ghosh S, Chakravarty B, Chaudhury K (2013) Proinflammatory cytokines induced altered expression of cylcooxigenase 2 gene results in unreceptive endometrium in women with idiopathic spontaneous miscarriage. Fertil Steril 99:179–187PubMedCrossRefGoogle Scholar
  15. 15.
    Wedekind L, Belkacemi L (2016) Altered cytokine network in gestational diabetes mellitus affects maternal insulin and placental-fetal development. J Diabetes Complicat. doi: 10.1016/j.jdiacomp.2016.05.011 PubMedGoogle Scholar
  16. 16.
    Coughlan MT, Oliva K, Georgion HM, Permezel JMH, Rice GE (2001) Glucose-induced release of tumour necrosis factor-alpha from human placental and adipose tissues in gestational diabetes mellitus. Diabet Med 18:921–927PubMedCrossRefGoogle Scholar
  17. 17.
    Kirwan JP, Hauguel-De Mouzon S, Lepercq J, Challier JC, Huston-Presley L (2002) Friedman JE. Diabetes 51:2207–2213PubMedCrossRefGoogle Scholar
  18. 18.
    Moreli JB, Corrêa-Silva S, Damasceno DC, Sinzato YK, Lorenzon-Ojea AR, Borbely AU (2015) Changes in the TNF-alpha/IL-10 ratio in hyperglycemia-associated pregnancies. Diabetes Res Clin Pract 107:362–369PubMedCrossRefGoogle Scholar
  19. 19.
    Berman J, Girardi G, Salmon JE (2005) TNF-alpha is a critical effector and a target for therapy in antiphospholipid antibody-induced pregnancy loss. J Immunol 174:1222–1226CrossRefGoogle Scholar
  20. 20.
    Yuan J, Li J, Huang SY, Sun X (2015) Characterization of the subsets of human NKT-like cells and the expression of Th1/Th2 cytokines in patients with unexplained recurrent spontaneous abortion. J Reprod Immunol 110:81–88PubMedCrossRefGoogle Scholar
  21. 21.
    Peraçoli JC, Rudge MVC, Perçoli MTS (2007) Tumor necrosis factor-alpha in gestation and puerperium of women with gestational hypertension and pre-eclampsia. Am J Reprod Immunol 57:177–185PubMedCrossRefGoogle Scholar
  22. 22.
    James DG, Williams WJ (1985) Sarcoidosis and other granulomatous disorders. In: Smith LLH (ed) Major problems in internal medicine, vol 24. W.B. Saunders Co, Philadelphia, pp 1–254Google Scholar
  23. 23.
    Rynes RI (1993) Antimalarial drugs. In: Kelley WN, Harris ED, Ruddyn S, Sledge CB (eds) Textbook of rheumatology [4th edition]. W.B. Saunders, Philadelphia, pp 731–742Google Scholar
  24. 24.
    Alijotas-Reig J (2013) Treatment of refractory obstetric antiphospholipid syndrome: the state of the art and new trends in the therapeutic management. Lupus 22:6–17PubMedCrossRefGoogle Scholar
  25. 25.
    Alijotas-Reig J, Ferrer-Oliveras R, Ruffatti A, Tincani A, Lefkou E, Bertero MT et al (2015) The European registry on obstetric antiphospholipid syndrome (EUROAPS): a survey of 247 consecutive cases. Autoimmun Rev 14:387–395PubMedCrossRefGoogle Scholar
  26. 26.
    Mekinian A, Costedoat-Chalumeau N, Masseau A, Tincani A, De Caroli S, Alijotas-Reig J et al (2015) Obstetrical APS: is there a place for hydroxychloroquine to improve the pregnancy outcome? Autoimmun Rev 14:23–29PubMedCrossRefGoogle Scholar
  27. 27.
    Ruffatti A, Salvan E, Del Ross T, Gerosa M, Andreoli L, Alijotas-Reig J et al (2014) Treatment strategies and pregnancy outcomes in antiphospholipid syndrome patients with thrombosis and triple antiphospholipid positivity. A European multicentre retrospective study. Thromb Haemost 112:727–735 Erratum in: Thromb Haemost. 2014 Dec;112PubMedCrossRefGoogle Scholar
  28. 28.
    Espinola RG, Pierangeli SS, Gharavi AE, Harris EN (2002) Hydroxychloroquine reverses platelet activation induced by human IgG antiphospholid antibodies. Thromb Haemost 87:518–522PubMedGoogle Scholar
  29. 29.
    Edwards MH, Pierangeli SS, Liu X, Barker JH, Anderson G, Harris EN (1997) Hydroxychloroquine reverses thrombogenic properties of antiphospholipid antibodies in mice. Circulation 96:4380–4384PubMedCrossRefGoogle Scholar
  30. 30.
    Ruiz-Irastorza G, Khamashta MA (2011) Lupus and pregnancy: integrating clues from the bench and bedside. Eur J Clin Investig 41:672–678CrossRefGoogle Scholar
  31. 31.
