Clinical Reviews in Allergy & Immunology

, Volume 47, Issue 1, pp 56–64 | Cite as

Cytokine Gene Considerations in Giant Cell Arteritis: IL10 Promoter Polymorphisms and a Review of the Literature

  • Lorena Alvarez-Rodriguez
  • Marcos Lopez-Hoyos
  • Eugenio Carrasco-Marín
  • Gaurav Tripathi
  • Pedro Muñoz Cacho
  • Cristina Mata
  • Jaime Calvo-Alen
  • Maite Garcia-Unzueta
  • Elena Aurrecoechea
  • Victor Manuel Martinez-Taboada


Polymorphisms of cytokine genes have been investigated as susceptibility markers of giant cell arteritis (GCA). Here, we have reviewed the evidence to date and especially addressed the functional consequences of IL10 (−592C/A and −1082A/G) gene polymorphisms and their association with susceptibility to and disease phenotype in GCA. A total number of 71 patients with GCA and 124 age-matched controls were genotyped using allele-specific primers and restriction fragment length polymorphism analysis. As previous studies in GCA showed inconsistent results, a meta-analysis of the existing studies was also conducted by using both fixed and random-effects models. The levels of circulating IL10 and the production of IL10 by peripheral blood mononuclear cells after in vitro stimulation were studied by Cytometric Bead Array. Data showed no significant differences in genotype or allele frequency distribution between patients and controls. The clinical characteristics and prognosis of these patients were also unrelated to the presence of these polymorphisms. However, the meta-analysis found a significant association of IL10 −592C/A polymorphism with susceptibility to GCA (odds ratio 2.205 (95 % confidence interval 1.074–4.524); p = 0.031). In both patients and age-matched controls, no differences in circulating IL10 levels or IL10 production were observed depending on the genotypes of the IL10 gene. In conclusion, although our cohort results do not support the impact of IL10 variants in susceptibility or clinical phenotype of GCA patients, the meta-analysis revealed a significant association of −592C/A polymorphism with susceptibility to GCA. In this population, no functional association was found between IL10 gene variants and IL10 production.


Cytokines Giant cell arteritis Interleukin 10 IL10 gene polymorphism Meta-analysis 



This work was supported by grants from Fundación Marqués de Valdecilla—IFIMAV and Fondo de Investigación Sanitaria (PI050475 and PI080098). LA-R and GT were supported by a grant for Research Aid from Fundación Marqués de Valdecilla—IFIMAV. We are especially grateful to Iñaki Beares and Marta Gonzalez (supported by Fundación Marqués de Valdecilla—IFIMAV) and Carolina Santa Cruz (supported by a grant for Research Aid from Schering-Ploug, Spain) for their helpful technical assistance. We would like to thank all the patients and controls included in the present study.

Conflict of Interest

No financial interest has been disclosed by any of the authors.


