Advertisement

Clinical Reviews in Allergy & Immunology

, Volume 51, Issue 3, pp 263–292 | Cite as

Mediators of Chronic Pruritus in Atopic Dermatitis: Getting the Itch Out?

  • Nicholas K. Mollanazar
  • Peter K. Smith
  • Gil Yosipovitch
Article

Abstract

For centuries, itch was categorized as a submodality of pain. Recent research over the last decade has led to the realization that itch is in fact a separate and distinct, albeit closely related, sensation. Chronic itch is a common complaint and has numerous etiologies. Various receptors (TRPA1, TRPV1, PAR2, gastrin-releasing peptide receptor (GRPR), Mas-related G proteins), secreted molecules (histamine, nerve growth factor (NGF), substance P (SP), proteases), and cytokines/chemokines (thymic stromal lymphopoietin (TSLP), IL-2, IL-4, IL-13, and IL-31) are implicated as mediators of chronic pruritus. While much remains unknown regarding the mechanisms of chronic itch, this much is certain: there is no singular cause of itch. Rather, itch is caused by a complex interface between skin, keratinocytes, cutaneous nerve fibers, pruritogenic molecules, and the peripheral and central nervous systems. Atopic dermatitis is one of the most itchy skin dermatoses and affects millions worldwide. The sensation of atopic itch is mediated by the interplay between epidermal barrier dysfunction, upregulated immune cascades, and the activation of structures in the central nervous system. Clinicians are in possession of an arsenal of different treatment options ranging from moisturizers, topical immunomodulators, topical anesthetic ion channel inhibitors, systemic immunomodulators, as well as oral drugs capable of reducing neural hypersensitization. Emerging targeted therapies on the horizon, such as dupilumab, promise to usher in a new era of highly specific and efficacious treatments. Alternative medicine, stress reduction techniques, and patient education are also important treatment modalities. This review will focus on the mediators of chronic pruritus mainly associated with atopic dermatitis (atopic itch), as well as numerous different therapeutic options.

Keywords

Atopic dermatitis Chronic pruritus Barrier disruption Nonhistaminergic itch Neural hypersensitization Neuropeptides Pruritus receptor unit Alternative itch therapies Immunomodulators Patient education 

Notes

Financial Disclosures

The authors have no financial relationships relevant to this article to disclose.

Conflict of Interest

GY is a member of the scientific advisory board of Cosmoderm, TREVI, Creabilis, Velocity, Celgene, Eli Lilly, and Pfizer. NM and PS have no conflicts of interest relevant to this article to disclose.