    Wozniacka A, Lesiak A, Narbutt JM, McCauliffe DP, Sysa-Jedrzejowska A (2006) Chloroquine treatment influences proinflammatory cytokine level in systemic lupus erythematosus patients. Lupus 15:268–275PubMedCrossRefGoogle Scholar
  32. 32.
    Mangubat CP, Thaker PP, Cavalcante M (2001) Etanercept and immune treatment in multiple IVF failures. Am J Reprod Immunol 45:24Google Scholar
  33. 33.
    Chaouat G, Assal-Meliani A, Martal J, Raghupathy R, Elliott JF, Mosmann T et al (1995) IL-10 prevents naturally occurring fetal loss in the CBAxDBA/2 mating combination, and local defect in IL-10 production in this abortion-prone combination is corrected by in vivo injection of IFN-tau. J Immunol 154:426–428Google Scholar
  34. 34.
    Zhong XH, Shi WY, Ma AT, Gong XC, Zhai XH, Zhang T et al (2008) Efects of Radix scutellariae and Rhizoma atractylodis on LPS-induced abortion and the uterine IL-10 contents in mice. Am J Chin Med 36:141–148PubMedCrossRefGoogle Scholar
  35. 35.
    Shaw SM, Shah MKH, Williams SG, Fildes JE (2009) Immunological mechanisms of pentoxifylline in chronic heart failure. Eur J Heart Fail 11:113–118PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Lu D, Song H, Li Y, Shi G (2012) Pentoxifylline for endometriosis. Cochrane Database Syst Rev 1:CD007677PubMedGoogle Scholar
  37. 37.
    Creus M, Fabregues F, Carmona F, del Pino M, Manau D, Balasch J (2008) Combined laparoscopic surgery and pentoxifylline therapy for treatment of endometriosis-associated infertility: a preliminary trial. Hum Reprod 23:1910–1916PubMedCrossRefGoogle Scholar
  38. 38.
    Bick RL (2001) Antiphospholipid thrombosis syndromes. Clin Appl Thromb Hemost 7:241–258PubMedCrossRefGoogle Scholar
  39. 39.
    Letur-Konirsch H, Delanian S (2003) Successful pregnancies after combined pentoxifylline-tocopherol treatment in women with prematureovarian failure who are resistant to hormobe replacement therapy. Fertil Steril 79:439–441PubMedCrossRefGoogle Scholar
  40. 40.
    Nurmohamed MT, Dijkmans BA (2005) Efficacy, tolerability and cost effectiveness of diseases-modifying antirheumatic drugs and biologic agents in rheumatoid arthritis. Drugs 65:661–694PubMedCrossRefGoogle Scholar
  41. 41.
    Ramos-Casals M, Brito-Zeron P, Muñoz S, Soria N, Galiana D, Bertolaccini L et al (2007) Autoimmune diseases induced by TNF-targeted therapies. Medicine (Baltimore) 86:242–251CrossRefGoogle Scholar
  42. 42.
    Idriss HT, Naismith JH (2000) TNF alpha and the TNF receptor superfamily: structure-function relationship(s). Microsc Res Tech 50:184–195PubMedCrossRefGoogle Scholar
  43. 43.
    Mukai Y, Shibata H, Nakamura T, Yoshioka Y, Abe Y, Nomura T et al (2009) Structure-function relationship of tumor necrosis factor (TNF) and its receptor interaction based on 3D structural analysis of a fully active TNFR1-selective TNF mutant. J Mol Biol 385:1221–1229PubMedCrossRefGoogle Scholar
  44. 44.
    Conti F, Ceccarelli L, Massaro E, Cipriano M, Di Franco C, Alessandri FR et al (2013) Biological therapies in rheumatic diseases. Clin Ter 164:e413–e428PubMedGoogle Scholar
  45. 45.
    Alijotas-Reig J, Vilardell-Tarrés M (2010) Is obstetric antiphospholipid syndrome a primary non-thrombotic, proinflammatory, complement-mediated disorder related to antiphospholipid antibodies? Obstet Gynecol Surv 65:39–45PubMedCrossRefGoogle Scholar
  46. 46.
    Meroni PL, Borghi MO, Raschi E et al (2011) Pathogenesis of antiphospholipid syndrome: understanding the antibodies. Nat Rev Rheumatol 7:330–339PubMedCrossRefGoogle Scholar
  47. 47.
    Alijotas-Reig J, Esteve-Valverde E, Ferrer-Oliveras R (2016) Treating pregnant women with systemic rheumatic or autoimmune disease with immunosuppressive and biologic drugs. Med Clin (Barc). doi: 10.1016/j.medcli.2016.05.020 Google Scholar
  48. 48.
    Papagoras C, Voulgari PV, Drosos AA (2015) Golimumab, the newest TNF-α blocker, comes of age. Clin Exp Rheumatol 33:570–577PubMedGoogle Scholar
  49. 49.