  1. 1.
    Borchers AT, Gershwin ME (2012) Giant cell arteritis: a review of classification, pathophysiology, geoepidemiology and treatment. Autoimmun Rev 11:A544–A554PubMedCrossRefGoogle Scholar
  2. 2.
    Martínez-Taboada VM, Goronzy JJ, Weyand CM (1994) Conceptos actuales sobre la patogenia de la arteritis de células gigantes. Rev Esp Rheumatol 2:293–299Google Scholar
  3. 3.
    Lee JL, Naguwa SM, Cheema GS, Gershwin ME (2008) The geo-epidemiology of temporal (giant cell). Arthritis Clin Rev Allerg Immunol 35:88–95CrossRefGoogle Scholar
  4. 4.
    Martinez-Taboada VM, Alvarez L, RuizSoto M, Marin-Vidalled MJ, Lopez-Hoyos M (2008) Giant cell arteritis and polymyalgia rheumatica: role of cytokines in the pathogenesis and implications for treatment. Cytokine 44:207–220PubMedCrossRefGoogle Scholar
  5. 5.
    Gonzalez-Gay MA, Hajeer AH, Dababneh A et al (2002) IL-6 promoter polymorphism at position −174 modulates the phenotypic expression of polymyalgia rheumatica in biopsy-proven giant-cell arteritis. Clin Exp Rheumatol 20:179–184PubMedGoogle Scholar
  6. 6.
    Salvarani C, Casali B, Farnetti E et al (2005) Interleukin-6 promoter polymorphism at position −174 in giant cell arteritis. J Rheumatol 2:2173–2177Google Scholar
  7. 7.
    Boiardi L, Casali B, Farnetti E et al (2006) Relationship between interleukin-6 promoter polymorphisms at position −174, IL-6 serum levels, and risk of relapse/recurrence in polymyalgia rheumatica. J Rheumatol 33:703–708PubMedGoogle Scholar
  8. 8.
    Mattey DL, Hajeer AH, Dababneh A et al (2000) Association of giant-cell arteritis and polymyalgia rheumatica with different tumor necrosis factor microsatellite polymorphisms. Arthritis Rheum 43:1749–1755PubMedCrossRefGoogle Scholar
  9. 9.
    Gonzalez-Gay MA, Hajeer AH, Dababneh A et al (2004) Interferon-gamma gene microsatellite polymorphisms in patients with biopsy-proven giant cell arteritis and isolated polymyalgia rheumatica. Clin Exp Rheumatol 22(Suppl 36):S18–S20PubMedGoogle Scholar
  10. 10.
    Amoli MM, Gonzalez-Gay MA, Zeggini E, Salway F, Garcia-Porrua C, Ollier WER (2004) Epistatic interactions between HLA-DRB1 and interleukin 4, but not interferon-gamma, increase susceptibility to giant cell arteritis. J Rheumatol 31:2413–2417PubMedGoogle Scholar
  11. 11.
    Boiardi L, Casali B, Farnetti E et al (2006) Interleukin-10 promoter polymorphisms in giant cell arteritis. Arthritis Rheum 54:4011–4017PubMedCrossRefGoogle Scholar
  12. 12.
    Rueda B, Roibas B, Martin J, Gonzalez-Gay MA (2007) Influence of interleukin 10 promoter polymorphisms in susceptibility to giant cell arteritis in northwestern Spain. J Rheumatol 34:1535–1539PubMedGoogle Scholar
  13. 13.
    Enjuanes A, Benavente Y, Hernández-Rodríguez J et al (2012) Association of NOS2 and potential effect of VEGF, IL6, CCL2 and IL1RN polymorphisms and haplotypes on susceptibility to GCA—a simultaneous study of 130 potentially functional SNPs in 14 candidate genes. Rheumatology 51:841–851PubMedCrossRefGoogle Scholar
  14. 14.
    Palomino-Morales RJ, Vazquez-Rodriguez TR, Torres O et al (2010) Association between IL-18 gene polymorphisms and biopsy-proven giant cell arteritis. Arthritis Res Ther 12:R51PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Alvarez-Rodriguez L, Martínez-Taboada VM, López-Hoyos M et al (2009) Interleukin-12 gene polymorphism in patients with giant cell arteritis, polymyalgia rheumatica and elderly-onset rheumatoid arthritis. Clin Exp Rheumatol 27(1 Suppl 52):S14–S18PubMedGoogle Scholar