References

  1. 1.
    Dalgard F, Svensson A, Holm JO, Sundby J (2004) Self-reported skin morbidity among adults: associations with quality of life and general health in a Norwegian survey. J Investig Dermatol Symp Proc 9:120–125PubMedCrossRefGoogle Scholar
  2. 2.
    Matterne U, Strassner T, Apfelbacher CJ, Diepgen TL, Weisshaar E (2009) Measuring the prevalence of chronic itch in the general population: development and validation of a questionnaire for use in large-scale studies. Acta Derm Venereol 89:250–256PubMedCrossRefGoogle Scholar
  3. 3.
    Mollanazar NK, Koch SD, Yosipovitch G (2015) Epidemiology of chronic pruritus: where have we been and where are we going? Curr Dermatol Rep 4(1):20–29CrossRefGoogle Scholar
  4. 4.
    Boguniewicz M (2005) Atopic dermatitis: beyond the itch that rashes. Immunol Allergy Clin North Am 25:333–351PubMedCrossRefGoogle Scholar
  5. 5.
    Dawn A, Papoiu AD, Chan YH, Rapp SR, Rassette N, Yosipovitch G (2009) Itch characteristics in atopic dermatitis: results of a web-based questionnaire. Br J Dermatol 160:642–644PubMedCrossRefGoogle Scholar
  6. 6.
    Yosipovitch G, Ansari N, Goon A, Chan YH, Goh CL (2002) Clinical characteristics of pruritus in chronic idiopathic urticaria. Br J Dermatol 147:32–36PubMedCrossRefGoogle Scholar
  7. 7.
    Yosipovitch G, Papoiu AD (2008) What causes itch in atopic dermatitis? Curr Allergy Asthma Rep 8:306–311PubMedCrossRefGoogle Scholar
  8. 8.
    Papoiu AD, Coghill RC, Kraft RA, Wang H, Yosipovitch G (2012) A tale of two itches. Common features and notable differences in brain activation evoked by cowhage and histamine induced itch. Neuroimage 59:3611–3623PubMedCrossRefGoogle Scholar
  9. 9.
    Davidson S, Zhang X, Yoon CH, Khasabov SG, Simone DA, Giesler GJ Jr (2007) The itch-producing agents histamine and cowhage activate separate populations of primate spinothalamic tract neurons. J Neurosci 27:10007–10014PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Davidson S, Zhang X, Khasabov SG, Simone DA, Giesler GJ Jr (2009) Relief of itch by scratching: state-dependent inhibition of primate spinothalamic tract neurons. Nat Neurosci 12:544–546PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Han L, Dong X (2014) Itch mechanisms and circuits. Annu Rev Biophys 43:331–355PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Reilly DM, Ferdinando D, Johnston C (1997) The epidermal nerve fibre network: characterization of nerve fibres in human skin by confocal microscopy and assessment of racial variations. Br J Dermatol 137:163–170PubMedCrossRefGoogle Scholar
  13. 13.
    Hendrix S, Picker B, Liezmann C (2008) Skin and hair follicle innervation in experimental models: a guide for the exact and reproducible evaluation of neuronal plasticity. Exp Dermatol 17:214–227PubMedCrossRefGoogle Scholar
  14. 14.
    Hilarp NA (1959) The construction and functional organization of the autonomic innervation apparatus. Acta Physiol Scand Suppl 46:1–21Google Scholar
  15. 15.
    Hosoi J, Murphy GF, Egan CL (1993) Regulation of Langerhans cell function by nerves containing calcitonin gene-related peptide. Nature 363:159–163PubMedCrossRefGoogle Scholar
  16. 16.
    Botchkarev VA, Eichmuller S, Peters EM (1997) A simple immunofluorescence technique for simultaneous visualization of mast cells and nerve fibers reveals selectivity and hair cycle-dependent changes in mast cell–nerve fiber contacts in murine skin. Arch Dermatol Res 289:292–302PubMedCrossRefGoogle Scholar
  17. 17.
    Peters EM, Ericson ME, Hosoi J (2006) Neuropeptide control mechanisms in cutaneous biology: physiological and clinical significance. J Invest Dermatol 126:1937–1947PubMedCrossRefGoogle Scholar
  18. 18.
    Simone DA, Zhang X, Li J, Zhang JM, Honda CN, LaMotte RH et al (2004) Comparison of responses of primate spinothalamic tract neurons to pruritic and algogenic stimuli. J Neurophysiol 91:213–222PubMedCrossRefGoogle Scholar
  19. 19.
    Andrew D, Craig AD (2001) Spinothalamic lamina I neurons selectively sensitive to histamine: a central neural pathway for itch. Nat Neurosci 4:72–77PubMedCrossRefGoogle Scholar
  20. 20.
    Sweet WH, White JC, Hawkins R, Nilges RG (1950) Anterolateral cordotomy: results, complications and causes of failure. Brain 73:346–367PubMedCrossRefGoogle Scholar
  21. 21.
    Nathan PW (1990) Touch and surgical division of the anterior quadrant of the spinal cord. J Neurol Neurosurg Psychiatry 53:935–939PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Potenzieri C, Undem BJ (2012) Basic mechanisms of itch. Clin Exp Allergy 42:8–19PubMedCrossRefGoogle Scholar
  23. 23.
    Papoiu AD, Kraft RA, Coghill RC, Yosipovitch G (2015) Butorphanol suppression of histamine itch is mediated by nucleus accumbens and septal nuclei: a pharmacological fMRI study. J Invest Dermatol 135(2):560–568PubMedCrossRefGoogle Scholar
  24. 24.
    Papoiu AD, Emerson NM, Patel TS, Kraft RA, Valdes-Rodriguez R, Nattkemper LA et al (2014) Voxel-based morphometry and arterial spin labeling fMRI reveal neuropathic and neuroplastic features of brain processing of itch in end-stage renal disease. J Neurophysiol 112:1729–1738PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Namer B, Carr R, Johanek LM, Schmelz M, Handwerker HO, Ringkamp M (2008) Separate peripheral pathways for pruritus in man. J Neurophysiol 100:2062–2069PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Orn P (1998) A currently developed method of measurement. A discovery of specific nerve fibers explains the way of itching through the body. Lakartidningen 95:2666–2667PubMedGoogle Scholar
  27. 27.
    Schmelz M, Schmidt R, Bickel A, Handwerker HO, Torebjork HE (1997) Specific C-receptors for itch in human skin. J Neurosci 17:8003–8008PubMedGoogle Scholar
  28. 28.
    Schmelz M, Schmidt R, Weidner C, Hilliges M, Torebjork HE, Handwerker HO (2003) Chemical response pattern of different classes of C-nociceptors to pruritogens and algogens. J Neurophysiol 89:2441–2448PubMedCrossRefGoogle Scholar
  29. 29.
    Palmer CN, Irvine AD, Terron-Kwiatkowski A, Zhao Y, Liao H, Lee SP et al (2006) Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis. Nat Genet 38:441–446PubMedCrossRefGoogle Scholar
  30. 30.
    Loden M (2003) Role of topical emollients and moisturizers in the treatment of dry skin barrier disorders. Am J Clin Dermatol 4:771–788PubMedCrossRefGoogle Scholar
  31. 31.
    Loden M (2012) Effect of moisturizers on epidermal barrier function. Clin Dermatol 30:286–296PubMedCrossRefGoogle Scholar
  32. 32.
    Lee CH, Chuang HY, Shih CC, Jong SB, Chang CH, Yu HS (2006) Transepidermal water loss, serum IgE and beta-endorphin as important and independent biological markers for development of itch intensity in atopic dermatitis. Br J Dermatol 154:1100–1107PubMedCrossRefGoogle Scholar
  33. 33.
    Yosipovitch G, Xiong GL, Haus E, Sackett-Lundeen L, Ashkenazi I, Maibach HI (1998) Time-dependent variations of the skin barrier function in humans: transepidermal water loss, stratum corneum hydration, skin surface pH, and skin temperature. J Invest Dermatol 110:20–23PubMedCrossRefGoogle Scholar
  34. 34.
    Ny A, Egelrud T (2004) Epidermal hyperproliferation and decreased skin barrier function in mice overexpressing stratum corneum chymotryptic enzyme. Acta Dermatol Venereol 84:18–22CrossRefGoogle Scholar
  35. 35.
    Wavrin S, Bernard H, Wal JM, Adel-Patient K (2014) Cutaneous or respiratory exposures to peanut allergens in mice and their impacts on subsequent oral exposure. Int Arch Allergy Immunol 164:189–199PubMedCrossRefGoogle Scholar
  36. 36.
    Brough HA, Liu AH, Sicherer S, Makinson K, Douiri A, Brown SJ et al (2015) Atopic dermatitis increases the effect of exposure to peanut antigen in dust on peanut sensitization and likely peanut allergy. J Allergy Clin Immunol 135(1):164–170PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Noti M, Kim BS, Siracusa MC, Rak GD, Kubo M, Moghaddam AE et al (2014) Exposure to food allergens through inflamed skin promotes intestinal food allergy through the thymic stromal lymphopoietin-basophil axis. J Allergy Clin Immunol 133:1390–9–1399.e1-6CrossRefGoogle Scholar
  38. 38.
    Yosipovitch G (2007) The pruritus receptor unit: a target for novel therapies. J Invest Dermatol 127:1857–1859PubMedCrossRefGoogle Scholar
  39. 39.
    McNeil B, Dong X (2014) Mrgprs as itch receptors. In: Carstens E, Akiyama T (eds) Itch: mechanisms and treatment. Taylor & Francis Group, Boca RatonGoogle Scholar
  40. 40.
    Dong X, Han S, Zylka MJ, Simon MI, Anderson DJ (2001) A diverse family of GPCRs expressed in specific subsets of nociceptive sensory neurons. Cell 106:619–632PubMedCrossRefGoogle Scholar
  41. 41.
    McNeil B, Dong X (2012) Peripheral mechanisms of itch. Neurosci Bull 28:100–110PubMedCrossRefGoogle Scholar
  42. 42.
    Zylka MJ, Dong X, Southwell AL, Anderson DJ (2003) Atypical expansion in mice of the sensory neuron-specific Mrg G protein-coupled receptor family. Proc Natl Acad Sci U S A 100:10043–10048PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Liu Q, Tang Z, Surdenikova L, Kim S, Patel KN, Kim A et al (2009) Sensory neuron-specific GPCR Mrgprs are itch receptors mediating chloroquine-induced pruritus. Cell 139:1353–1365PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Lembo PM, Grazzini E, Groblewski T, O’Donnell D, Roy MO, Zhang J et al (2002) Proenkephalin A gene products activate a new family of sensory neuron-specific GPCRs. Nat Neurosci 5:201–209PubMedCrossRefGoogle Scholar
  45. 45.
    Sikand P, Dong X, LaMotte RH (2011) BAM8-22 peptide produces itch and nociceptive sensations in humans independent of histamine release. J Neurosci 31:7563–7567PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Han L, Ma C, Liu Q, Weng HJ, Cui Y, Tang Z et al (2013) A subpopulation of nociceptors specifically linked to itch. Nat Neurosci 16:174–182PubMedCrossRefGoogle Scholar
  47. 47.
    Finger S, Wade NJ (2002) The neuroscience of Helmholtz and the theories of Johannes Muller. Part 2: sensation and perception. J Hist Neurosci 11:234–254PubMedCrossRefGoogle Scholar
  48. 48.
    Vergnolle N, Ferazzini M, D’Andrea MR, Buddenkotte J, Steinhoff M (2003) Proteinase-activated receptors: novel signals for peripheral nerves. Trends Neurosci 26:496–500PubMedCrossRefGoogle Scholar
  49. 49.
    Reddy VB, Iuga AO, Shimada SG, LaMotte RH, Lerner EA (2008) Cowhage-evoked itch is mediated by a novel cysteine protease: a ligand of protease-activated receptors. J Neurosci 28:4331–4335PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Reddy VB, Shimada SG, Sikand P, Lamotte RH, Lerner EA (2010) Cathepsin S elicits itch and signals via protease-activated receptors. J Invest Dermatol 130:1468–1470PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Soh UJ, Dores MR, Chen B, Trejo J (2010) Signal transduction by protease-activated receptors. Br J Pharmacol 160:191–203PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Steinhoff M, Bienenstock J, Schmelz M, Maurer M, Wei E, Biro T (2006) Neurophysiological, neuroimmunological, and neuroendocrine basis of pruritus. J Invest Dermatol 126:1705–1718PubMedCrossRefGoogle Scholar
  53. 53.
    Steinhoff M, Neisius U, Ikoma A, Fartasch M, Heyer G, Skov PS (2003) Proteinase-activated receptor-2 mediates itch: a novel pathway for pruritus in human skin. J Neurosci 23:6176–6180PubMedGoogle Scholar
  54. 54.
    Buddenkotte J, Stroh C, Engels IH, Moormann C, Shpacovitch VM, Seeliger S (2005) Agonists of proteinase-activated receptor-2 stimulate upregulation of intercellular cell adhesion molecule-1 in primary human keratinocytes via activation of NF-kappa B. J Invest Dermatol 124:38–45PubMedCrossRefGoogle Scholar
  55. 55.
    Minke B, Cook B (2002) TRP channel proteins and signal transduction. Physiol Rev 82:429–472PubMedCrossRefGoogle Scholar
  56. 56.
    Moran MM, McAlexander MA, Biro T, Szallasi A (2011) Transient receptor potential channels as therapeutic targets. Nat Rev Drug Discov 10:601–620PubMedCrossRefGoogle Scholar
  57. 57.
    Valdes-Rodriguez R, Kaushik SB, Yosipovitch G (2013) Transient receptor potential channels and dermatological disorders. Curr Top Med Chem 13:335–343PubMedCrossRefGoogle Scholar
  58. 58.
    Stander S, Moormann C, Schumacher M, Buddenkotte J, Artuc M, Shpacovitch V et al (2004) Expression of vanilloid receptor subtype 1 in cutaneous sensory nerve fibers, mast cells, and epithelial cells of appendage structures. Exp Dermatol 13:129–139PubMedCrossRefGoogle Scholar
  59. 59.
    Shim WS, Tak MH, Lee MH, Kim M, Kim M, Koo JY et al (2007) TRPV1 mediates histamine-induced itching via the activation of phospholipase A2 and 12-lipoxygenase. J Neurosci 27:2331–2337PubMedCrossRefGoogle Scholar
  60. 60.
    Wilson SR, Gerhold KA, Bifolck-Fisher A, Liu Q, Patel KN, Dong X et al (2011) TRPA1 is required for histamine-independent, Mas-related G protein-coupled receptor-mediated itch. Nat Neurosci 14:595–602PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Smart D, Gunthorpe MJ, Jerman JC, Nasir S, Gray J, Muir AI et al (2000) The endogenous lipid anandamide is a full agonist at the human vanilloid receptor (hVR1). Br J Pharmacol 129:227–230PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Caterina MJ, Julius D (2001) The vanilloid receptor: a molecular gateway to the pain pathway. Annu Rev Neurosci 24:487–517PubMedCrossRefGoogle Scholar