    Cetrone M, Parisi G, Tricarico D, Pierri CL, Bossis F, Punzi G, De Grassi A (2016) Molecular modeling of antibodies for the treatment of TNF α -related immunological diseases. Pharmacol Res Perspect 4:e00197. doi: 10.1002/prp2.197 PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    de Fidelix TS, Vieira LA, de Freitas D, Trevisani VF (2015) Biologic therapy for refractory scleritis: a new treatment perspective. Int Ophthalmol 35:903–912PubMedCrossRefGoogle Scholar
  51. 51.
    Bongartz T, Sutton AJ, Sweeting MJ, Buchan I, Matteson EL, Montori V (2006) Anti-TNF antibody therapy in rheumatoid arthritis and the risk of serious infections and malignancies: systematic review and meta-analysis of rare harmful effects in randomized controlled trials. JAMA 295:2275–2285 Erratum in: JAMA. 2006 Jun 7;295(21):2482PubMedCrossRefGoogle Scholar
  52. 52.
    Berthelot JM, De Bandt M, Goupille P, Solau-Gervais E, Lioté F, Goeb V et al (2009) Exposition to anti-TNF drugs during pregnancy: outcome of 15 cases and review of the literature. Joint Bone Spine 76:28–34PubMedCrossRefGoogle Scholar
  53. 53.
    Salmon JE, Alpert D (2006) Are we coming to terms with tumor necrosis factor inhibition in pregnancy? Arthritis Rheum 54:2353–2355PubMedCrossRefGoogle Scholar
  54. 54.
    Rosner I, Haddad A, Boulman N, Feld J, Avshovich N, Slobodin G et al (2007) Pregnancy in rheumatology patients exposed to anti-tumor [TNF]-alpha therapy. Rheumatology 46:1508–1509PubMedCrossRefGoogle Scholar
  55. 55.
    Mozaffari S, Abdolghaffari AH, Nikfar S, Abdollahi M (2015) Pregnancy outcomes in women with inflammatory bowel disease following exposure to thiopurines and antitumor necrosis factor drugs: a systematic review with meta-analysis. Hum Exp Toxicol 34:445–459PubMedCrossRefGoogle Scholar
  56. 56.
    Bank LHB (2002) Unexpected dramatic clinical response of psoriasis lesions and unexpected pregnancy in an infertile patient in response to treatment with anti-tumor necrosis factor monoclonal antibody for Crohn’s disease. Am J Gastroenterol 97:S260CrossRefGoogle Scholar
  57. 57.
    Ostensen M, Lockshin M, Doria A, Valesini G, Meroni PL, Gordon C et al (2008) Update on safety during pregnancy of biological agents and some immunosuppressive anti-rheumatic drugs. Rheumatology 47:iii28–iii31PubMedCrossRefGoogle Scholar
  58. 58.
    Clowse ME, Wolf DC, Förger F, Cush FJ, Go A, Shaughnessy L (2015) Pregnancy outcomes in subjects exposed to certolizumab pegol. J Rheumatol. doi: 10.3899/jrheum.140189 PubMedGoogle Scholar
  59. 59.
    Ramos-Casals M, Brito-Zerón P, Soto MJ, Cuadrado MJ, Khamashta MA (2008) Autoimmune diseases induced by TNF-targeted therapies. Best Pract Res Clin Rheumatol 22:847–861PubMedCrossRefGoogle Scholar
  60. 60.
    Kolarz B, Madjan M, Darmochwal-Kolarz DA, Dryglewska M (2014) Antihpospholipid antibodies during 6-months treatment with infliximab: a preliminary report. Med Sci Mionit 20:1227–1231CrossRefGoogle Scholar
  61. 61.
    Winger EE, Reed JL, Ashoush S, Ahuja El-Toukhy T, Taranisi M (2009) Treatment with adalimumab [HumiraR] and intravenous immunoglobulin improves pregnancy rates in women undergoing IVF. Am J Reprod Immunol 61:113–120PubMedCrossRefGoogle Scholar
  62. 62.
    Winger EE, Reed JL (2008) Treatment with tumor necrosis factor inhibitors and intravenous immunoglobulin improves live birth rates in women with recurent spontaneous abortion. Am J Reprod Immunol 60:8–16PubMedCrossRefGoogle Scholar
  63. 63.
    Deeks ED (2013) Certolizumab pegol. Review of its use in the rheumatoid arthritis treatment. Drugs 73:75–97PubMedCrossRefGoogle Scholar
  64. 64.
    Simister NE, Story CM (1997) Human placental Fc receptors and the transmission of antibodies from mother to fetus. J Reprod Immunol 37:1–23PubMedCrossRefGoogle Scholar
  65. 65.
    Leroy C, Rigot JM, Leroy M, Decanter C, Le Mapihan K, Parent AS et al (2015) Immunosuppressive drugs and fertility. Orphan J Rare Dis 10:136. doi: 10.1186/s13023-015-0332-8 CrossRefGoogle Scholar
  66. 66.