  16. 16.
    Alvarez-Rodríguez L, López-Hoyos M, Carrasco-Marín E et al (2012) Analysis of the rs20541 (R130Q) polymorphism in the IL-13 gene in patients with elderly-associated chronic inflammatory diseases. Rheumatol Clin 8:321–327Google Scholar
  17. 17.
    Alvarez-Rodriguez L, Carrasco-Marin E, Lopez-Hoyos M et al (2009) Interleukin-1RN gene polymorphisms in elderly patients with rheumatic inflammatory chronic conditions: association of IL-1RN*2/2 genotype with polymyalgia rheumatica. Hum Immunol 70:49–54PubMedCrossRefGoogle Scholar
  18. 18.
    Rodriguez-Rodriguez L, Castañeda S, Vázquez-Rodríguez TR et al (2011) Role of the rs6822844 gene polymorphism at the IL2-IL21 region in biopsy-proven giant cell arteritis. Clin Exp Rheumatol 29(1 Suppl 64):S12–S16PubMedGoogle Scholar
  19. 19.
    Weyand CM, Hicok KC, Hunder GG, Goronzy JJ (1992) The HLA-DRB1 locus as a genetic component in giant cell arteritis. Mapping of a disease-linked sequence motif to the antigen binding site of the HLA-DR molecule. J Clin Invest 90:2355–2361PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Jacobsen S, Baslund B, Madsen HO, Tvede N, Svejgaard A, Garred P (2002) Mannose-binding lectin variant alleles and HLA-DR4 alleles are associated with giant cell arteritis. J Rheumatol 29:2148–2153PubMedGoogle Scholar
  21. 21.
    Martínez-Taboada VM, Bartolome MJ, Lopez-Hoyos M et al (2004) HLA-DRB1 allele distribution in polymyalgia rheumatica and giant cell arteritis: influence on clinical subgroups and prognosis. Semin Arthritis Rheum 34:454–464CrossRefGoogle Scholar
  22. 22.
    Alvarez-Rodriguez L, Muñoz-Cacho P, Lopez-Hoyos M et al (2011) Toll-like receptor 4 gene polymorphism and giant cell arteritis susceptibility: accumulative meta-analysis. Autoimmun Rev 10:790–792PubMedCrossRefGoogle Scholar
  23. 23.
    Mosser DA, Zhang X (2008) Interleukin-10: new perspectives on an old cytokine. Immunol Rev 226:205–218PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Eskdale J, Gallagher G, Verweij CL, Keijsers V, Westendorp RG, Huizinga TW (1998) Interleukin 10 secretion in relation to human IL-10 locus haplotypes. Proc Natl Acad Sci U S A 95:9465–9470PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Eskdale J, Keijsers V, Huizinga T, Gallagher G (1999) Microsatellite alleles and single nucleotide polymorphisms (SNP) combine to form four major haplotype families at the human interleukin-10 (IL-10) locus. Genes Immun 1:151–155PubMedCrossRefGoogle Scholar
  26. 26.
    Koss K, Satsangi J, Fanning GC, Welsh KI, Jewell DP (2000) Cytokine (TNF alpha, LT alpha and IL-10) polymorphisms in inflammatory bowel diseases and normal controls: differential effects on production and allele frequencies. Genes Immun 1:185–190PubMedCrossRefGoogle Scholar
  27. 27.
    Kurreeman FA, Schonkeren JJ, Heijmans BT, Toes RE, Huizinga TW (2004) Transcription of the IL10 gene reveals allele-specific regulation at the mRNA level. Hum Mol Genet 13:1755–1756PubMedCrossRefGoogle Scholar
  28. 28.
    Warlé MC, Farhan A, Metselaar HJ et al (2001) In vitro cytokine production of TNFalpha and IL-13 correlates with acute liver transplant rejection. Hum Immunol 62:1258–1265PubMedCrossRefGoogle Scholar
  29. 29.
    Heiskanen M, Kähönen M, Hurme M et al (2010) Polymorphism in the IL10 promoter region and early markers of atherosclerosis: the Cardiovascular Risk in Young Finns Study. Atherosclerosis 208:190–196PubMedCrossRefGoogle Scholar