  63. 63.
    Sulk M, Seeliger S, Aubert J, Schwab VD, Cevikbas F, Rivier M et al (2012) Distribution and expression of non-neuronal transient receptor potential (TRPV) ion channels in rosacea. J Invest Dermatol 132:1253–1262PubMedCrossRefGoogle Scholar
  64. 64.
    Xiao B, Patapoutian A (2011) Scratching the surface: a role of pain-sensing TRPA1 in itch. Nat Neurosci 14:540–542PubMedCrossRefGoogle Scholar
  65. 65.
    Aubdool AA, Brain SD (2011) Neurovascular aspects of skin neurogenic inflammation. J Invest Derm Symp P 15:33–39CrossRefGoogle Scholar
  66. 66.
    Hutter MM, Wick EC, Day AL, Maa J, Zerega EC, Richmond AC et al (2005) Transient receptor potential vanilloid (TRPV-1) promotes neurogenic inflammation in the pancreas via activation of the neurokinin-1 receptor (NK-1R). Pancreas 30:260–265PubMedCrossRefGoogle Scholar
  67. 67.
    Gibson RA, Robertson J, Mistry H, McCallum S, Fernando D, Wyres M et al (2014) A randomised trial evaluating the effects of the TRPV1 antagonist SB705498 on pruritus induced by histamine, and cowhage challenge in healthy volunteers. PLoS One 9, e100610PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Atoyan R, Shander D, Botchkareva NV (2009) Non-neuronal expression of transient receptor potential type A1 (TRPA1) in human skin. J Invest Dermatol 129:2312–2315PubMedCrossRefGoogle Scholar
  69. 69.
    Kwan KY, Glazer JM, Corey DP, Rice FL, Stucky CL (2009) TRPA1 modulates mechanotransduction in cutaneous sensory neurons. J Neurosci 29:4808–4819PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Toth BI, Olah A, Szollosi AG, Biro T (2014) TRP channels in the skin. Br J Pharmacol 171:2568–2581PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Oh MH, Oh SY, Lu J, Lou H, Myers AC, Zhu Z et al (2013) TRPA1-dependent pruritus in IL-13-induced chronic atopic dermatitis. J Immunol 191:5371–5382PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Costa R, Marotta DM, Manjavachi MN, Fernandes ES, Lima-Garcia JF, Paszcuk AF et al (2008) Evidence for the role of neurogenic inflammation components in trypsin-elicited scratching behaviour in mice. Br J Pharmacol 154:1094–1103PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Wilson SR, Nelson AM, Batia L, Morita T, Estandian D, Owens DM et al (2013) The ion channel TRPA1 is required for chronic itch. J Neurosci 33:9283–9294PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Denda M, Tsutsumi M, Goto M, Ikeyama K, Denda S (2010) Topical application of TRPA1 agonists and brief cold exposure accelerate skin permeability barrier recovery. J Invest Dermatol 130:1942–1945PubMedCrossRefGoogle Scholar
  75. 75.
    McCoy DD, Knowlton WM, McKemy DD (2011) Scraping through the ice: uncovering the role of TRPM8 in cold transduction. Am J Physiol Regul Integr Comp Physiol 300:R1278–R1287PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Denda M, Tsutsumi M (2011) Roles of transient receptor potential proteins (TRPs) in epidermal keratinocytes. Adv Exp Med Biol 704:847–860PubMedCrossRefGoogle Scholar
  77. 77.
    Patel T, Ishiuji Y, Yosipovitch G (2007) Menthol: a refreshing look at this ancient compound. J Am Acad Dermatol 57:873–878PubMedCrossRefGoogle Scholar
  78. 78.
    Frolich M, Enk A, Diepgen TL, Weisshaar E (2009) Successful treatment of therapy-resistant pruritus in lichen amyloidosis with menthol. Acta Derm Venereol 89:524–526PubMedCrossRefGoogle Scholar
  79. 79.
    Han JH, Choi HK, Kim SJ (2012) Topical TRPM8 agonist (icilin) relieved vulva pruritus originating from lichen sclerosus et atrophicus. Acta Derm Venereol 92:561–562PubMedCrossRefGoogle Scholar
  80. 80.
    Denda M, Tsutsumi M, Denda S (2010) Topical application of TRPM8 agonists accelerates skin permeability barrier recovery and reduces epidermal proliferation induced by barrier insult: role of cold-sensitive TRP receptors in epidermal permeability barrier homoeostasis. Exp Dermatol 19:791–795PubMedCrossRefGoogle Scholar
  81. 81.
    Kobayashi K, Fukuoka T, Obata K, Yamanaka H, Dai Y, Tokunaga A et al (2005) Distinct expression of TRPM8, TRPA1, and TRPV1 mRNAs in rat primary afferent neurons with adelta/c-fibers and colocalization with trk receptors. J Comp Neurol 493:596–606PubMedCrossRefGoogle Scholar
  82. 82.
    Ringkamp M, Schepers RJ, Shimada SG, Johanek LM, Hartke TV, Borzan J et al (2011) A role for nociceptive, myelinated nerve fibers in itch sensation. J Neurosci 31:14841–14849PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Obreja O, Ringkamp M, Namer B (2010) Patterns of activity-dependent conduction velocity changes differentiate classes of unmyelinated mechano-insensitive afferents including cold nociceptors, in pig and in human. Pain 148:59–69PubMedCrossRefGoogle Scholar
  84. 84.
    Ikoma A, Steinhoff M, Stander S, Yosipovitch G, Schmelz M (2006) The neurobiology of itch. Nat Rev Neurosci 7:535–547PubMedCrossRefGoogle Scholar
  85. 85.
    Tominaga M, Ozawa S, Tengara S, Ogawa H, Takamori K (2007) Intraepidermal nerve fibers increase in dry skin of acetone-treated mice. J Dermatol Sci 48:103–111PubMedCrossRefGoogle Scholar
  86. 86.
    Tominaga M, Tengara S, Kamo A, Ogawa H, Takamori K (2011) Matrix metalloproteinase-8 is involved in dermal nerve growth: implications for possible application to pruritus from in vitro models. J Invest Dermatol 131:2105–2112PubMedCrossRefGoogle Scholar
  87. 87.
    Kamo A, Tominaga M, Negi O, Tengara S, Ogawa H, Takamori K (2011) Topical application of emollients prevents dry skin-inducible intraepidermal nerve growth in acetone-treated mice. J Dermatol Sci 62:64–66PubMedGoogle Scholar
  88. 88.
    Kinkelin I, Motzing S, Koltenzenburg M, Brocker EB (2000) Increase in NGF content and nerve fiber sprouting in human allergic contact eczema. Cell Tissue Res 302:31–37PubMedCrossRefGoogle Scholar
  89. 89.
    Ishiuji Y, Coghill RC, Patel TS, Oshiro Y, Kraft RA, Yosipovitch G (2009) Distinct patterns of brain activity evoked by histamine-induced itch reveal an association with itch intensity and disease severity in atopic dermatitis. Br J Dermatol 161:1072–1080PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Wahlgren CF, Hagermark O, Bergstrom R (1991) Patients’ perception of itch induced by histamine, compound 48/80 and wool fibres in atopic dermatitis. Acta Derm Venereol 71:488–494PubMedGoogle Scholar
  91. 91.
    Urashima R, Mihara M (1998) Cutaneous nerves in atopic dermatitis. A histological, immunohistochemical and electron microscopic study. Virchows Arch 432:363–370PubMedCrossRefGoogle Scholar
  92. 92.
    Sugiura H, Omoto M, Hirota Y, Danno K, Uehara M (1997) Density and fine structure of peripheral nerves in various skin lesions of atopic dermatitis. Arch Dermatol Res 289:125–131PubMedCrossRefGoogle Scholar
  93. 93.
    Darsow U, Raap U, Stander S (2014) Atopic dermatitis. In: Carstens E, Akiyama T (eds) Itch: mechanisms and treatment. Taylor & Francis Group, Boca RatonGoogle Scholar
  94. 94.
    Liu T, Berta T, Xu ZZ, Park CK, Zhang L, Lu N et al (2012) TLR3 deficiency impairs spinal cord synaptic transmission, central sensitization, and pruritus in mice. J Clin Invest 122:2195–2207PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Dou YC, Hagstromer L, Emtestam L, Johansson O (2006) Increased nerve growth factor and its receptors in atopic dermatitis: an immunohistochemical study. Arch Dermatol Res 298:31–37PubMedCrossRefGoogle Scholar
  96. 96.
    Chen PS, Chen LS, Cao JM, Sharifi B, Karagueuzian HS, Fishbein MC (2001) Sympathetic nerve sprouting, electrical remodeling and the mechanisms of sudden cardiac death. Cardiovasc Res 50:409–416PubMedCrossRefGoogle Scholar
  97. 97.
    Huang EJ, Reichardt LF (2003) Trk receptors: roles in neuronal signal transduction. Annu Rev Biochem 72:609–642PubMedCrossRefGoogle Scholar
  98. 98.
    Rukwied RR, Main M, Weinkauf B, Schmelz M (2013) NGF sensitizes nociceptors for cowhage- but not histamine-induced itch in human skin. J Invest Dermatol 133:268–270PubMedCrossRefGoogle Scholar
  99. 99.
    Lee J, Noh G, Lee S, Youn Y, Rhim J (2012) Atopic dermatitis and cytokines: recent patents in immunoregulatory and therapeutic implications of cytokines in atopic dermatitis—part I: cytokines in atopic dermatitis. Recent Pat Inflamm Allergy Drug Discov 6:222–247PubMedCrossRefGoogle Scholar
  100. 100.
    Auriemma M, Vianale G, Amerio P, Reale M (2013) Cytokines and T cells in atopic dermatitis. Eur Cytokine Netw 24:37–44PubMedGoogle Scholar
  101. 101.
    Wilson SR, The L, Batia LM, Beattie K, Katibah GE, McClain SP et al (2013) The epithelial cell-derived atopic dermatitis cytokine TSLP activates neurons to induce itch. Cell 155:285–295PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Ziegler SF, Roan F, Bell BD, Stoklasek TA, Kitajima M, Han H (2013) The biology of thymic stromal lymphopoietin (TSLP). Adv Pharmacol 66:129–155PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Moniaga CS, Jeong SK, Egawa G, Nakajima S, Hara-Chikuma M, Jeon JE et al (2013) Protease activity enhances production of thymic stromal lymphopoietin and basophil accumulation in flaky tail mice. Am J Pathol 182:841–851PubMedCrossRefGoogle Scholar
  104. 104.
    He R, Geha RS (2010) Thymic stromal lymphopoietin. Ann N Y Acad Sci 1183:13–24PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Locksley RM (2010) Asthma and allergic inflammation. Cell 140:777–783PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Spergel JM, Paller AS (2003) Atopic dermatitis and the atopic march. J Allergy Clin Immunol 112:S118–S127PubMedCrossRefGoogle Scholar
  107. 107.
    Jariwala SP, Abrams E, Benson A, Fodeman J, Zheng T (2011) The role of thymic stromal lymphopoietin in the immunopathogenesis of atopic dermatitis. Clin Exp Allergy 41:1515–1520PubMedCrossRefGoogle Scholar
  108. 108.
    Li M, Messaddeq N, Teletin M, Pasquali JL, Metzger D, Chambon P (2005) Retinoid X receptor ablation in adult mouse keratinocytes generates an atopic dermatitis triggered by thymic stromal lymphopoietin. Proc Natl Acad Sci U S A 102:14795–14800PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Ying S, O’Connor B, Ratoff J, Meng Q, Mallett K, Cousins D et al (2005) Thymic stromal lymphopoietin expression is increased in asthmatic airways and correlates with expression of Th2-attracting chemokines and disease severity. J Immunol 174:8183–8190PubMedCrossRefGoogle Scholar
  110. 110.
    Briot A, Deraison C, Lacroix M, Bonnart C, Robin A, Besson C et al (2009) Kallikrein 5 induces atopic dermatitis-like lesions through PAR2-mediated thymic stromal lymphopoietin expression in Netherton syndrome. J Exp Med 206:1135–1147PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Briot A, Lacroix M, Robin A, Steinhoff M, Deraison C, Hovnanian A (2010) Par2 inactivation inhibits early production of TSLP, but not cutaneous inflammation, in Netherton syndrome adult mouse model. J Invest Dermatol 130:2736–2742PubMedCrossRefGoogle Scholar
  112. 112.
    Hovnanian A (2013) Netherton syndrome: skin inflammation and allergy by loss of protease inhibition. Cell Tissue Res 351:289–300PubMedCrossRefGoogle Scholar
  113. 113.
    Kouzaki H, O’Grady SM, Lawrence CB, Kita H (2009) Proteases induce production of thymic stromal lymphopoietin by airway epithelial cells through protease-activated receptor-2. J Immunol 183:1427–1434PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Gaspari AA, Lotze MT, Rosenberg SA, Stern JB, Katz SI (1987) Dermatologic changes associated with interleukin 2 administration. JAMA 258:1624–1629PubMedCrossRefGoogle Scholar
  115. 115.
    Lee RE, Gaspari AA, Lotze MT, Chang AE, Rosenberg SA (1988) Interleukin 2 and psoriasis. Arch Dermatol 124:1811–1815PubMedCrossRefGoogle Scholar
  116. 116.
    Kremer AE, Feramisco J, Reeh PW, Beuers U, Oude Elferink RP (1842) Receptors, cells and circuits involved in pruritus of systemic disorders. Biochim Biophys Acta 2014:869–892Google Scholar
  117. 117.
    Wahlgren CF, Tengvall Linder M, Hagermark O, Scheynius A (1995) Itch and inflammation induced by intradermally injected interleukin-2 in atopic dermatitis patients and healthy subjects. Arch Dermatol Res 287:572–580PubMedCrossRefGoogle Scholar
  118. 118.
    Wahlgren CF, Scheynius A, Hagermark O (1990) Antipruritic effect of oral cyclosporin A in atopic dermatitis. Acta Derm Venereol 70:323–329PubMedGoogle Scholar
  119. 119.
    Totterman TH, Scheynius A, Killander A, Danersund A, Alm GV (1985) Treatment of therapy-resistant Sezary syndrome with cyclosporin-A: suppression of pruritus, leukaemic T cell activation markers and tumour mass. Scand J Haematol 34:196–203PubMedCrossRefGoogle Scholar
  120. 120.
    Sonkoly E, Muller A, Lauerma AI, Pivarcsi A, Soto H, Kemeny L (2006) IL-31: a new link between T cells and pruritus in atopic skin inflammation. J Allergy Clin Immunol 117:411–417PubMedCrossRefGoogle Scholar
  121. 121.
    Dillon SR, Sprecher C, Hammond A, Bilsborough J, Rosenfeld-Franklin M, Presnell SR (2004) Interleukin 31, a cytokine produced by activated T cells, induces dermatitis in mice. Nat Immunol 5:752–760PubMedCrossRefGoogle Scholar