    Micu M, Micu R, Surd S, Girlovanu M, Bolboaca S, Ostensen M (2014) TNF-α inhibitors do not impair sperm quality in males with ankylosing spondylitis after short-term or long-term treatment. Rheumatology 53:1250–1255PubMedCrossRefGoogle Scholar
  67. 67.
    Wallenius M, Lie E, Daltveit AK, Salvesen KA, Skomsvoll JF, Kasltad S et al (2015) No excess risks in offspring with paternal preconception exposure to disease-modifying antirheumatic drugs. Arthritis Rheum 67:296–301CrossRefGoogle Scholar
  68. 68.
    McConell RA, Mahadevan U (2016) Use of immunomodulators and biologics before, during and after pregnancy. Inflamm Bowel Dis 22:213–223CrossRefGoogle Scholar
  69. 69.
    Kavanaugh A, Cush J, Ahmed M, Bermas BL, Chakravarty E, Chambers C et al (2015) Proceedings from the American College of Rheumatology Reproductive Health Summit: the management of fertility, pregnancy, and systemic inflammatory diseases. Arthritis Care Res 67:313–325CrossRefGoogle Scholar
  70. 70.
    Østensen M, Andreoli L, Brucato A, Cetin I, Chambers C, Clowse ME et al (2015) State of the art: reproduction and pregnancy in rheumatic diseases. Autoimmun Rev 14:376–386PubMedCrossRefGoogle Scholar
  71. 71.
    Alijotas-Reig J, Garrido-Gimenez C (2013) Current concepts and new trends in the diagnosis and management of recurrent miscarriage. Obstet Gynecol Surv 68:445–466PubMedCrossRefGoogle Scholar
  72. 72.
    Practice Committee of the American Society for Reproductive Medicine (2013) Definitions of infertility and recurrent pregnancy loss: a committee opinion. Fertil Steril 99:63–68CrossRefGoogle Scholar
  73. 73.
    Rai R, Regan L (2006) Recurrent miscarriage. Lancet 368:601–611PubMedCrossRefGoogle Scholar
  74. 74.
    Greer IA, Brenner B, Gris JC (2014) Antithrombotic treatment for pregnancy complications: which path for the journey to precision medicine? Br J Haematol 165(5):585–599PubMedCrossRefGoogle Scholar
  75. 75.
    Simcox LE, Ormesher L, Tower C, Greer IA (2015) Thrombophilia and pregnancy complications. Int J Mol Sci 16:28418–28428PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Toth B, Jeschke U, Rogenhofer N, Scholz C, Würfel W, Thaler CJ (2010) Makrigiannakis a recurrent miscarriage: current concepts in diagnosis and treatment. J Reprod Imunol 85:25–32CrossRefGoogle Scholar
  77. 77.
    Rand JH (2007) The antiphospholipid syndrome. Hematology Am Soc Hematol Educ Program 136-4Google Scholar
  78. 78.
    Miyakis S, Lockshin MD, Atsumi T, Branch DW, Brey RL, Cervera R et al (2006) International consensus statement on an update of the classification criteria for definite antiphospholipid syndrome. J Thromb Haemost 4:295–306PubMedCrossRefGoogle Scholar
  79. 79.
    Levy RA, Dos Santos FC, de Jesús GR, de Jesús NR (2015) Antiphospholipid antibodies and antiphospholipid syndrome during pregnancy: diagnostic concepts. Front Immunol 6:205. doi: 10.3389/fimmu.2015.00205. eCollection
  80. 80.
    Esteve-Valverde E, Ferrer-Oliveras R, Alijotas-Reig J (2016) Obstetric antiphospholipid syndrome. Rev Clin Esp 216:135–145PubMedCrossRefGoogle Scholar
  81. 81.
    Chighizola CB, Raschi E, Borghi MO, Meroni PL (2015) Update on the pathogenesis and treatment of the antiphospholipid syndrome. Curr Opin Rheumatol 27:476–482PubMedCrossRefGoogle Scholar
  82. 82.
    Alijotas-Reig J, Ferrer-Oliveras R, EUROAPS Study Group (2012) The European registry on obstetric antiphospholipid syndrome (EUROAPS): a preliminary first year report. Lupus 21:766–768PubMedCrossRefGoogle Scholar
  83. 83.
    Azizieh FY, Raghupathy RG (2015) Tumor necrosis factor-α and pregnancy complications: a prospective study. Med Princ Pract 24:165–170PubMedCrossRefGoogle Scholar
  84. 84.
    Winger EE, Reed JL, Ashoush S, El-Toukhy T, Ahuja S, Taranisi M (2011a) Degree of THF-α/IL-10 cytokine elevation correlates with IVF success rates in women undergoing treatment with adalimumab (Humira) and IVIG. Am J Reprod Immunol 65:610–618PubMedCrossRefGoogle Scholar
  85. 85.