  30. 30.
    Hunder GG, Bloch DA, Michel BA et al (1990) The American College of Rheumatology 1990 criteria for the classification of giant cell arteritis. Arthritis Rheum 33:1122–1128PubMedCrossRefGoogle Scholar
  31. 31.
    Martínez-Taboada V, Brack A, Hunder GG, Goronzy JJ, Weyand CM (1996) The inflammatory infiltrate in giant cell arteritis selects against B lymphocytes. J Rheumatol 23:1011–1014PubMedGoogle Scholar
  32. 32.
    Martinez-Valle F, Solans-Laqué R, Bosch-Gil J, Vilardell-Tarrés M (2010) Aortic involvement in giant cell arteritis. Autoimmun Rev 9:521–524PubMedCrossRefGoogle Scholar
  33. 33.
    Chuang T-Y, Hunder GG, Ilstrup DM, Kurland LT (1982) Polymyalgia rheumatica: a 10-year epidemiologic and clinical study. Ann Intern Med 97:672–680PubMedCrossRefGoogle Scholar
  34. 34.
    Armona J, Rodríguez-Valverde V, González-Gay MA et al (1995) Arteritis de células gigantes. Estudio de 191 pacientes. Med Clin (Barc) 105:734–737Google Scholar
  35. 35.
    Brack A, Martínez-Taboada VM, Stanson R, Goronzy JJ, Weyand CM (1999) Disease pattern in cranial and large-vessel giant cell arteritis. Arthritis Rheum 42:311–317PubMedCrossRefGoogle Scholar
  36. 36.
    Alvarez-Rodríguez L, Lopez-Hoyos M, Mata C et al (2010) Circulating cytokines in active polymyalgia rheumatica. Ann Rheum Dis 69:263–269PubMedCrossRefGoogle Scholar
  37. 37.
    Borenstein M, Hedges LV, Higgins JPT, Rothstein HR (2009) Publication bias. In: Borenstein M, Hedges LV, Higgins JPT, Rothstein HR (eds) Introduction to meta-analysis. Wiley, Chichester, pp 277–292CrossRefGoogle Scholar
  38. 38.
    Egger MD, Smith G, Schneider M (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315:629–634PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Higgins JP, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analysis. BMJ 327:557–560PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Borenstein M, Hedges LV, Higgins JPT, Rothstein HR (2005) Comprehensive meta analysis version 2. Biostat, EnglewoodGoogle Scholar
  41. 41.
    Weyand CM, Tetzlaff N, Bjornsson J, Brack A, Younge B, Goronzy JJ (1997) Disease patterns and tissue cytokine profiles in giant cell arteritis. Arthritis Rheum 40:19–26PubMedCrossRefGoogle Scholar
  42. 42.
    Scumpia PO, Moldawer LL (2005) Biology of interleukin-10 and its regulatory roles in sepsis syndromes. Crit Care Med 33(12 suppl):S468–S471PubMedCrossRefGoogle Scholar
  43. 43.
    Warle MC, Farhan A, Metselaar HJ et al (2003) Are cytokine polymorphisms related to in vitro cytokine production profiles? Liver Transpl 9:170–181PubMedCrossRefGoogle Scholar
  44. 44.
    Reuss E, Fimmers R, Kruger A, Becker C, Rittner C, Höhler T (2002) Differential regulation of interleukin-10 production by genetic and environmental factors—a twin study. Genes Immun 3:407–413PubMedCrossRefGoogle Scholar
  45. 45.
    Hajeer AH, Lazarus M, Turner D et al (1998) IL-10 gene promoter polymorphisms in rheumatoid arthritis. Scand J Rheumatol 27:142–145PubMedCrossRefGoogle Scholar
  46. 46.
    Eskdale J, Kube D, Gallagher G (1996) A second polymorphic dinucleotide repeat in the 5′ flanking region of the human IL10 gene. Immunogenetics 45:82–83PubMedCrossRefGoogle Scholar
  47. 47.
    Ngalamika O, Zhang Y, Yin H, Zhao M, Gershwin ME, Lu Q (2012) Epigenetics, autoimmunity and hematologic malignancies: a comprehensive review. J Autoimmun 39:451–465PubMedCrossRefGoogle Scholar
  48. 48.