  122. 122.
    Heise R, Neis MM, Marquardt Y, Joussen S, Heinrich PC, Merk HF et al (2009) IL-31 receptor alpha expression in epidermal keratinocytes is modulated by cell differentiation and interferon gamma. J Invest Dermatol 129:240–243PubMedCrossRefGoogle Scholar
  123. 123.
    Cornelissen C, Marquardt Y, Czaja K (2012) IL-31 regulates differentiation and filaggrin expression in human organotypic skin models. J Allergy Clin Immunol 129:426–433PubMedCrossRefGoogle Scholar
  124. 124.
    Kasraie S, Niebuhr M, Werfel T (2013) Interleukin (IL)-31 activates signal transducer and activator of transcription (STAT)-1, STAT-5 and extracellular signal-regulated kinase 1/2 and down-regulates IL-12p40 production in activated human macrophages. Allergy 68:739–747PubMedCrossRefGoogle Scholar
  125. 125.
    Raap U, Wichmann K, Bruder M, Stander S, Wedi B, Kapp A et al (2008) Correlation of IL-31 serum levels with severity of atopic dermatitis. J Allergy Clin Immunol 122:421–423PubMedCrossRefGoogle Scholar
  126. 126.
    Singer EM, Shin DB, Nattkemper LA, Benoit BM, Klein RS, Didigu CA et al (2013) IL-31 is produced by the malignant T-cell population in cutaneous T-cell lymphoma and correlates with CTCL pruritus. J Invest Dermatol 133(12):2783–2785PubMedCrossRefGoogle Scholar
  127. 127.
    Miyagaki T, Sugaya M, Suga H (2012) Increased CCL18 expression in patients with cutaneous T-cell lymphoma: association with disease severity and prognosis. J Eur Acad Dermatol Venereol 27:e60–e67PubMedCrossRefGoogle Scholar
  128. 128.
    Ohmatsu H, Sugaya M, Suga H (2012) Serum IL-31 levels are increased in patients with cutaneous T-cell lymphoma. Acta Derm Venereol 92:282–283PubMedCrossRefGoogle Scholar
  129. 129.
    Raap U, Wieczorek D, Gehring M, Pauls I, Stander S, Kapp A et al (2010) Increased levels of serum IL-31 in chronic spontaneous urticaria. Exp Dermatol 19:464–466PubMedCrossRefGoogle Scholar
  130. 130.
    Cevikbas F, Wang X, Akiyama T, Kempkes C, Savinko T, Antal A et al (2014) A sensory neuron-expressed IL-31 receptor mediates T helper cell-dependent itch: involvement of TRPV1 and TRPA1. J Allergy Clin Immunol 133:448–460PubMedCrossRefGoogle Scholar
  131. 131.
    Hawro T, Saluja R, Weller K, Altrichter S, Metz M, Maurer M (2014) Interleukin-31 does not induce immediate itch in atopic dermatitis patients and healthy controls after skin challenge. Allergy 69:113–117PubMedCrossRefGoogle Scholar
  132. 132.
    Kato A, Fujii E, Watanabe T, Takashima Y, Matsushita H, Furuhashi T et al (2014) Distribution of IL-31 and its receptor expressing cells in skin of atopic dermatitis. J Dermatol Sci 74:229–235PubMedCrossRefGoogle Scholar
  133. 133.
    Wittmann M, McGonagle D, Werfel T (2014) Cytokines as therapeutic targets in skin inflammation. Cytokine Growth Factor Rev 25:443–451PubMedCrossRefGoogle Scholar
  134. 134.
    Leung DY, Boguniewicz M, Howell MD, Nomura I, Hamid QA (2004) New insights into atopic dermatitis. J Clin Invest 113:651–657PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Hamid Q, Boguniewicz M, Leung DY (1994) Differential in situ cytokine gene expression in acute versus chronic atopic dermatitis. J Clin Invest 94:870–876PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Simon D, Braathen LR, Simon HU (2004) Eosinophils and atopic dermatitis. Allergy 59:561–570PubMedCrossRefGoogle Scholar
  137. 137.
    Chan LS, Robinson N, Xu L (2001) Expression of interleukin-4 in the epidermis of transgenic mice results in a pruritic inflammatory skin disease: an experimental animal model to study atopic dermatitis. J Invest Dermatol 117:977–983PubMedCrossRefGoogle Scholar
  138. 138.
    Zheng T, Oh MH, Oh SY, Schroeder JT, Glick AB, Zhu Z (2009) Transgenic expression of interleukin-13 in the skin induces a pruritic dermatitis and skin remodeling. J Invest Dermatol 129:742–751PubMedCrossRefGoogle Scholar
  139. 139.
    Jeong CW, Ahn KS, Rho NK, Park YD, Lee DY, Lee JH et al (2003) Differential in vivo cytokine mRNA expression in lesional skin of intrinsic vs. extrinsic atopic dermatitis patients using semiquantitative RT-PCR. Clin Exp Allergy 33:1717–1724PubMedCrossRefGoogle Scholar
  140. 140.
    Hamid Q, Naseer T, Minshall E, Song Y, Boguniewicz M, Leung D (1996) In vivo expression of IL-12 and IL-13 in atopic dermatitis. J Allergy Clin Immunol 98:225–231PubMedCrossRefGoogle Scholar
  141. 141.
    Brandt EB, Sivaprasad U (2011) Th2 cytokines and atopic dermatitis. J Clin Cell Immunol 2(3):110PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Metwally SS, Mosaad YM, Abdel-Samee ER, El-Gayyar MA, Abdel-Aziz AM, El-Chennawi FA (2004) IL-13 gene expression in patients with atopic dermatitis: relation to IgE level and to disease severity. Egypt J Immunol 11:171–177PubMedGoogle Scholar
  143. 143.
    Beck LA, Thaci D, Hamilton JD, Graham NM, Bieber T, Rocklin R et al (2014) Dupilumab treatment in adults with moderate-to-severe atopic dermatitis. N Engl J Med 371:130–139PubMedCrossRefGoogle Scholar
  144. 144.
    Savinko T, Matikainen S, Saarialho-Kere U, Lehto M, Wang G, Lehtimaki S et al (2012) IL-33 and ST2 in atopic dermatitis: expression profiles and modulation by triggering factors. J Invest Dermatol 132:1392–1400PubMedCrossRefGoogle Scholar
  145. 145.
    Pushparaj PN, Tay HK, H’ng SC, Pitman N, Xu D, McKenzie A et al (2009) The cytokine interleukin-33 mediates anaphylactic shock. Proc Natl Acad Sci U S A 106:9773–9778PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Kroeger KM, Sullivan BM, Locksley RM (2009) IL-18 and IL-33 elicit Th2 cytokines from basophils via a MyD88- and p38alpha-dependent pathway. J Leukoc Biol 86:769–778PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Rankin AL, Mumm JB, Murphy E, Turner S, Yu N, McClanahan TK et al (2010) IL-33 induces IL-13-dependent cutaneous fibrosis. J Immunol 184:1526–1535PubMedCrossRefGoogle Scholar
  148. 148.
    Tamagawa-Mineoka R, Okuzawa Y, Masuda K, Katoh N (2014) Increased serum levels of interleukin 33 in patients with atopic dermatitis. J Am Acad Dermatol 70:882–888PubMedCrossRefGoogle Scholar
  149. 149.
    Massi D, Panelos J (2012) Notch signaling and the developing skin epidermis. Adv Exp Med Biol 727:131–141PubMedCrossRefGoogle Scholar
  150. 150.
    Kwon SM, Alev C, Lee SH, Asahara T (2012) The molecular basis of Notch signaling: a brief overview. Adv Exp Med Biol 727:1–14PubMedCrossRefGoogle Scholar
  151. 151.
    Artavanis-Tsakonas S, Rand MD, Lake RJ (1999) Notch signaling: cell fate control and signal integration in development. Science 284:770–776PubMedCrossRefGoogle Scholar
  152. 152.
    Leung DY (2013) New insights into atopic dermatitis: role of skin barrier and immune dysregulation. Allergol Int 62:151–161PubMedCrossRefGoogle Scholar
  153. 153.
    Melnik BC (2015) The potential role of impaired notch signalling in atopic dermatitis. Acta Derm Venereol 95:5–11PubMedCrossRefGoogle Scholar
  154. 154.
    Dumortier A, Durham AD, Di Piazza M, Vauclair S, Koch U, Ferrand G et al (2010) Atopic dermatitis-like disease and associated lethal myeloproliferative disorder arise from loss of Notch signaling in the murine skin. PLoS One 5, e9258PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Yoo J, Omori M, Gyarmati D, Zhou B, Aye T, Brewer A et al (2005) Spontaneous atopic dermatitis in mice expressing an inducible thymic stromal lymphopoietin transgene specifically in the skin. J Exp Med 202:541–549PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Liu YJ (2006) Thymic stromal lymphopoietin: master switch for allergic inflammation. J Exp Med 203:269–273PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Ziegler SF, Artis D (2010) Sensing the outside world: TSLP regulates barrier immunity. Nat Immunol 11:289–293PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Ziegler SF (2010) The role of thymic stromal lymphopoietin (TSLP) in allergic disorders. Curr Opin Immunol 22:795–799PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Benditt EP, Bader S, Lam KB (1955) Studies of the mechanism of acute vascular reactions to injury. I. The relationship of mast cells and histamine to the production of edema by ovomucoid in rats. AMA Arch Pathol 60:104–115PubMedGoogle Scholar
  160. 160.
    Simons FE, Simons KJ (2011) Histamine and H1-antihistamines: celebrating a century of progress. J Allergy Clin Immunol 128:1139–1150.e4PubMedCrossRefGoogle Scholar
  161. 161.
    Han S, Mancino V, Simon MI (2006) Phospholipase Cbeta 3 mediates the scratching response activated by the histamine H1 receptor on C-fiber nociceptive neurons. Neuron 52:691–703PubMedCrossRefGoogle Scholar
  162. 162.
    Rossbach K, Wendorff S, Sander K, Stark H, Gutzmer R, Werfel T et al (2009) Histamine H4 receptor antagonism reduces hapten-induced scratching behaviour but not inflammation. Exp Dermatol 18:57–63PubMedCrossRefGoogle Scholar
  163. 163.
    Cowden JM, Zhang M, Dunford PJ, Thurmond RL (2010) The histamine H4 receptor mediates inflammation and pruritus in Th2-dependent dermal inflammation. J Invest Dermatol 130:1023–1033PubMedCrossRefGoogle Scholar
  164. 164.
    Kollmeier A, Francke K, Chen B, Dunford PJ, Greenspan AJ, Xia Y et al (2014) The histamine H(4) receptor antagonist, JNJ 39758979, is effective in reducing histamine-induced pruritus in a randomized clinical study in healthy subjects. J Pharmacol Exp Ther 350:181–187PubMedCrossRefGoogle Scholar
  165. 165.
    De Felipe C, Herrero JF, O’Brien JA, Palmer JA, Doyle CA, Smith AJ et al (1998) Altered nociception, analgesia and aggression in mice lacking the receptor for substance P. Nature 392:394–397PubMedCrossRefGoogle Scholar
  166. 166.
    Church MK, Okayama Y, el-Lati S (1991) Mediator secretion from human skin mast cells provoked by immunological and non-immunological stimulation. Skin Pharmacol 4(Suppl 1):15–24PubMedGoogle Scholar
  167. 167.
    Hagermark O, Hokfelt T, Pernow B (1978) Flare and itch induced by substance P in human skin. J Invest Dermatol 71:233–235PubMedCrossRefGoogle Scholar
  168. 168.
    Fjellner B, Hagermark O (1981) Studies on pruritogenic and histamine-releasing effects of some putative peptide neurotransmitters. Acta Derm Venereol 61:245–250PubMedGoogle Scholar
  169. 169.
    Jorizzo JL, Coutts AA, Eady RA, Greaves MW (1983) Vascular responses of human skin to injection of substance P and mechanism of action. Eur J Pharmacol 87:67–76PubMedCrossRefGoogle Scholar
  170. 170.
    van der Kleij HP, Ma D, Redegeld FA, Kraneveld AD, Nijkamp FP, Bienenstock J (2003) Functional expression of neurokinin 1 receptors on mast cells induced by IL-4 and stem cell factor. J Immunol 171:2074–2079PubMedCrossRefGoogle Scholar
  171. 171.
    Luger TA (2002) Neuromediators—a crucial component of the skin immune system. J Dermatol Sci 30:87–93PubMedCrossRefGoogle Scholar
  172. 172.
    Steinhoff M, Stander S, Seeliger S, Ansel JC, Schmelz M, Luger T (2003) Modern aspects of cutaneous neurogenic inflammation. Arch Dermatol 139:1479–1488PubMedCrossRefGoogle Scholar
  173. 173.
    Paus R, Theoharides TC, Arck PC (2006) Neuroimmune endocrine circuitry of the ldquo [brain-skin connection rdquo]. Trends Immunol 15:1–13Google Scholar
  174. 174.
    Furutani K, Koro O, Hide M, Yamamoto S (1999) Substance P- and antigen-induced release of leukotriene B4, prostaglandin D2 and histamine from guinea pig skin by different mechanisms in vitro. Arch Dermatol Res 291:466–473PubMedCrossRefGoogle Scholar
  175. 175.
    Biro T, Toth BI, Marincsak R, Dobrosi N, Geczy T, Paus R (2007) TRP channels as novel players in the pathogenesis and therapy of itch. Biochim Biophys Acta 1772:1004–1021PubMedCrossRefGoogle Scholar
  176. 176.
    Kulka M, Sheen CH, Tancowny BP, Grammer LC, Schleimer RP (2008) Neuropeptides activate human mast cell degranulation and chemokine production. Immunology 123:398–410PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    Salomon J, Baran E (2008) The role of selected neuropeptides in pathogenesis of atopic dermatitis. J Eur Acad Dermatol Venereol 22:223–228PubMedGoogle Scholar
  178. 178.
    Abadia Molina F, Burrows NP, Jones RR, Terenghi G, Polak JM (1992) Increased sensory neuropeptides in nodular prurigo: a quantitative immunohistochemical analysis. Br J Dermatol 127:344–351PubMedCrossRefGoogle Scholar
  179. 179.
    Jarvikallio A, Harvima IT, Naukkarinen A (2003) Mast cells, nerves and neuropeptides in atopic dermatitis and nummular eczema. Arch Dermatol Res 295:2–7PubMedGoogle Scholar
  180. 180.
    Stander S, Siepmann D, Herrgott I, Sunderkotter C, Luger TA (2010) Targeting the neurokinin receptor 1 with aprepitant: a novel antipruritic strategy. PLoS One 5, e10968PubMedPubMedCentralCrossRefGoogle Scholar
  181. 181.
    Duval A, Dubertret L (2009) Aprepitant as an antipruritic agent? N Engl J Med 361:1415–1416PubMedCrossRefGoogle Scholar
  182. 182.
    Vincenzi B, Fratto ME, Santini D, Tonini G (2010) Aprepitant against pruritus in patients with solid tumours. Support Care Cancer 18:1229–1230PubMedCrossRefGoogle Scholar
  183. 183.
    Vincenzi B, Tonini G, Santini D (2010) Aprepitant for erlotinib-induced pruritus. N Engl J Med 363:397–398PubMedCrossRefGoogle Scholar
  184. 184.