    Winger EE, Reed JL, Ashoush S, El-Toukhy T, Ahuja S, Taraanisi M (2011b) Birth defect rates in women using adalimumab (Humira) to treat immunologic-based infertility in IVF patients. Am J Repord Immunol 66:214–223Google Scholar
  86. 86.
    Alijotas-Reig J, Steve-Valverde E, Ferrer-Oliveras R, Llurba E, Mekinian A (in press) Treatment of refractory poor aPL-related obstetric outcomes with anti-TNF blockers: maternal-foetal outcomes in a series of 11 cases. J AutoimmunGoogle Scholar
  87. 87.
    Llurba E, Crispi F, Verlohren S (2015) Update on the pathophysiological implications and clinical role of angiogenic factors in pregnancy. Fetal Diagn Ther 37:81–92PubMedCrossRefGoogle Scholar
  88. 88.
    Harmon A, Cornelius D, Maral L, Paige A, Herse F, Ibrahim T et al (2015) IL-10 supplementation increase Tregs and decreases hypertension in the RUPP rat model of preeclampsia. Hypertens Pregnancy 34:291–306PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Udenze I, Amadi C, Awolola N, Makwe C (2015) The role of cytokines as inflammatory mediators in preeclampsia. Pan Afr Med J 20:219. doi: 10.11604/pamj.205.20.219.5317 eCollection 2015PubMedPubMedCentralGoogle Scholar
  90. 90.
    Saito S, Shiozaki A, Nakashima A, Sakai M, Sasaki Y (2007) The role of the immune system in pre-eclampsia. Mol Asp Med 28:192–209CrossRefGoogle Scholar
  91. 91.
    Robertson SA, Bromfield JJ, Tremellen KP (2003) Seminal ‘priming’ for protection from pre-eclampsia-a unifying hypothesis. J Reprod Immunol 59:253–265PubMedCrossRefGoogle Scholar
  92. 92.
    Lai Z, Kalkunte S, Sharma S (2011) A critical role of interleukin-10 in modulating hypoxia-induced preeclampsia-like disease in mice. Hypertension 57:505–514PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Reslan OM, Khalil RA (2010) Molecular and vascular targets in the pathogenesis and management of the hypertension associated with preeclampsia. Cardiovasc Hematol Agents Med Chem 8:204–226PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Olusi SO, Diejomaoh M, Omu A, Abdulaziz A, Prabha K, George S (2000) Interleukins in preeclampsia. Annals of Saudi Medicine 20:4–8PubMedCrossRefGoogle Scholar
  95. 95.
    Afshar JT, Ghomian N, Shameli A, Shakeri M, Fahmidehkar MA, Mahajer E (2005) Determination of interleukin-6 and tumor necrosis factor-alpha concentrations in Iranian-Khorasanian patients with preeclampsia. BMC Pregnancy and Childbirth 5:14CrossRefGoogle Scholar
  96. 96.
    Greer IA, Lyall F, Perera T, Boswell F, Macara LM (1994) Increased concentrations of cytokines interleukin-6 and interleukin-1 receptor antagonist in plasma of women with preeclampsia: a mechanism for endothelial dysfunction? Obstet Gynaecol 84:937–940Google Scholar
  97. 97.
    Weel IC, Baergen RN, Romão-Veiga M, Borges VT, Ribeiro VR, Witkin SS et al (2016) Association between placental lesions, cytokines and angiogenic factors in pregnant women with preeclampsia. PLoS One 11:e0157584. doi: 10.1371/journal.pone.0157584 eCollection 2016PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Gomaa MF, Naguib AH, Swedan KH, Abdellatif SS (2015) Serum tumor necrosis factor-α level and uterine artery Doppler indices at 11-13 weeks’ gestation for preeclampsia screening in low-risk pregnancies: a prospective observational study. J Reprod Immunol 109:31–34PubMedCrossRefGoogle Scholar
  99. 99.
    E Holanda-Moura SB, Park F, Murthi P, Martins WP, Kane SC, Williams P et al (2016) TNF-R1 as a first trimester marker for prediction of pre-eclampsia. J Matern Fetal Neonatal Med 29:897–903PubMedCrossRefGoogle Scholar
  100. 100.
    Xu B, Nakhla S, Makris A, Hennessy A (2011) TNF-α inhibits trophoblast integration into endothelial cellular networks. Placenta 32:241–246PubMedCrossRefGoogle Scholar
  101. 101.
    Vargas-Rojas MI, Solleiro-Villavicencio H, Soto-Vega E (2016) Th1, Th2, Th17 and Treg levels in umbilical cord blood in preeclampsia. J Matern Fetal Neonatal Med 29:1642–1645PubMedCrossRefGoogle Scholar
  102. 102.
    Savaj S, Vaziri D (2012) An overview of recent advances in pathogenesis and diagnosis of preeclampsia. Kidney Dis 6:334–338Google Scholar
  103. 103.