    Karouzakis E, Gay RE, Gay S, Neidhart M (2011) Epigenetic deregulation in rheumatoid arthritis. Adv Exp Med Biol 711:137–149PubMedCrossRefGoogle Scholar
  49. 49.
    Selmi C (2011) Novel challenges for the allergist. Clin Rev Allergy Immunol 41:1–3PubMedCrossRefGoogle Scholar
  50. 50.
    Thabet Y, Canas F, Ghedira I, Youinou P, Mageed RA, Renaudineau Y (2012) Altered patterns of epigenetic changes in systemic lupus erythematosus and auto-antibody production: is there a link? J Autoimmun 39:154–160PubMedCrossRefGoogle Scholar
  51. 51.
    Bakalov VK, Gutin L, Cheng CM, Zhou J, Sheth P, Shah K, Arepalli S, Vanderhoof V, Nelson LM, Bondy CA (2012) Autoimmune disorders in women with turner syndrome and women with karyotypically normal primary ovarian insufficiency. J Autoimmun 38:315–321PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Zhang Y, Zhao M, Sawalha AH, Richardson B, Lu Q (2013) Impaired DNA methylation and its mechanisms in CD4(+)T cells of systemic lupus erythematosus. J Autoimmun 41:92–99PubMedCrossRefGoogle Scholar
  53. 53.
    De Santis M, Selmi C (2012) The therapeutic potential of epigenetics in autoimmune diseases. Clin Rev Allergy Immunol 42:92–101PubMedCrossRefGoogle Scholar
  54. 54.
    Lu Q, Renaudineau Y, Cha S, Ilei G, Brooks WH, Selmi C, Tzioufas A, Pers JO, Bombardieri S, Gershwin ME, Gay S, Youinou P (2010) Epigenetics in autoimmune disorders: highlights of the 10th Sjogren’s syndrome symposium. Autoimmun Rev 9:627–630PubMedCrossRefGoogle Scholar
  55. 55.
    Zouali M (2011) Epigenetics in lupus. Ann N Y Acad Sci 1217:154–165PubMedCrossRefGoogle Scholar
  56. 56.
    Cui Y, Sheng Y, Zhang X (2013) Genetic susceptibility to SLE: recent progress from GWAS. J Autoimmun 41:25–33PubMedCrossRefGoogle Scholar
  57. 57.
    Mells GF, Kaser A, Karlsen TH (2013) Novel insights into autoimmune liver diseases provided by genome-wide association studies. J Autoimmun 46:41–54PubMedCrossRefGoogle Scholar
  58. 58.
    Hewagama A, Gorelik G, Patel D, Liyanarachchi P, McCune WJ, Somers E, Gonzalez-Rivera T, Michigan Lupus Cohort, Strickland F, Richardson B (2013) Overexpression of X-linked genes in T cells from women with lupus. J Autoimmun 41:60–71PubMedCentralPubMedCrossRefGoogle Scholar
  59. 59.
    Lu Q (2013) The critical importance of epigenetics in autoimmunity. J Autoimmun 41:1–5PubMedCrossRefGoogle Scholar
  60. 60.
    Jeffries MA, Dozmorov M, Tang Y, Merrill JT, Wren JD, Sawalha AH (2011) Genome-wide DNA methylation patterns in CD4+ T cells from patients with systemic lupus erythematosus. Epigenetics 6:593–601PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Lorena Alvarez-Rodriguez
    • 1
  • Marcos Lopez-Hoyos
    • 2
  • Eugenio Carrasco-Marín
    • 2
  • Gaurav Tripathi
    • 1
  • Pedro Muñoz Cacho
    • 3
  • Cristina Mata
    • 4
  • Jaime Calvo-Alen
    • 4
  • Maite Garcia-Unzueta
    • 5
  • Elena Aurrecoechea
    • 4
  • Victor Manuel Martinez-Taboada
    • 1
  1. 1.Division of Rheumatology, Hospital Universitario Marqués de Valdecilla—IFIMAV, Facultad de MedicinaUniversidad de CantabriaSantanderSpain
  2. 2.Division of ImmunologyHospital Universitario Marqués de Valdecilla—IFIMAVSantanderSpain
  3. 3.Gerencia Atención PrimariaServicio Cántabro de SaludSantanderSpain
  4. 4.Sección de ReumatologíaHospital de SierrallanaTorrelavegaSpain
  5. 5.Division of BiochemistryHospital Universitario Marqués de Valdecilla—IFIMAVSantanderSpain

Personalised recommendations