    Yamamoto M, Haruna T, Yasui K, Takahashi H, Iduhara M, Takaki S et al (2007) A novel atopic dermatitis model induced by topical application with dermatophagoides farinae extract in NC/Nga mice. Allergol Int 56:139–148PubMedCrossRefGoogle Scholar
  185. 185.
    Papoiu AD, Wang H, Nattkemper L, Tey HL, Ishiuji Y, Chan YH et al (2011) A study of serum concentrations and dermal levels of NGF in atopic dermatitis and healthy subjects. Neuropeptides 45:417–422PubMedPubMedCentralCrossRefGoogle Scholar
  186. 186.
    Nockher WA, Renz H (2006) Neurotrophins in allergic diseases: from neuronal growth factors to intercellular signaling molecules. J Allergy Clin Immunol 117:583–589PubMedCrossRefGoogle Scholar
  187. 187.
    Verge VM, Richardson PM, Wiesenfeld-Hallin Z, Hokfelt T (1995) Differential influence of nerve growth factor on neuropeptide expression in vivo: a novel role in peptide suppression in adult sensory neurons. J Neurosci 15:2081–2096PubMedGoogle Scholar
  188. 188.
    Kanda N, Watanabe S (2003) Histamine enhances the production of nerve growth factor in human keratinocytes. J Invest Dermatol 121:570–577PubMedCrossRefGoogle Scholar
  189. 189.
    Andoh T, Kuwazono T, Lee JB, Kuraishi Y (2011) Gastrin-releasing peptide induces itch-related responses through mast cell degranulation in mice. Peptides 32:2098–2103PubMedCrossRefGoogle Scholar
  190. 190.
    Liu XY, Wan L, Huo FQ, Barry DM, Li H, Zhao ZQ et al (2014) B-type natriuretic peptide is neither itch-specific nor functions upstream of the GRP-GRPR signaling pathway. Mol Pain 10:4. doi: 10.1186/1744-8069-10-4 PubMedPubMedCentralCrossRefGoogle Scholar
  191. 191.
    Sun YG, Zhao ZQ, Meng XL, Yin J, Liu XY, Chen ZF (2009) Cellular basis of itch sensation. Science 325:1531–1534PubMedCrossRefGoogle Scholar
  192. 192.
    Sun YG, Chen ZF (2007) A gastrin-releasing peptide receptor mediates the itch sensation in the spinal cord. Nature 448:700–703PubMedCrossRefGoogle Scholar
  193. 193.
    Mishra SK, Hoon MA (2013) The cells and circuitry for itch responses in mice. Science 340:968–971PubMedPubMedCentralCrossRefGoogle Scholar
  194. 194.
    Akiyama T, Tominaga M, Takamori K, Carstens MI, Carstens E (2014) Role of spinal bombesin-responsive neurons in nonhistaminergic itch. J Neurophysiol 112:2283–2289PubMedPubMedCentralCrossRefGoogle Scholar
  195. 195.
    Nattkemper LA, Zhao Z, Nichols AJ, Papoiu ADP, Shively CA, Chen Z et al (2013) Overexpression of the gastrin-releasing peptide in cutaneous nerve fibers and its receptor in the spinal cord in primates with chronic itch. J Invest Dermatol 133:2489–2492PubMedPubMedCentralCrossRefGoogle Scholar
  196. 196.
    Kagami S, Sugaya M, Suga H, Morimura S, Kai H, Ohmatsu H et al (2013) Serum gastrin-releasing peptide levels correlate with pruritus in patients with atopic dermatitis. J Invest Dermatol 133:1673–1675PubMedCrossRefGoogle Scholar
  197. 197.
    Goswami SC, Thierry-Mieg D, Thierry-Mieg J, Mishra S, Hoon MA, Mannes AJ et al (2014) Itch-associated peptides: RNA-Seq and bioinformatic analysis of natriuretic precursor peptide B and gastrin releasing peptide in dorsal root and trigeminal ganglia, and the spinal cord. Mol Pain 10:44. doi: 10.1186/1744-8069-10-44 PubMedPubMedCentralCrossRefGoogle Scholar
  198. 198.
    Wessler I, Kirkpatrick CJ (2008) Acetylcholine beyond neurons: the non-neuronal cholinergic system in humans. Br J Pharmacol 154:1558–1571PubMedPubMedCentralCrossRefGoogle Scholar
  199. 199.
    Wessler I, Reinheimer T, Kilbinger H, Bittinger F, Kirkpatrick CJ, Saloga J et al (2003) Increased acetylcholine levels in skin biopsies of patients with atopic dermatitis. Life Sci 72:2169–2172PubMedCrossRefGoogle Scholar
  200. 200.
    Twycross R, Greaves MW, Handwerker H, Jones EA, Libretto SE, Szepietowski JC et al (2003) Itch: scratching more than the surface. QJM 96:7–26PubMedCrossRefGoogle Scholar
  201. 201.
    Benarroch EE, Low PA (1991) The acetylcholine-induced flare response in evaluation of small fiber dysfunction. Ann Neurol 29:590–595PubMedCrossRefGoogle Scholar
  202. 202.
    Rukwied R, Lischetzki G, McGlone F, Heyer G, Schmelz M (2000) Mast cell mediators other than histamine induce pruritus in atopic dermatitis patients: a dermal microdialysis study. Br J Dermatol 142:1114–1120PubMedCrossRefGoogle Scholar
  203. 203.
    Heyer GR, Hornstein OP (1999) Recent studies of cutaneous nociception in atopic and non-atopic subjects. J Dermatol 26:77–86PubMedCrossRefGoogle Scholar
  204. 204.
    Grando SA, Pittelkow MR, Schallreuter KU (2006) Adrenergic and cholinergic control in the biology of epidermis: physiological and clinical significance. J Invest Dermatol 126:1948–1965PubMedCrossRefGoogle Scholar
  205. 205.
    Batra S (1990) Influence of chronic oestrogen treatment on the density of muscarinic cholinergic receptors and calcium channels in the rabbit uterus. J Endocrinol 125:185–189PubMedCrossRefGoogle Scholar
  206. 206.
    Carrasco-Serrano C, Criado M (2004) Glucocorticoid activation of the neuronal nicotinic acetylcholine receptor alpha7 subunit gene: involvement of transcription factor Egr-1. FEBS Lett 566:247–250PubMedCrossRefGoogle Scholar
  207. 207.
    Schlereth T, Birklein F, an Haack K, Schiffmann S, Kilbinger H, Kirkpatrick CJ et al (2006) In vivo release of non-neuronal acetylcholine from the human skin as measured by dermal microdialysis: effect of botulinum toxin. Br J Pharmacol 147:183–187PubMedCrossRefGoogle Scholar
  208. 208.
    Chernyavsky AI, Arredondo J, Vetter DE, Grando SA (2007) Central role of alpha9 acetylcholine receptor in coordinating keratinocyte adhesion and motility at the initiation of epithelialization. Exp Cell Res 313:3542–3555PubMedPubMedCentralCrossRefGoogle Scholar
  209. 209.
    Kawashima K, Fujii T (2000) Extraneuronal cholinergic system in lymphocytes. Pharmacol Ther 86:29–48PubMedCrossRefGoogle Scholar
  210. 210.
    Zimring JC, Kapp LM, Yamada M, Wess J, Kapp JA (2005) Regulation of CD8+ cytolytic T lymphocyte differentiation by a cholinergic pathway. J Neuroimmunol 164:66–75PubMedCrossRefGoogle Scholar
  211. 211.
    Skok MV, Grailhe R, Agenes F, Changeux JP (2007) The role of nicotinic receptors in B-lymphocyte development and activation. Life Sci 80:2334–2336PubMedCrossRefGoogle Scholar
  212. 212.
    Borovikova LV, Ivanova S, Zhang M, Yang H, Botchkina GI, Watkins LR et al (2000) Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405:458–462PubMedCrossRefGoogle Scholar
  213. 213.
    Pavlov VA, Tracey KJ (2005) The cholinergic anti-inflammatory pathway. Brain Behav Immun 19:493–499PubMedCrossRefGoogle Scholar
  214. 214.
    Kawasaki H, Nagao K, Kubo A, Hata T, Shimizu A, Mizuno H et al (2012) Altered stratum corneum barrier and enhanced percutaneous immune responses in filaggrin-null mice. J Allergy Clin Immunol 129:1538–1546.e6PubMedCrossRefGoogle Scholar
  215. 215.
    Kupczyk P, Reich A, Szepietowski JC (2009) Cannabinoid system in the skin—a possible target for future therapies in dermatology. Exp Dermatol 18:669–679PubMedCrossRefGoogle Scholar
  216. 216.
    Gaffal E, Glodde N, Jakobs M, Bald T, Tuting T (2014) Cannabinoid 1 receptors in keratinocytes attenuate fluorescein isothiocyanate-induced mouse atopic-like dermatitis. Exp Dermatol 23:401–406PubMedCrossRefGoogle Scholar
  217. 217.
    Karsak M, Gaffal E, Date R, Wang-Eckhardt L, Rehnelt J, Petrosino S et al (2007) Attenuation of allergic contact dermatitis through the endocannabinoid system. Science 316:1494–1497PubMedCrossRefGoogle Scholar
  218. 218.
    Oka S, Wakui J, Gokoh M, Kishimoto S, Sugiura T (2006) Suppression by WIN55212-2, a cannabinoid receptor agonist, of inflammatory reactions in mouse ear: interference with the actions of an endogenous ligand, 2-arachidonoylglycerol. Eur J Pharmacol 538:154–162PubMedCrossRefGoogle Scholar
  219. 219.
    Gaffal E, Cron M, Glodde N, Tuting T (2013) Anti-inflammatory activity of topical THC in DNFB-mediated mouse allergic contact dermatitis independent of CB1 and CB2 receptors. Allergy 68:994–1000PubMedCrossRefGoogle Scholar
  220. 220.
    Jafferany M (2007) Psychodermatology: a guide to understanding common psychocutaneous disorders. Prim Care Companion J Clin Psychiatry 9:203–213PubMedPubMedCentralCrossRefGoogle Scholar
  221. 221.
    Hall JM, Cruser D, Podawiltz A, Mummert DI, Jones H, Mummert ME (2012) Psychological stress and the cutaneous immune response: roles of the HPA axis and the sympathetic nervous system in atopic dermatitis and psoriasis. Dermatol Res Pract 2012:403908PubMedPubMedCentralGoogle Scholar
  222. 222.
    Chrostowska-Plak D, Reich A, Szepietowski JC (2013) Relationship between itch and psychological status of patients with atopic dermatitis. J Eur Acad Dermatol Venereol 27:e239–e242PubMedCrossRefGoogle Scholar
  223. 223.
    Oh SH, Bae BG, Park CO, Noh JY, Park IH, Wu WH et al (2010) Association of stress with symptoms of atopic dermatitis. Acta Derm Venereol 90:582–588PubMedCrossRefGoogle Scholar
  224. 224.
    Morren M, Przybilla B, Bamelis M, Heykants B, Reynaers A, Degreef H (1994) Atopic dermatitis: triggering factors. J Am Acad Dermatol 31:467–473PubMedCrossRefGoogle Scholar
  225. 225.
    Cacioppo JT, Berntson GG, Malarkey WB, Kiecolt-Glaser JK, Sheridan JF, Poehlmann KM et al (1998) Autonomic, neuroendocrine, and immune responses to psychological stress: the reactivity hypothesis. Ann N Y Acad Sci 840:664–673PubMedCrossRefGoogle Scholar
  226. 226.
    Glaser R, Kiecolt-Glaser JK (2005) Stress-induced immune dysfunction: implications for health. Nat Rev Immunol 5:243–251PubMedCrossRefGoogle Scholar
  227. 227.
    Nordlind K, Azmitia EC, Slominski A (2008) The skin as a mirror of the soul: exploring the possible roles of serotonin. Exp Dermatol 17:301–311PubMedCrossRefGoogle Scholar
  228. 228.
    Elenkov IJ (2004) Glucocorticoids and the Th1/Th2 balance. Ann N Y Acad Sci 1024:138–146PubMedCrossRefGoogle Scholar
  229. 229.
    Theoharides TC, Conti P (2004) Mast cells: the Jekyll and Hyde of tumor growth. Trends Immunol 25:235–241PubMedCrossRefGoogle Scholar
  230. 230.
    Mitschenko AV, Lwow AN, Kupfer J, Niemeier V, Gieler U (2008) Atopic dermatitis and stress? How do emotions come into skin? Hautarzt 59:314–318PubMedCrossRefGoogle Scholar
  231. 231.
    Pisarchik A, Slominski AT (2001) Alternative splicing of CRH-R1 receptors in human and mouse skin: identification of new variants and their differential expression. FASEB J 15:2754–2756PubMedGoogle Scholar
  232. 232.
    Steinhoff M, Vergnolle N, Young SH, Tognetto M, Amadesi S, Ennes HS (2000) Agonists of proteinase-activated receptor 2 induce inflammation by a neurogenic mechanism. Nat Med 6:151–158PubMedCrossRefGoogle Scholar
  233. 233.
    Arck P, Paus R (2006) From the brain-skin connection: the neuroendocrine-immune misalliance of stress and itch. Neuroimmunomodulation 13:347–356PubMedCrossRefGoogle Scholar
  234. 234.
    Arck PC, Handjiski B, Kuhlmei A, Peters EM, Knackstedt M, Peter A et al (2005) Mast cell deficient and neurokinin-1 receptor knockout mice are protected from stress-induced hair growth inhibition. J Mol Med (Berl) 83:386–396CrossRefGoogle Scholar
  235. 235.
    Theoharides TC, Kalogeromitros D (2006) The critical role of mast cells in allergy and inflammation. Ann N Y Acad Sci 1088:78–99PubMedCrossRefGoogle Scholar
  236. 236.
    Harvima IT, Nilsson G, Naukkarinen A (2010) Role of mast cells and sensory nerves in skin inflammation. G Ital Dermatol Venereol 145:195–204PubMedGoogle Scholar
  237. 237.
    Loden M (1997) Barrier recovery and influence of irritant stimuli in skin treated with a moisturizing cream. Contact Dermatitis 36:256–260PubMedCrossRefGoogle Scholar
  238. 238.
    Loden M (2003) Do moisturizers work? J Cosmet Dermatol 2:141–149PubMedCrossRefGoogle Scholar
  239. 239.
    Held E, Sveinsdottir S, Agner T (1999) Effect of long-term use of moisturizer on skin hydration, barrier function and susceptibility to irritants. Acta Derm Venereol 79:49–51PubMedCrossRefGoogle Scholar
  240. 240.
    Elmariah SB, Lerner EA (2011) Topical therapies for pruritus. Semin Cutan Med Surg 30:118–126PubMedPubMedCentralCrossRefGoogle Scholar
  241. 241.
    Vilaplana J, Coll J, Trullas C, Azon A, Pelejero C (1992) Clinical and non-invasive evaluation of 12% ammonium lactate emulsion for the treatment of dry skin in atopic and non-atopic subjects. Acta Derm Venereol 72:28–33PubMedGoogle Scholar
  242. 242.
    Msika P, De Belilovsky C, Piccardi N, Chebassier N, Baudouin C, Chadoutaud B (2008) New emollient with topical corticosteroid-sparing effect in treatment of childhood atopic dermatitis: SCORAD and quality of life improvement. Pediatr Dermatol 25:606–612PubMedCrossRefGoogle Scholar
  243. 243.
    Grimalt R, Mengeaud V, Cambazard F, Study Investigators’ Group (2007) The steroid-sparing effect of an emollient therapy in infants with atopic dermatitis: a randomized controlled study. Dermatology 214:61–67PubMedCrossRefGoogle Scholar
  244. 244.
    Lucky AW, Leach AD, Laskarzewski P, Wenck H (1997) Use of an emollient as a steroid-sparing agent in the treatment of mild to moderate atopic dermatitis in children. Pediatr Dermatol 14:321–324PubMedCrossRefGoogle Scholar
  245. 245.