    Karumanchi SA (2016) Angiogenic factors in preeclampsia from diagnosis to therapy. Hypertension 67Google Scholar
  104. 104.
    Sasser JM, Murphy SR, Granger JP (2015) Emerging drugs for preeclampsia—the endothelium as a target. Exp Opin Emerg Drugs 20:527–530CrossRefGoogle Scholar
  105. 105.
    Mekinian A, Cohen J, Alijotas-Reig J, Carbillon L, Nicaise-Roland P, Kayem G et al (2016) Unexplained recurrent miscarriage and recurrent implantation failure: is there a place for immunomodulation? Am J Reprod Immunol 76:8–28PubMedCrossRefGoogle Scholar
  106. 106.
    Hu B, Yang J, Huang Q, Bao J, Brennecke SP, Liu H (2016) Cyclosporin a significantly improves preeclampsia signs and suppresses inflammation in a rat model. Cytokine 81:77–81PubMedCrossRefGoogle Scholar
  107. 107.
    Qian L, Wang H, Wu F, Li M, Chen W, Lianzheng LV (2015) Vitamin D3 alters Toll-like receptor 4 signaling in monocytes of pregnant women at risk for preeclampsia. Int J Clin Exp Med 8:1888041–1888049Google Scholar
  108. 108.
    Murphy SR, LaMarca BB, Parrish M, Cockrell K, Granger JP (2013) Control of soluble fms-like tyrosine-1 (sFlt-1) production response to placental ischemia/hypoxia: role of tumor necrosis factor-α. Am J Physiol Regul Integr Comp Physiol 304:R130–R135PubMedCrossRefGoogle Scholar
  109. 109.
    Gutkowska J, Granger JP, Lamarca BB, Danalache BA, Wang D, Jankowski M (2011) Changes in cardiac structure in hypertension produced by placental ischemia in pregnant rats: effect of tumor necrosis factor blockade. J Hypertens 29:1203–1212PubMedCrossRefGoogle Scholar
  110. 110.
    Verstappen SM, King Y, Watson KD, Symmons DP, Hyrich K, BSRBR control centre consortium, BSR biologics Register (2011) Anti-TNF therapies and pregnancy: outcome of 130 pregnancies in the British Society for Rheumatology Biologics Register. Ann Rheum Dis 70:823–826PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Nielsen OH, Loftus EV, Jess T (2013) Safety of TNF-α inhibitors during IBD pregnancy: a systematic review. BMC Med 11:174–179PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Cooper WO, Cheetham TC, De-Kun L, Stein M, Callahan ST, Morgan TM et al (2014) Adverse foetal outcomes associated with immunosuppressive medications for chronic immune mediated diseases in pregnancy. Arthritis Rheumatol 66:444–450PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Diav-Citrin O, Otcheretianski-Volodarsky A, Shechtman S, Ornoy A (2014) Pregnancy outcome following gestational exposure to TNF-alpha-inhibitors: a prospective, comparative, observational study. Reprod Toxicol 43:78–84PubMedCrossRefGoogle Scholar
  114. 114.
    Mahadevan U, Martin CF, Sandler RS, Kane SV, Dubinsky M, Lewis JD (2012) PIANO: a 1,000-patient prospective registry of pregnancy outcomes in women with IBD exposed to immunomodulators and biologic therapy. Gastroenterol Hepatol 8(suppl 5):14–15Google Scholar
  115. 115.
    Hyrich KL, Verstappen SM (2014) Biologic therapies and pregnancy: the story so far. Rheumatology 53:1377–1385PubMedCrossRefGoogle Scholar
  116. 116.
    Förger F, Villiger PM (2016) Treatment of rheumatoid arthritis during pregnancy: present and future. Expert Rev Clin Immunol 12:937–944PubMedCrossRefGoogle Scholar
  117. 117.
    Cimaz R, Meregalli E, Biggioggero M, Borghi A, Tincani M, Motta M et al (2004) Alterations in the immune system of children from mothers treated with immunosuppressive agents during pregnancy. Toxicil Lett 149:155–162CrossRefGoogle Scholar
  118. 118.
    Sands K, Jansen R, Zaslau S, Greenwald D (2015) The safety of therapeutic drugs in male inflammatory bowel disease patients wishing to conceive. Aliment Pharmacol Ther. doi: 10.1111/apt.13142 Google Scholar
  119. 119.
    European Medicines Agencie (2015) CIMZIA (certulizumab pegol) EMA summary of product characteristics. Available from :www.emea.europa.eu/docs/en_GB/docuement_library/EPAR__Product_Information/human/001037/WC500069763.pdf. (Accesed 22 Sep 2015).
  120. 120.
    Villiger PM, Caliezi G, Cottin V, Senn A, Østensen M (2010) Effects of TNF antagonists on sperm characteristics in patients with spondiloarthritis. Ann Rheum Dis 69:1842–1844PubMedCrossRefGoogle Scholar
  121. 121.
    Begg EJ, Atkitson HC, Duffull SB (1992) Prospective evaluation of a model for the prediction of milk: plasma drug concentration from physicochemical characteristics. Br J Pharmacol 33:501–505CrossRefGoogle Scholar
  122. 122.
    Kane S, Ford J, Cohen R, Wagner C (2009) Absence of infliximab in infants and breast milk from nursing mothers receiving therapy for Crohn’s disease before and after delivery. J Clin Gastroenterol 43:613–616PubMedCrossRefGoogle Scholar
  123. 123.
    Ben-Horin S, Yavzori M, Kopylov U, Picard O, Fudim E, Eliakin R et al (2011) Detection of infliximab in Brest milk or nursing mothers with inflammatory bowel disease. J Crohns Cloitis 5:555–558CrossRefGoogle Scholar
  124. 124.
    Keeling S, Wolbink GJ (2010) Measuring multiple etanercept levels in the breast milk of a nursing mother with rheumatoid arthritis [letter]. J Rheumatol 37:1551PubMedCrossRefGoogle Scholar
  125. 125.
    Berthelsen BG, Fjeldsoe-Nielsen H, Nielsen CT, Hellmuth E (2010) Etanercept concentrations in maternal serum, umbilical cord serum, breast milk and child serum during breastfeeding. Rheumatology 49:2225–2227PubMedCrossRefGoogle Scholar
  126. 126.
    Ben-Horin S, Yavzori M, Katz L, Picard O, Fudim E, Chowers Y et al (2010) Adalimumab levels in breast milk of a nursing mother. Clin Gastroenterol Hepatol 8:475–476PubMedCrossRefGoogle Scholar
  127. 127.
    Broussard CS, Frey MT, Hernandez-Diaz S, Green MF, Chambers CD, Sahin L et al (2014) Developing a systematic approach to safer medication use during pregnancy: summary of a centers for disease control and prevention-convened meeting. Am J Obstet Gynecol 211:208–214PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    O’Shea JJ, Plenge R (2012) JAK and STAT signaling molecules in immunoregulation and immune-mediated disease. Immunity 36:542–550PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    O’Shea JJ, Husa M, Li D, Hofmann SR, Watford W, Roberts JL et al (2004) Jak3 and the pathogenesis of severe combined immunodeficiency. Mol Immunol 41:727–737PubMedCrossRefGoogle Scholar
  130. 130.
    Russell SM, Tayebi N, Nakajima H, Riedy MC, Roberts JL, Aman MJ et al (1995) Mutation of Jak3 in a patient with SCID: essential role of Jak3 in lymphoid development. Science 270:797–800PubMedCrossRefGoogle Scholar
  131. 131.
    Kontzias A, Kotlyar A, Laurence A, Changelian P, O’Shea JJ (2012) Jakinibs: a new class of kinase inhibitors in cancer and autoimmune disease. Curr Opin Pharmacol 12:464–470PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Markopoulou A, Kyttaris VC (2013) Small molecules in the treatment of systemic lupus erythematosus. Clin Immunol 148:359–368PubMedCrossRefGoogle Scholar
  133. 133.
    Furumoto Y, Smith CK, Blanco L, Zhao W, Brooks SR, Thacker SG et al (2016) Tofacitinib ameliorates murine lupus and its associated vascular dysfunction. Arthritis Rheumatol. doi: 10.1002/art.39818 Google Scholar
  134. 134.
    Yokoyama S, Perera PY, Terawaki S, Watanabe N, Kaminuma O, Waldmann TA et al (2015) Janus kinase inhibitor tofacitinib shows potent efficacy in a mouse model of autoimmune lymphoproliferative syndrome (ALPS). J Clin Immunol 35:661–667PubMedCrossRefGoogle Scholar
  135. 135.
    Miscia S, Marchisio M, Grilli A, Di Valerio V, Centurione L, Sabatino G (2002) Tumor necrosis factor alpha (TNF-alpha) activates Jak1/Stat3-Stat5B signaling through TNFR-1 in human B cells. Cell Growth Differ 13:13–18PubMedGoogle Scholar
  136. 136.
    Taylor DD, Bohler HC, Gercel-Taylor C (2006) Pregnancy-linked suppression of TcR signaling pathways by a circulating factor absent in recurrent spontaneous pregnancy loss. Mol Immunol 43:1872–1880PubMedCrossRefGoogle Scholar
  137. 137.
    von Versen-Höynck FI, Rajakumar A, Parrott MS, Powera RW (2009) Leptin affects system A amino acid transport activity in the human placenta: evidence for STAT3 dependent mechanisms. Placenta 30:361–367Google Scholar
  138. 138.
    Pesu M, Laurence A, Kishore N, Zwillich SH, Chan G, O’Shea JJ (2008) Therapeutic targeting of Janus kinases. Immunolo Rev 223:132–142CrossRefGoogle Scholar
  139. 139.