    Szczepanowska J, Reich A, Szepietowski JC (2008) Emollients improve treatment results with topical corticosteroids in childhood atopic dermatitis: a randomized comparative study. Pediatr Allergy Immunol 19:614–618PubMedCrossRefGoogle Scholar
  246. 246.
    Wellner K, Wohlrab W (1993) Quantitative evaluation of urea in stratum corneum of human skin. Arch Dermatol Res 285:239–240PubMedCrossRefGoogle Scholar
  247. 247.
    Brinkmann I, Muller-Goymann CC (2005) An attempt to clarify the influence of glycerol, propylene glycol, isopropyl myristate and a combination of propylene glycol and isopropyl myristate on human stratum corneum. Pharmazie 60:215–220PubMedGoogle Scholar
  248. 248.
    Kurtz ES, Wallo W (2007) Colloidal oatmeal: history, chemistry and clinical properties. J Drugs Dermatol 6:167–170PubMedGoogle Scholar
  249. 249.
    Fowler JF, Nebus J, Wallo W, Eichenfield LF (2012) Colloidal oatmeal formulations as adjunct treatments in atopic dermatitis. J Drugs Dermatol 11:804–807PubMedGoogle Scholar
  250. 250.
    Alexandrescu DT, Vaillant JG, Dasanu CA (2007) Effect of treatment with a colloidal oatmeal lotion on the acneform eruption induced by epidermal growth factor receptor and multiple tyrosine-kinase inhibitors. Clin Exp Dermatol 32:71–74PubMedGoogle Scholar
  251. 251.
    Sur R, Nigam A, Grote D, Liebel F, Southall MD (2008) Avenanthramides, polyphenols from oats, exhibit anti-inflammatory and anti-itch activity. Arch Dermatol Res 300:569–574PubMedCrossRefGoogle Scholar
  252. 252.
    Pazyar N, Yaghoobi R, Kazerouni A, Feily A (2012) Oatmeal in dermatology: a brief review. Indian J Dermatol Venereol Leprol 78:142–145PubMedCrossRefGoogle Scholar
  253. 253.
    Wertz PW (1992) Epidermal lipids. Semin Dermatol 11:106–113PubMedGoogle Scholar
  254. 254.
    Grayson S, Elias PM (1982) Isolation and lipid biochemical characterization of stratum corneum membrane complexes: implications for the cutaneous permeability barrier. J Investig Dermatol 78:128–135PubMedCrossRefGoogle Scholar
  255. 255.
    Wertz PW, Downing DT (1983) Ceramides of pig epidermis: structure determination. J Lipid Res 24:759–765PubMedGoogle Scholar
  256. 256.
    Enomoto H, Hirata K, Otsuka K, Kawai T, Takahashi T, Hirota T et al (2008) Filaggrin null mutations are associated with atopic dermatitis and elevated levels of IgE in the Japanese population: a family and case-control study. J Hum Genet 53:615–621PubMedCrossRefGoogle Scholar
  257. 257.
    Leung DY, Nicklas RA, Li JT, Bernstein IL, Blessing-Moore J, Boguniewicz M et al (2004) Disease management of atopic dermatitis: an updated practice parameter. Joint Task Force on Practice Parameters. Ann Allergy Asthma Immunol 93:S1–S21PubMedCrossRefGoogle Scholar
  258. 258.
    Di Nardo A, Wertz P, Giannetti A, Seidenari S (1998) Ceramide and cholesterol composition of the skin of patients with atopic dermatitis. Acta Derm Venereol 78:27–30PubMedCrossRefGoogle Scholar
  259. 259.
    Imokawa G, Abe A, Jin K, Higaki Y, Kawashima M, Hidano A (1991) Decreased level of ceramides in stratum corneum of atopic dermatitis: an etiologic factor in atopic dry skin? J Invest Dermatol 96:523–526PubMedCrossRefGoogle Scholar
  260. 260.
    Bieber T (2008) Atopic dermatitis. N Engl J Med 358:1483–1494PubMedCrossRefGoogle Scholar
  261. 261.
    Cork MJ, Danby SG, Vasilopoulos Y, Hadgraft J, Lane ME, Moustafa M et al (2009) Epidermal barrier dysfunction in atopic dermatitis. J Invest Dermatol 129:1892–1908PubMedCrossRefGoogle Scholar
  262. 262.
    Lynde CW, Andriessen A (2014) A cohort study on a ceramide-containing cleanser and moisturizer used for atopic dermatitis. Cutis 93:207–213PubMedGoogle Scholar
  263. 263.
    Draelos ZD (2008) Use of topical corticosteroids and topical calcineurin inhibitors for the treatment of atopic dermatitis in thin and sensitive skin areas. Curr Med Res Opin 24:985–994PubMedCrossRefGoogle Scholar
  264. 264.
    Rawlings AV, Harding CR (2004) Moisturization and skin barrier function. Dermatol Ther 17(Suppl 1):43–48PubMedCrossRefGoogle Scholar
  265. 265.
    Zettersten EM, Ghadially R, Feingold KR, Crumrine D, Elias PM (1997) Optimal ratios of topical stratum corneum lipids improve barrier recovery in chronologically aged skin. J Am Acad Dermatol 37:403–408PubMedCrossRefGoogle Scholar
  266. 266.
    Schmid M, Korting HC (1995) The concept of the acid mantle of the skin: its relevance for the choice of skin cleansers. Dermatology 191:276–280PubMedCrossRefGoogle Scholar
  267. 267.
    Ali SM, Yosipovitch G (2013) Skin pH: from basic science to basic skin care. Acta Derm Venereol 93:261–267PubMedCrossRefGoogle Scholar
  268. 268.
    Akdis CA, Akdis M, Bieber T, Bindslev-Jensen C, Boguniewicz M, Eigenmann P et al (2006) Diagnosis and treatment of atopic dermatitis in children and adults: European Academy of Allergology and Clinical Immunology/American Academy of Allergy, Asthma and Immunology/PRACTALL Consensus Report. Allergy 61:969–987PubMedCrossRefGoogle Scholar
  269. 269.
    Mack Correa MC, Nebus J (2012) Management of patients with atopic dermatitis: the role of emollient therapy. Dermatol Res Pract 2012:1CrossRefGoogle Scholar
  270. 270.
    Solodkin G, Chaudhari U, Subramanyan K, Johnson AW, Yan X, Gottlieb A (2006) Benefits of mild cleansing: synthetic surfactant based (syndet) bars for patients with atopic dermatitis. Cutis 77:317–324PubMedGoogle Scholar
  271. 271.
    Hachem JP, Man MQ, Crumrine D, Uchida Y, Brown BE, Rogiers V et al (2005) Sustained serine proteases activity by prolonged increase in pH leads to degradation of lipid processing enzymes and profound alterations of barrier function and stratum corneum integrity. J Invest Dermatol 125:510–520PubMedCrossRefGoogle Scholar
  272. 272.
    Hachem JP, Crumrine D, Fluhr J, Brown BE, Feingold KR, Elias PM (2003) pH directly regulates epidermal permeability barrier homeostasis, and stratum corneum integrity/cohesion. J Invest Dermatol 121:345–353PubMedCrossRefGoogle Scholar
  273. 273.
    Nattkemper LA, Lee HG, Valdes-Rodriguez R, Mollanazar NK, Sanders KM, Yosipovitch G (2015) Cholinergic induction of perspiration attenuates non-histaminergic pruritus in the skin of atopic dermatitis subjects and healthy controls. Br J Dermatol. doi: 10.1111/bjd.13629 PubMedPubMedCentralGoogle Scholar
  274. 274.
    Saeki H, Furue M, Furukawa F, Hide M, Ohtsuki M, Katayama I et al (2009) Guidelines for management of atopic dermatitis. J Dermatol 36:563–577PubMedCrossRefGoogle Scholar
  275. 275.
    Ellis C, Luger T, Abeck D, Allen R, Graham-Brown RA, De Prost Y et al (2003) International Consensus Conference on Atopic Dermatitis II (ICCAD II): clinical update and current treatment strategies. Br J Dermatol 148(Suppl 63):3–10PubMedCrossRefGoogle Scholar
  276. 276.
    Eichenfield LF, Hanifin JM, Luger TA, Stevens SR, Pride HB (2003) Consensus conference on pediatric atopic dermatitis. J Am Acad Dermatol 49:1088–1095PubMedCrossRefGoogle Scholar
  277. 277.
    Tadicherla S, Ross K, Shenefelt PD, Fenske NA (2009) Topical corticosteroids in dermatology. J Drugs Dermatol 8:1093–1105PubMedGoogle Scholar
  278. 278.
    Hanifin JM (2004) Atopic dermatitis: broadening the perspective. J Am Acad Dermatol 51:S23–S24PubMedCrossRefGoogle Scholar
  279. 279.
    Yarbrough KB, Neuhaus KJ, Simpson EL (2013) The effects of treatment on itch in atopic dermatitis. Dermatol Ther 26:110–119PubMedPubMedCentralCrossRefGoogle Scholar
  280. 280.
    Hoare C, Li Wan Po A, Williams H (2000) Systematic review of treatments for atopic eczema. Health Technol Assess 4:1–191PubMedPubMedCentralGoogle Scholar
  281. 281.
    Wahlgren CF, Hagermark O, Bergstrom R, Hedin B (1988) Evaluation of a new method of assessing pruritus and antipruritic drugs. Skin Pharmacol 1:3–13PubMedCrossRefGoogle Scholar
  282. 282.
    Maloney JM, Morman MR, Stewart DM, Tharp MD, Brown JJ, Rajagopalan R (1998) Clobetasol propionate emollient 0.05% in the treatment of atopic dermatitis. Int J Dermatol 37:142–144PubMedCrossRefGoogle Scholar
  283. 283.
    Roth HL, Brown EP (1978) Hydrocortisone valerate. Double-blind comparison with two other topical steroids. Cutis 21:695–698PubMedGoogle Scholar
  284. 284.
    Kaplan RJ, Daman L, Rosenberg EW, Feigenbaum S (1978) Topical use of caffeine with hydrocortisone in the treatment of atopic dermatitis. Arch Dermatol 114:60–62PubMedCrossRefGoogle Scholar
  285. 285.
    Hanifin JM, Thurston M, Omoto M, Cherill R, Tofte SJ, Graeber M (2001) The eczema area and severity index (EASI): assessment of reliability in atopic dermatitis. EASI Evaluator Group. Exp Dermatol 10:11–18PubMedCrossRefGoogle Scholar
  286. 286.
    Luger T, Van Leent EJ, Graeber M, Hedgecock S, Thurston M, Kandra A et al (2001) SDZ ASM 981: an emerging safe and effective treatment for atopic dermatitis. Br J Dermatol 144:788–794PubMedCrossRefGoogle Scholar
  287. 287.
    Sher LG, Chang J, Patel IB, Balkrishnan R, Fleischer AB Jr (2012) Relieving the pruritus of atopic dermatitis: a meta-analysis. Acta Derm Venereol 92:455–461PubMedCrossRefGoogle Scholar
  288. 288.
    Chang KT, Lin HY, Kuo CH, Hung CH (2015) Tacrolimus suppresses atopic dermatitis-associated cytokines and chemokines in monocytes. J Microbiol Immunol Infect doi:. doi: 10.1016/j.jmii.2014.07.006 Google Scholar
  289. 289.
    Kaufmann R, Bieber T, Helgesen AL, Andersen BL, Luger T, Poulin Y et al (2006) Onset of pruritus relief with pimecrolimus cream 1% in adult patients with atopic dermatitis: a randomized trial. Allergy 61:375–381PubMedCrossRefGoogle Scholar
  290. 290.
    Bornhovd EC, Burgdorf WH, Wollenberg A (2002) Immunomodulatory macrolactams for topical treatment of inflammatory skin diseases. Curr Opin Investig Drugs 3:708–712PubMedGoogle Scholar
  291. 291.
    Stander S, Schurmeyer-Horst F, Luger TA, Weisshaar E (2006) Treatment of pruritic diseases with topical calcineurin inhibitors. Ther Clin Risk Manag 2:213–218PubMedPubMedCentralCrossRefGoogle Scholar
  292. 292.
    Senba E, Katanosaka K, Yajima H, Mizumura K (2004) The immunosuppressant FK506 activates capsaicin- and bradykinin-sensitive DRG neurons and cutaneous C-fibers. Neurosci Res 50:257–262PubMedCrossRefGoogle Scholar
  293. 293.
    Thaci D, Reitamo S, Gonzalez Ensenat MA, Moss C, Boccaletti V, Cainelli T et al (2008) Proactive disease management with 0.03% tacrolimus ointment for children with atopic dermatitis: results of a randomized, multicentre, comparative study. Br J Dermatol 159:1348–1356PubMedCrossRefGoogle Scholar
  294. 294.
    Undre NA, Moloney FJ, Ahmadi S, Stevenson P, Murphy GM (2009) Skin and systemic pharmacokinetics of tacrolimus following topical application of tacrolimus ointment in adults with moderate to severe atopic dermatitis. Br J Dermatol 160:665–669PubMedCrossRefGoogle Scholar
  295. 295.
    Lakhanpaul M, Davies T, Allen BR, Schneider D (2006) Low systemic exposure in infants with atopic dermatitis in a 1-year pharmacokinetic study with pimecrolimus cream 1%*. Exp Dermatol 15:138–141PubMedCrossRefGoogle Scholar
  296. 296.
    Van Leent EJ, Ebelin ME, Burtin P, Dorobek B, Spuls PI, Bos JD (2002) Low systemic exposure after repeated topical application of Pimecrolimus (Elidel), SD Z ASM 981) in patients with atopic dermatitis. Dermatology 204:63–68PubMedCrossRefGoogle Scholar
  297. 297.
    Van Leent EJ, De Vries HJ, Ebelin ME, Burtin P, Scott G, Bos JD (2007) Blood concentrations of pimecrolimus in adult patients with atopic dermatitis following intermittent administration of pimecrolimus cream 1% (Elidel) for up to 1 year. J Dermatolog Treat 18:19–22PubMedCrossRefGoogle Scholar
  298. 298.
    Siegfried EC, Jaworski JC, Hebert AA (2013) Topical calcineurin inhibitors and lymphoma risk: evidence update with implications for daily practice. Am J Clin Dermatol 14:163–178PubMedPubMedCentralCrossRefGoogle Scholar
  299. 299.
    Remitz A, Harper J, Rustin M, Goldschmidt WF, Palatsi R, van der Valk PG et al (2007) Long-term safety and efficacy of tacrolimus ointment for the treatment of atopic dermatitis in children. Acta Derm Venereol 87:54–61PubMedCrossRefGoogle Scholar
  300. 300.
    Schachner LA, Lamerson C, Sheehan MP, Boguniewicz M, Mosser J, Raimer S et al (2005) Tacrolimus ointment 0.03% is safe and effective for the treatment of mild to moderate atopic dermatitis in pediatric patients: results from a randomized, double-blind, vehicle-controlled study. Pediatrics 116:e334–e342PubMedCrossRefGoogle Scholar
  301. 301.
    Tan J, Langley R (2004) Safety and efficacy of tacrolimus ointment 0.1% (Protopic) in atopic dermatitis: a Canadian open-label multicenter study. J Cutan Med Surg 8:213–219PubMedCrossRefGoogle Scholar
  302. 302.
    McCollum AD, Paik A, Eichenfield LF (2010) The safety and efficacy of tacrolimus ointment in pediatric patients with atopic dermatitis. Pediatr Dermatol 27:425–436PubMedCrossRefGoogle Scholar
  303. 303.
    Segal AO, Ellis AK, Kim HL (2013) CSACI position statement: safety of topical calcineurin inhibitors in the management of atopic dermatitis in children and adults. Allergy Asthma Clin Immunol 9(1):24. doi: 10.1186/1710-1492-9-24 PubMedPubMedCentralCrossRefGoogle Scholar
  304. 304.