    Henriques C (2016) AbbVie launches phase 3 trial for rheumatoid arthritis. Rheumatoid Arthritis News. BioNews Services, LLC. Retrieved 16 July 2016Google Scholar
  140. 140.
    Cai J, Li M, Huang Q, Fu X, Wu H (2016) Differences in cytokine expression and STAT3 activation between healthy controls and patients of unexplained recurrent spontaneous abortion (URSA) during early pregnancy. PLoS One 11:e0163252PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Gathiram P, Moodley J (2016) Pre-eclampsia: its pathogenesis and pathophysiology. Cardiovasc J Afr 27:71–78PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Liang Z, Zhu J, Wang Y, Wang Y, Zhang Y, Lin J, Di W (2014) Three transcription factors and the way immune cells affected by different plasma change in opposite ways in the development of the syndrome of pre-eclampsia. Chin Med J 127:2252–2258PubMedGoogle Scholar
  143. 143.
    Ferreira DG, Cavalhieri LT, Ventura AC, Aires FT, Garcia JM, Mesquita MR et al (2012l) The role of the JAK-STAT pathways and SOCS in preeclampsia. Pregnancy Hypertens 2:338–339PubMedGoogle Scholar
  144. 144.
    Cheng SB, Sharma S (2015) Interleukin-10: a pleiotropic regulator in pregnancy. Am J Reoprod Immunol 73:487–500CrossRefGoogle Scholar
  145. 145.
    Yin N, Zhang H, Luo X, Ding Y, Xiao X, Liu X et al (2014) IL-27 activates human trophoblasts to express IP-10 and IL-6: implications in the immunopathophysiology of preeclampsia. Mediat Inflamm 2014:926875CrossRefGoogle Scholar
  146. 146.
    Eastabrook GD, Hu Y, Tan R, Dutz JP, Maccalman CD, von Dadelszen P (2012) Decidual NK cell-derived conditioned medium (dNK-CM) mediates VEGF-C secretion in extravillous cytotrophoblasts. Am J Reprod Immunol 67:101–111PubMedCrossRefGoogle Scholar
  147. 147.
    Ernst M, Inglese M, Waring P, Campbell IK, Bao S, Caly FJ (2001) Defective gp130-mediated signal transducer and activator of transcription (STAT) signaling results in degenerative joint disease, gastrointestinal ulceration, and failure of uterine implantation. J Exp Med 194:189–203PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Nakamura H, Kimura T, Koyama S, Ogita K, Tsutsui T, Shimoya T et al (2006) Mouse model of human infertility: transient and local inhibition of endometrial STAT-3 activation results in implantation failure. FEBS Lett 580:2717–2722PubMedCrossRefGoogle Scholar
  149. 149.
    Albaghdadi AJH, Kan FWK (2012) Endometrial receptivity defects and impaired implantation in diabetic NOD mice. Biol Reprod 87:30. doi: 10.1095/biolprepod.112.100016 PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Sun X, Bartos A, Whitsett JA, Dey SK (2013) Uterine deletion of gp130 or STAST3 shows implantation failure with increased estrogenic responses. Mol Endocrinol 27:1492–1501PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Choi Y, Kim HR, Lim EJ, Park M, Yoon JA, Kim YS et al (2016) Integrative analyses of uterine transcriptome and MicroRNAome reveal compromised LIF-STAT3 signaling and progesterone response in the endometrium of patients with recurrent/repeated implantation failure (RIF). PLoS One 11:e0157696PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    D’Ippolito S, Marana R, Di Nicuolo F, Castellani R, Veglia M, Stinson J et al (2012) Effect of low molecular weight heparins (LMWHs) on antiphospholipid antibodies (aPL)-mediated inhibition of endometrial angiogenesis. PLoS One 7:e29660PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Jaume Alijotas-Reig
    • 1
    • 2
    Email author
  • Enrique Esteve-Valverde
    • 3
  • Raquel Ferrer-Oliveras
    • 4
  • Elisa Llurba
    • 5
    • 6
  • Josep Maria Gris
    • 7
  1. 1.Systemic Autoimmune Diseases Unit, Department of Internal Medicine-1Vall d’Hebron University HospitalBarcelonaSpain
  2. 2.Department of Medicine, Faculty of MedicineUniversitat Autònoma de BarcelonaBarcelonaSpain
  3. 3.Department of Internal MedicineAlthaia Network HealthManresaSpain
  4. 4.Obstetric High Risk Unit, Obstetric DepartmentVall d’Hebron University Hospital, Universitat Autònoma de BarcelonaBarcelonaSpain
  5. 5.Obstetric High Risk Unit, Obstetric DepartmentVall d’Hebron University HospitalBarcelonaSpain
  6. 6.Pediatric, Obstetric and Gynecology DepartmentUniversitat Autònoma de BarcelonaBarcelonaSpain
  7. 7.Reproductive Medicine Unit, Obstetric DepartmentVall d’Hebron University Hospital, Universitat Autònoma de BarcelonaBarcelonaSpain

Personalised recommendations