    Ohtsuki M, Ohara H, Santos V et al. (2011) Safety profiles of two large cohort studies of tacrolimus ointment for the treatment of atopic dermatitis: a prospective pediatric longitudinal evaluation study (APPLES) and Japanese long-term safety study (J-LSS). Proceedings of the 22nd World Congress of Dermatology Meeting, Seoul, KoreaGoogle Scholar
  305. 305.
    Kothary N (2011) Update on post-marketing AERS cases of pediatric malignancies reports with topical pimecrolimus and tacrolimus use. Food and Drug Administration Pediatric Advisory Committee. http://www.fda.gov/downloads/AdvisoryCommittees/CommitteesMeetingMaterials/PediatricAdvisoryCommittee/UCM255412.pdf
  306. 306.
    Jancso N, Jancso-Gabor A, Szolcsanyi J (1967) Direct evidence for neurogenic inflammation and its prevention by denervation and by pretreatment with capsaicin. Br J Pharmacol Chemother 31:138–151PubMedPubMedCentralCrossRefGoogle Scholar
  307. 307.
    Tarng DC, Cho YL, Liu HN, Huang TP (1996) Hemodialysis-related pruritus: a double-blind, placebo-controlled, crossover study of capsaicin 0.025% cream. Nephron 72:617–622PubMedCrossRefGoogle Scholar
  308. 308.
    Wallengren J, Klinker M (1995) Successful treatment of notalgia paresthetica with topical capsaicin: vehicle-controlled, double-blind, crossover study. J Am Acad Dermatol 32:287–289PubMedCrossRefGoogle Scholar
  309. 309.
    Stander S, Luger T, Metze D (2001) Treatment of prurigo nodularis with topical capsaicin. J Am Acad Dermatol 44:471–478PubMedCrossRefGoogle Scholar
  310. 310.
    Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389:816–824PubMedCrossRefGoogle Scholar
  311. 311.
    Basbaum AI, Bautista DM, Scherrer G, Julius D (2009) Cellular and molecular mechanisms of pain. Cell 139:267–284PubMedPubMedCentralCrossRefGoogle Scholar
  312. 312.
    Dray A (1992) Neuropharmacological mechanisms of capsaicin and related substances. Biochem Pharmacol 44:611–615PubMedCrossRefGoogle Scholar
  313. 313.
    Hong J, Buddenkotte J, Berger TG, Steinhoff M (2011) Management of itch in atopic dermatitis. Semin Cutan Med Surg 30:71–86PubMedPubMedCentralCrossRefGoogle Scholar
  314. 314.
    Papoiu AD, Yosipovitch G (2010) Topical capsaicin. The fire of a ‘hot’ medicine is reignited. Expert Opin Pharmacother 11:1359–1371PubMedCrossRefGoogle Scholar
  315. 315.
    Yosipovitch G, Maibach HI, Rowbotham MC (1999) Effect of EMLA pre-treatment on capsaicin-induced burning and hyperalgesia. Acta Derm Venereol 79:118–121PubMedCrossRefGoogle Scholar
  316. 316.
    Yosipovitch G, Maibach HI (1997) Effect of topical pramoxine on experimentally induced pruritus in humans. J Am Acad Dermatol 37:278–280PubMedCrossRefGoogle Scholar
  317. 317.
    Shuttleworth D, Hill S, Marks R, Connelly DM (1988) Relief of experimentally induced pruritus with a novel eutectic mixture of local anaesthetic agents. Br J Dermatol 119:535–540PubMedCrossRefGoogle Scholar
  318. 318.
    Sandroni P (2002) Central neuropathic itch: a new treatment option? Neurology 59:778–779PubMedCrossRefGoogle Scholar
  319. 319.
    Young TA, Patel TS, Camacho F, Clark A, Freedman BI, Kaur M et al (2009) A pramoxine-based anti-itch lotion is more effective than a control lotion for the treatment of uremic pruritus in adult hemodialysis patients. J Dermatolog Treat 20:76–81PubMedCrossRefGoogle Scholar
  320. 320.
    Patel T, Yosipovitch G (2010) Therapy of pruritus. Expert Opin Pharmacother 11:1673–1682PubMedPubMedCentralCrossRefGoogle Scholar
  321. 321.
    Freitag G, Hoppner T (1997) Results of a postmarketing drug monitoring survey with a polidocanol-urea preparation for dry, itching skin. Curr Med Res Opin 13:529–537PubMedCrossRefGoogle Scholar
  322. 322.
    Oranje AP, Devillers AC, Kunz B, Jones SL, DeRaeve L, Van Gysel D et al (2006) Treatment of patients with atopic dermatitis using wet-wrap dressings with diluted steroids and/or emollients. An expert panel’s opinion and review of the literature. J Eur Acad Dermatol Venereol 20:1277–1286PubMedCrossRefGoogle Scholar
  323. 323.
    Devillers AC, de Waard-van der Spek FB, Mulder PG, Oranje AP (2002) Treatment of refractory atopic dermatitis using ‘wet-wrap’ dressings and diluted corticosteroids: results of standardized treatment in both children and adults. Dermatology 204:50–55PubMedCrossRefGoogle Scholar
  324. 324.
    Devillers AC, Oranje AP (2006) Efficacy and safety of ‘wet-wrap’ dressings as an intervention treatment in children with severe and/or refractory atopic dermatitis: a critical review of the literature. Br J Dermatol 154:579–585PubMedCrossRefGoogle Scholar
  325. 325.
    Wolkerstorfer A, Visser RL, De Waard van der Spek FB, Mulder PG, Oranje AP (2000) Efficacy and safety of wet-wrap dressings in children with severe atopic dermatitis: influence of corticosteroid dilution. Br J Dermatol 143:999–1004PubMedCrossRefGoogle Scholar
  326. 326.
    Pei AY, Chan HH, Ho KM (2001) The effectiveness of wet wrap dressings using 0.1% mometasone furoate and 0.005% fluticasone proprionate ointments in the treatment of moderate to severe atopic dermatitis in children. Pediatr Dermatol 18:343–348PubMedCrossRefGoogle Scholar
  327. 327.
    Schnopp C, Holtmann C, Stock S, Remling R, Folster-Holst R, Ring J et al (2002) Topical steroids under wet-wrap dressings in atopic dermatitis—a vehicle-controlled trial. Dermatology 204:56–59PubMedCrossRefGoogle Scholar
  328. 328.
    Janmohamed SR, Oranje AP, Devillers AC, Rizopoulos D, van Praag MC, Van Gysel D et al (2014) The proactive wet-wrap method with diluted corticosteroids versus emollients in children with atopic dermatitis: a prospective, randomized, double-blind, placebo-controlled trial. J Am Acad Dermatol 70:1076–1082PubMedCrossRefGoogle Scholar
  329. 329.
    Ryan C, Shaw RE, Cockerell CJ, Hand S, Ghali FE (2013) Novel sodium hypochlorite cleanser shows clinical response and excellent acceptability in the treatment of atopic dermatitis. Pediatr Dermatol 30:308–315PubMedPubMedCentralCrossRefGoogle Scholar
  330. 330.
    Lee M, Van Bever H (2014) The role of antiseptic agents in atopic dermatitis. Asia Pac Allerg 4:230–240CrossRefGoogle Scholar
  331. 331.
    Huang JT, Abrams M, Tlougan B, Rademaker A, Paller AS (2009) Treatment of Staphylococcus aureus colonization in atopic dermatitis decreases disease severity. Pediatrics 123:e808–e814PubMedCrossRefGoogle Scholar
  332. 332.
    Wong SM, Ng TG, Baba R (2013) Efficacy and safety of sodium hypochlorite (bleach) baths in patients with moderate to severe atopic dermatitis in Malaysia. J Dermatol 40:874–880PubMedCrossRefGoogle Scholar
  333. 333.
    Lebwohl MG, Del Rosso JQ, Abramovits W, Berman B, Cohen DE, Guttman E et al (2013) Pathways to managing atopic dermatitis: consensus from the experts. J Clin Aesthet Dermatol 6:S2–S18PubMedPubMedCentralGoogle Scholar
  334. 334.
    Draelos Z, Cash K (2013) Evaluation of a gel formulation of hypochlorous acid and sodium hypochlorite to reduce pruritus in mild to moderate atopic dermatitis. 2013 Winter Clinical Dermatology Conference; January 18–23, 2013; Kauai, HIGoogle Scholar
  335. 335.
    Hahn GS (1999) Strontium is a potent and selective inhibitor of sensory irritation. Dermatol Surg 25:689–694PubMedCrossRefGoogle Scholar
  336. 336.
    Zhai H, Hannon W, Hahn GS, Pelosi A, Harper RA, Maibach HI (2000) Strontium nitrate suppresses chemically-induced sensory irritation in humans. Contact Dermatitis 42:98–100PubMedCrossRefGoogle Scholar
  337. 337.
    Zhai H, Hannon W, Hahn GS, Harper RA, Pelosi A, Maibach HI (2000) Strontium nitrate decreased histamine-induced itch magnitude and duration in man. Dermatology 200:244–246PubMedCrossRefGoogle Scholar
  338. 338.
    Papoiu AD, Valdes-Rodriguez R, Nattkemper LA, Chan YH, Hahn GS, Yosipovitch G (2013) A novel topical formulation containing strontium chloride significantly reduces the intensity and duration of cowhage-induced itch. Acta Derm Venereol 93:520–526PubMedCrossRefGoogle Scholar
  339. 339.
    Johanek LM, Meyer RA, Hartke T, Hobelmann JG, Maine DN, LaMotte RH et al (2007) Psychophysical and physiological evidence for parallel afferent pathways mediating the sensation of itch. J Neurosci 27:7490–7497PubMedCrossRefGoogle Scholar
  340. 340.
    Godlewski G, Offertaler L, Wagner JA, Kunos G (2009) Receptors for acylethanolamides—GPR55 and GPR119. Prostaglandins Other Lipid Mediat 89:105–111PubMedPubMedCentralCrossRefGoogle Scholar
  341. 341.
    O’Sullivan SE, Kendall DA (2010) Cannabinoid activation of peroxisome proliferator-activated receptors: potential for modulation of inflammatory disease. Immunobiology 215:611–616PubMedCrossRefGoogle Scholar
  342. 342.
    Szepietowski JC, Szepietowski T, Reich A (2005) Efficacy and tolerance of the cream containing structured physiological lipids with endocannabinoids in the treatment of uremic pruritus: a preliminary study. Acta Dermatovenerol Croat 13:97–103PubMedGoogle Scholar
  343. 343.
    Eberlein B, Eicke C, Reinhardt HW, Ring J (2008) Adjuvant treatment of atopic eczema: assessment of an emollient containing N-palmitoylethanolamine (ATOPA study). J Eur Acad Dermatol Venereol 22:73–82PubMedGoogle Scholar
  344. 344.
    Stander S, Reinhardt HW, Luger TA (2006) Topical cannabinoid agonists. An effective new possibility for treating chronic pruritus. Hautarzt 57:801–807PubMedCrossRefGoogle Scholar
  345. 345.
    Rivard J, Lim HW (2005) Ultraviolet phototherapy for pruritus. Dermatol Ther 18:344–354PubMedCrossRefGoogle Scholar
  346. 346.
    Wallengren J, Sundler F (2004) Phototherapy reduces the number of epidermal and CGRP-positive dermal nerve fibres. Acta Derm Venereol 84:111–115PubMedCrossRefGoogle Scholar
  347. 347.
    Jekler J, Larko O (1988) UVB phototherapy of atopic dermatitis. Br J Dermatol 119:697–705PubMedCrossRefGoogle Scholar
  348. 348.
    Jekler J, Larko O (1990) Combined UVA-UVB versus UVB phototherapy for atopic dermatitis: a paired-comparison study. J Am Acad Dermatol 22:49–53PubMedCrossRefGoogle Scholar
  349. 349.
    Clayton TH, Clark SM, Turner D, Goulden V (2007) The treatment of severe atopic dermatitis in childhood with narrowband ultraviolet B phototherapy. Clin Exp Dermatol 32:28–33PubMedGoogle Scholar
  350. 350.
    von Kobyletzki G, Pieck C, Hoffmann K, Freitag M, Altmeyer P (1999) Medium-dose UVA1 cold-light phototherapy in the treatment of severe atopic dermatitis. J Am Acad Dermatol 41:931–937CrossRefGoogle Scholar
  351. 351.
    Reynolds NJ, Franklin V, Gray JC, Diffey BL, Farr PM (2001) Narrow-band ultraviolet B and broad-band ultraviolet A phototherapy in adult atopic eczema: a randomised controlled trial. Lancet 357:2012–2016PubMedCrossRefGoogle Scholar
  352. 352.
    Der-Petrossian M, Seeber A, Honigsmann H, Tanew A (2000) Half-side comparison study on the efficacy of 8-methoxypsoralen bath-PUVA versus narrow-band ultraviolet B phototherapy in patients with severe chronic atopic dermatitis. Br J Dermatol 142:39–43PubMedCrossRefGoogle Scholar
  353. 353.
    Baltas E, Csoma Z, Bodai L, Ignacz F, Dobozy A, Kemeny L (2006) Treatment of atopic dermatitis with the xenon chloride excimer laser. J Eur Acad Dermatol Venereol 20:657–660PubMedCrossRefGoogle Scholar
  354. 354.
    Nistico SP, Saraceno R, Capriotti E, Felice CD, Chimenti S (2008) Efficacy of monochromatic excimer light (308 nm) in the treatment of atopic dermatitis in adults and children. Photomed Laser Surg 26:14–18PubMedCrossRefGoogle Scholar
  355. 355.
    Schmitt J, Schmitt NM, Kirch W, Meurer M (2009) Outpatient care and medical treatment of children and adults with atopic eczema. J Dtsch Dermatol Ges 7:345–351PubMedGoogle Scholar
  356. 356.
    Roekevisch E, Spuls PI, Kuester D, Limpens J, Schmitt J (2014) Efficacy and safety of systemic treatments for moderate-to-severe atopic dermatitis: a systematic review. J Allergy Clin Immunol 133:429–438PubMedCrossRefGoogle Scholar
  357. 357.
    Schmitt J, Schmitt N, Meurer M (2007) Cyclosporin in the treatment of patients with atopic eczema—a systematic review and meta-analysis. J Eur Acad Dermatol Venereol 21:606–619PubMedGoogle Scholar
  358. 358.
    Harper JI, Ahmed I, Barclay G, Lacour M, Hoeger P, Cork MJ et al (2000) Cyclosporin for severe childhood atopic dermatitis: short course versus continuous therapy. Br J Dermatol 142:52–58PubMedCrossRefGoogle Scholar
  359. 359.
    Pacor ML, Di Lorenzo G, Martinelli N, Mansueto P, Rini GB, Corrocher R (2004) Comparing tacrolimus ointment and oral cyclosporine in adult patients affected by atopic dermatitis: a randomized study. Clin Exp Allergy 34:639–645PubMedCrossRefGoogle Scholar
  360. 360.
    El-Khalawany MA, Hassan H, Shaaban D, Ghonaim N, Eassa B (2013) Methotrexate versus cyclosporine in the treatment of severe atopic dermatitis in children: a multicenter experience from Egypt. Eur J Pediatr 172:351–356PubMedCrossRefGoogle Scholar
  361. 361.
    Neuber K, Schwartz I, Itschert G, Dieck AT (2000) Treatment of atopic eczema with oral mycophenolate mofetil. Br J Dermatol 143:385–391PubMedCrossRefGoogle Scholar
  362. 362.
    Haeck IM, Knol MJ, Ten Berge O, van Velsen SG, de Bruin-Weller MS, Bruijnzeel-Koomen CA (2011) Enteric-coated mycophenolate sodium versus cyclosporin A as long-term treatment in adult patients with severe atopic dermatitis: a randomized controlled trial. J Am Acad Dermatol 64:1074–1084PubMedCrossRefGoogle Scholar
  363. 363.
    Berth-Jones J, Takwale A, Tan E, Barclay G, Agarwal S, Ahmed I et al (2002) Azathioprine in severe adult atopic dermatitis: a double-blind, placebo-controlled, crossover trial. Br J Dermatol 147:324–330PubMedCrossRefGoogle Scholar
  364. 364.
    Meggitt SJ, Gray JC, Reynolds NJ (2006) Azathioprine dosed by thiopurine methyltransferase activity for moderate-to-severe atopic eczema: a double-blind, randomised controlled trial. Lancet 367:839–846PubMedCrossRefGoogle Scholar
  365. 365.
    Schram ME, Roekevisch E, Leeflang MM, Bos JD, Schmitt J, Spuls PI (2011) A randomized trial of methotrexate versus azathioprine for severe atopic eczema. J Allergy Clin Immunol 128:353–359PubMedCrossRefGoogle Scholar
  366. 366.
    Fuggle NR, Bragoli W, Mahto A, Glover M, Martinez AE, Kinsler VA (2015) The adverse effect profile of oral azathioprine in pediatric atopic dermatitis, and recommendations for monitoring. J Am Acad Dermatol 72:108–114PubMedPubMedCentralCrossRefGoogle Scholar
  367. 367.
    Vachiramon V, Tey HL, Thompson AE, Yosipovitch G (2012) Atopic dermatitis in African American children: addressing unmet needs of a common disease. Pediatr Dermatol 29:395PubMedCrossRefGoogle Scholar
  368. 368.
    Schmitt J, Schakel K, Folster-Holst R, Bauer A, Oertel R, Augustin M et al (2010) Prednisolone vs. ciclosporin for severe adult eczema. An investigator-initiated double-blind placebo-controlled multicentre trial. Br J Dermatol 162:661–668PubMedCrossRefGoogle Scholar
  369. 369.
    Stander S, Luger TA (2010) Itch in atopic dermatitis—pathophysiology and treatment. Acta Dermatovenerol Croat 18:289–296PubMedGoogle Scholar
  370. 370.
    Hannuksela M, Kalimo K, Lammintausta K, Mattila T, Turjanmaa K, Varjonen E et al (1993) Dose ranging study: cetirizine in the treatment of atopic dermatitis in adults. Ann Allergy 70:127–133PubMedGoogle Scholar
  371. 371.
    Diepgen TL, Early Treatment of the Atopic Child Study Group (2002) Long-term treatment with cetirizine of infants with atopic dermatitis: a multi-country, double-blind, randomized, placebo-controlled trial (the ETAC trial) over 18 months. Pediatr Allergy Immunol 13:278–286PubMedCrossRefGoogle Scholar
  372. 372.
    Davis MP, Frandsen JL, Walsh D, Andresen S, Taylor S (2003) Mirtazapine for pruritus. J Pain Symptom Manage 25:288–291PubMedCrossRefGoogle Scholar
  373. 373.
    Hundley JL, Yosipovitch G (2004) Mirtazapine for reducing nocturnal itch in patients with chronic pruritus: a pilot study. J Am Acad Dermatol 50:889–891PubMedCrossRefGoogle Scholar
  374. 374.
    Demierre MF, Taverna J (2006) Mirtazapine and gabapentin for reducing pruritus in cutaneous T-cell lymphoma. J Am Acad Dermatol 55:543–544PubMedCrossRefGoogle Scholar
  375. 375.
    Stimmel GL, Dopheide JA, Stahl SM (1997) Mirtazapine: an antidepressant with noradrenergic and specific serotonergic effects. Pharmacotherapy 17:10–21PubMedGoogle Scholar
  376. 376.
    Stander S, Weisshaar E, Luger TA (2008) Neurophysiological and neurochemical basis of modern pruritus treatment. Exp Dermatol 17:161–169PubMedCrossRefGoogle Scholar
  377. 377.
    Dawn AG, Yosipovitch G (2006) Butorphanol for treatment of intractable pruritus. J Am Acad Dermatol 54:527–531PubMedCrossRefGoogle Scholar
  378. 378.
    Yosipovitch G, Greaves MW, Schmelz M (2003) Itch. Lancet 361:690–694PubMedCrossRefGoogle Scholar
  379. 379.
    Pan ZZ (1998) mu-Opposing actions of the kappa-opioid receptor. Trends Pharmacol Sci 19:94–98PubMedCrossRefGoogle Scholar
  380. 380.
    Umeuchi H, Togashi Y, Honda T, Nakao K, Okano K, Tanaka T et al (2003) Involvement of central mu-opioid system in the scratching behavior in mice, and the suppression of it by the activation of kappa-opioid system. Eur J Pharmacol 477:29–35PubMedCrossRefGoogle Scholar
  381. 381.
    Baumer W, Hoppmann J, Rundfeldt C, Kietzmann M (2007) Highly selective phosphodiesterase 4 inhibitors for the treatment of allergic skin diseases and psoriasis. Inflamm Allergy Drug Targets 6:17–26PubMedCrossRefGoogle Scholar
  382. 382.
    Hanifin JM, Chan SC, Cheng JB, Tofte SJ, Henderson WR Jr, Kirby DS et al (1996) Type 4 phosphodiesterase inhibitors have clinical and in vitro anti-inflammatory effects in atopic dermatitis. J Investig Dermatol 107:51–56PubMedCrossRefGoogle Scholar
  383. 383.
    Hoppmann J, Baumer W, Galetzka C, Hofgen N, Kietzmann M, Rundfeldt C (2005) The phosphodiesterase 4 inhibitor AWD 12-281 is active in a new guinea-pig model of allergic skin inflammation predictive of human skin penetration and suppresses both Th1 and Th2 cytokines in mice. J Pharm Pharmacol 57:1609–1617PubMedCrossRefGoogle Scholar
  384. 384.
    Baumer W, Gorr G, Hoppmann J, Ehinger AM, Rundfeldt C, Kietzmann M (2003) AWD 12-281, a highly selective phosphodiesterase 4 inhibitor, is effective in the prevention and treatment of inflammatory reactions in a model of allergic dermatitis. J Pharm Pharmacol 55:1107–1114PubMedCrossRefGoogle Scholar
  385. 385.
    Samrao A, Berry TM, Goreshi R, Simpson EL (2012) A pilot study of an oral phosphodiesterase inhibitor (apremilast) for atopic dermatitis in adults. Arch Dermatol 148:890–897PubMedPubMedCentralCrossRefGoogle Scholar
  386. 386.
    Bhattacharya TSJ (2014) Efficacy of systemic treatments for atopic dermatitis in racial and ethnic minorities in the United States. JAMA Dermatol 150:1232–1234PubMedCrossRefGoogle Scholar
  387. 387.
    Belgrade MJ, Solomon LM, Lichter EA (1984) Effect of acupuncture on experimentally induced itch. Acta Derm Venereol 64:129–133PubMedGoogle Scholar
  388. 388.
    Lundeberg T, Bondesson L, Thomas M (1987) Effect of acupuncture on experimentally induced itch. Br J Dermatol 117:771–777PubMedCrossRefGoogle Scholar
  389. 389.
    Pfab F, Hammes M, Backer M, Huss-Marp J, Athanasiadis GI, Tolle TR et al (2005) Preventive effect of acupuncture on histamine-induced itch: a blinded, randomized, placebo-controlled, crossover trial. J Allergy Clin Immunol 116:1386–1388PubMedCrossRefGoogle Scholar
  390. 390.
    Kesting MR, Thurmuller P, Holzle F, Wolff KD, Holland-Letz T, Stucker M (2006) Electrical ear acupuncture reduces histamine-induced itch (alloknesis). Acta Derm Venereol 86:399–403PubMedCrossRefGoogle Scholar
  391. 391.
    Pfab F, Huss-Marp J, Gatti A, Fuqin J, Athanasiadis GI, Irnich D et al (2010) Influence of acupuncture on type I hypersensitivity itch and the wheal and flare response in adults with atopic eczema—a blinded, randomized, placebo-controlled, crossover trial. Allergy 65:903–910PubMedCrossRefGoogle Scholar
  392. 392.
    Pfab F, Kirchner MT, Huss-Marp J, Schuster T, Schalock PC, Fuqin J et al (2012) Acupuncture compared with oral antihistamine for type I hypersensitivity itch and skin response in adults with atopic dermatitis: a patient- and examiner-blinded, randomized, placebo-controlled, crossover trial. Allergy 67:566–573PubMedPubMedCentralCrossRefGoogle Scholar
  393. 393.
    Napadow V, Li A, Loggia ML, Kim J, Schalock PC, Lerner E et al (2014) The brain circuitry mediating antipruritic effects of acupuncture. Cereb Cortex 24:873–882PubMedCrossRefGoogle Scholar
  394. 394.
    Chida Y, Steptoe A, Hirakawa N, Sudo N, Kubo C (2007) The effects of psychological intervention on atopic dermatitis. A systematic review and meta-analysis. Int Arch Allergy Immunol 144:1–9PubMedCrossRefGoogle Scholar
  395. 395.
    Lavda AC, Webb TL, Thompson AR (2012) A meta-analysis of the effectiveness of psychological interventions for adults with skin conditions. Br J Dermatol 167:970–979PubMedCrossRefGoogle Scholar
  396. 396.
    Azrin NH, Nunn RG (1973) Habit-reversal: a method of eliminating nervous habits and tics. Behav Res Ther 11:619–628PubMedCrossRefGoogle Scholar
  397. 397.
    Rosenbaum MS, Ayllon T (1981) The behavioral treatment of neurodermatitis through habit-reversal. Behav Res Ther 19:313–318PubMedCrossRefGoogle Scholar
  398. 398.
    Noren P (1995) Habit reversal: a turning point in the treatment of atopic dermatitis. Clin Exp Dermatol 20:2–5PubMedCrossRefGoogle Scholar
  399. 399.
    Melin L, Frederiksen T, Noren P, Swebilius BG (1986) Behavioural treatment of scratching in patients with atopic dermatitis. Br J Dermatol 115:467–474PubMedCrossRefGoogle Scholar
  400. 400.
    Noren P, Melin L (1989) The effect of combined topical steroids and habit-reversal treatment in patients with atopic dermatitis. Br J Dermatol 121:359–366PubMedCrossRefGoogle Scholar
  401. 401.
    Ehlers A, Stangier U, Gieler U (1995) Treatment of atopic dermatitis: a comparison of psychological and dermatological approaches to relapse prevention. J Consult Clin Psychol 63:624–635PubMedCrossRefGoogle Scholar
  402. 402.
    van Os-Medendorp H, Eland-de Kok PC, Ros WJ, Bruijnzeel-Koomen CA, Grypdonck M (2007) The nursing programme ‘Coping with itch’: a promising intervention for patients with chronic pruritic skin diseases. J Clin Nurs 16:1238–1246PubMedCrossRefGoogle Scholar
  403. 403.
    Evers AW, Duller P, de Jong EM, Otero ME, Verhaak CM, van der Valk PG et al (2009) Effectiveness of a multidisciplinary itch-coping training programme in adults with atopic dermatitis. Acta Derm Venereol 89:57–63PubMedCrossRefGoogle Scholar
  404. 404.
    Balkrishnan R (2005) The importance of medication adherence in improving chronic-disease related outcomes: what we know and what we need to further know. Med Care 43:517–520PubMedCrossRefGoogle Scholar
  405. 405.
    Hodari KT, Nanton JR, Carroll CL, Feldman SR, Balkrishnan R (2006) Adherence in dermatology: a review of the last 20 years. J Dermatolog Treat 17:136–142PubMedCrossRefGoogle Scholar
  406. 406.
    Elwyn G, Edwards A, Britten N (2003) What information do patients need about medicines? “Doing prescribing”: how doctors can be more effective. BMJ 327:864–867PubMedPubMedCentralCrossRefGoogle Scholar
  407. 407.
    Balkrishnan R, Carroll CL, Camacho FT, Feldman SR (2003) Electronic monitoring of medication adherence in skin disease: results of a pilot study. J Am Acad Dermatol 49:651–654PubMedCrossRefGoogle Scholar
  408. 408.
    Furue M, Onozuka D, Takeuchi S, Murota H, Sugaya M, Masuda K et al (2015) Poor adherence to oral and topical medication in 3096 dermatological patients as assessed by the Morisky Medication Adherence Scale-8. Br J Dermatol 172:272PubMedCrossRefGoogle Scholar
  409. 409.
    Fischer G (1996) Compliance problems in paediatric atopic eczema. Australas J Dermatol 37(Suppl 1):S10–S13PubMedCrossRefGoogle Scholar
  410. 410.
    Charman CR, Venn AJ, Williams HC (2004) The patient-oriented eczema measure: development and initial validation of a new tool for measuring atopic eczema severity from the patients’ perspective. Arch Dermatol 140:1513–1519PubMedCrossRefGoogle Scholar
  411. 411.
    Cork MJ, Britton J, Butler L, Young S, Murphy R, Keohane SG (2003) Comparison of parent knowledge, therapy utilization and severity of atopic eczema before and after explanation and demonstration of topical therapies by a specialist dermatology nurse. Br J Dermatol 149:582–589PubMedCrossRefGoogle Scholar
  412. 412.
    Chisolm SS, Taylor SL, Balkrishnan R, Feldman SR (2008) Written action plans: potential for improving outcomes in children with atopic dermatitis. J Am Acad Dermatol 59:677–683PubMedCrossRefGoogle Scholar
  413. 413.
    Ntuen E, Taylor SL, Kinney M, O’Neill JL, Krowchuk DP, Feldman SR (2010) Physicians’ perceptions of an eczema action plan for atopic dermatitis. J Dermatolog Treat 21:28–33PubMedCrossRefGoogle Scholar
  414. 414.
    Gonzales AJ, Bowman JW, Fici GJ, Zhang M, Mann DW, Mitton-Fry M (2014) Oclacitinib (APOQUEL((R))) is a novel Janus kinase inhibitor with activity against cytokines involved in allergy. J Vet Pharmacol Ther 37:317–324PubMedPubMedCentralCrossRefGoogle Scholar
  415. 415.
    Kumar N, Goldminz AM, Kim N, Gottlieb AB (2013) Phosphodiesterase 4-targeted treatments for autoimmune diseases. BMC Med 11:96. doi: 10.1186/1741-7015-11-96 PubMedPubMedCentralCrossRefGoogle Scholar
  416. 416.
    Akama T, Baker SJ, Zhang YK, Hernandez V, Zhou H, Sanders V et al (2009) Discovery and structure-activity study of a novel benzoxaborole anti-inflammatory agent (AN2728) for the potential topical treatment of psoriasis and atopic dermatitis. Bioorg Med Chem Lett 19:2129–2132PubMedCrossRefGoogle Scholar
  417. 417.
    Nazarian R, Weinberg JM (2009) AN-2728, a PDE4 inhibitor for the potential topical treatment of psoriasis and atopic dermatitis. Curr Opin Investig Drugs 10:1236–1242PubMedGoogle Scholar
  418. 418.
    Furue M, Kitahara Y, Akama H, Hojo S, Hayashi N, Nakagawa H (2014) Safety and efficacy of topical E6005, a phosphodiesterase 4 inhibitor, in Japanese adult patients with atopic dermatitis: results of a randomized, vehicle-controlled, multicenter clinical trial. J Dermatol 41:577PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Nicholas K. Mollanazar
    • 1
  • Peter K. Smith
    • 2
  • Gil Yosipovitch
    • 1
  1. 1.Department of Dermatology and Itch CenterTemple University School of MedicinePhiladelphiaUSA
  2. 2.Clinical MedicineGriffith UniversitySouthportAustralia

Personalised recommendations