Clinical Reviews in Allergy & Immunology

, Volume 46, Issue 2, pp 145–153 | Cite as

New Genetic Discoveries and Primary Immune Deficiencies



The field of immunology has undergone recent discoveries of genetic causes for many primary immunodeficiency diseases (PIDD). The ever-expanding knowledge has led to increased understanding behind the pathophysiology of these diseases. Since these diseases are rare, the patients are frequently misdiagnosed early in the presentation of their illnesses. The identification of new genes has increased our opportunities for recognizing and making the diagnosis in patients with PIDD before they succumb to infections that may result secondary to their PIDD. Some mutations lead to a variety of presentations of severe combined immunodeficiency (SCID). The myriad and ever-growing genetic mutations which lead to SCID phenotypes have been identified in recent years. Other mutations associated with some genetic syndromes have associated immunodeficiency and are important for making the diagnosis of primary immunodeficiency in patients with some syndromes, who may otherwise be missed within the larger context of their syndromes. A variety of mutations also lead to increased susceptibility to infections due to particular organisms. These patterns of infections due to specific organisms are important keys in properly identifying the part of the immune system which is affected in these patients. This review will discuss recent genetic discoveries that enhance our understanding of these complex diseases.


Primary immunodeficiencies Genetics Mutations Immune system 


  1. 1.
    Al-Herz W, Bousfiha A, Casanova JL et al (2011) Primary immunodeficiency diseases: an update on the classification from the International Union of Immunological Societies Expert Committee for Primary Immunodeficiency. Front Immun 2:1–26CrossRefGoogle Scholar
  2. 2.
    Cossu F (2010) Genetics of SCID. Ital J Pediatr 36:76–93PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    De Saint BG, Geissmann F, Flori E et al (2004) Severe combined immunodeficiency caused by deficiency in either the δ or the ε subunit of CD3. J Clin Invest 114:1512–1517CrossRefGoogle Scholar
  4. 4.
    Dadi HK, Simon AJ, Roifman CM (2003) Effect of CD3 delta deficiency on maturation of alpha/beta and gamma/delta T cell lineages in severe combined immunodeficiency. N Engl J Med 349:1821–1828PubMedCrossRefGoogle Scholar
  5. 5.
    Gil J, Busto EM, Garcillan B et al (2011) A leaky mutation in CD3D differentially affects αβ and γδ T cells and leads to a Tαβ-Tγδ + B + NK + human SCID. J Clin Invest 121:3872–3876PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Siegers GM, Swamy M, Fernandez-Malave E et al (2007 Oct 29) Different composition of the human and the mouse gamma delta T cell receptor explains different phenotypes of CD3 gamma and CD3 delta immunodeficiencies. J Exp Med 204(11):2537–2544Google Scholar
  7. 7.
    Rieux-Laucat F, Hivroz C, Lim A et al (2006) Inherited and somatic CD3 zeta mutations in a patient with T-cell deficiency. N Engl J Med 354:1913–1921PubMedCrossRefGoogle Scholar
  8. 8.
    Roberts JL, Lauritsen JP, Cooney M et al (2007) T-B + NK + severe combined immunodeficiency caused by complete deficiency of the CD3 zeta subunit of the T-cell antigen receptor complex. Blood 109(8):3198–3206PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Kalman L, Lindegren ML, Kobrynski L et al (2004) Mutations in genes required for T-cell development: IL7R, CD45, IL2RG, JAK3, RAG1, RAG2, ARTEMIS and ADA and severe combined immunodeficiency: HuGE review. Genet Med 6:16–26PubMedCrossRefGoogle Scholar
  10. 10.
    Tchilian EZ, Wallace DL, Wells RS et al (2001) A deletion in the gene encoding the CD45 antigen in a patient with SCID. J Immunol 166:1308–1313PubMedGoogle Scholar
  11. 11.
    Kung C, Pingel JT, Heikinheimo M et al (2000) Mutations in the tyrosine phosphatase CD45 gene in a child with severe combined immunodeficiency disease. Nat Med 6:343–345PubMedCrossRefGoogle Scholar
  12. 12.
    Roberts JL, Buckley RH, Luo B et al (2012) CD45-deficient severe combined immunodeficiency caused by uniparental disomy. Proc Natl Acad Sci USA 109:10456–10461PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Shiow LR, Roadcap DW, Paris K et al (2008) The actin regulator coronin-1A is mutated in a thymic egress deficient mouse strain and in a T-B + NK + SCID patient. Nat Immunol 9:1307–1315PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Goldman FD, Ballas ZK, Schutte BC et al (1998) Defective expression of p56lck in an infant with severe combined immunodeficiency. J Clin Invest 102:421–429PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Hauck F, Randriamampita C, Martin E et al (2012) Primary T-cell immunodeficiency with immunodysregulation caused by autosomal recessive LCK deficiency. J Allergy Clin Immunol 130:1144–1152PubMedCrossRefGoogle Scholar
  16. 16.
    Hubert P, Bergeron F, Ferreira V et al (2000) Defective p56Lck activity in T cells from an adult patient with idiopathic CD4+ lymphocytopenia. Int Immunol 12:449–457PubMedCrossRefGoogle Scholar
  17. 17.
    Pignata C, Fiore M, Guzzetta V et al (1996) Congenital alopecia and nail dystrophy associated with severe functional T-cell immunodeficiency in two sibs. Am J Med Genet 65:167–170PubMedCrossRefGoogle Scholar
  18. 18.
    Adriani M, Martinez-Mir A, Fusco F et al (2004) Ancestral founder mutation of the nude (FOXN1) gene in congenital severe combined immunodeficiency associated with alopecia in southern Italy population. Ann Hum Genet 68:265–268PubMedCrossRefGoogle Scholar
  19. 19.
    Amorosi S, D’Armiento M, Calcagno G et al (2008) FOXN1 homozygous mutation associated with anencephaly and severe neural tube defect in human athymic Nude/SCID fetus. Clin Genet 73:380–384PubMedCrossRefGoogle Scholar
  20. 20.
    van der Burg M, Ijspeert H, Verkaik N et al (2009) A DNA-PKcs mutation in a radiosensitive T-B-SCID patient inhibits Artemis activation and nonhomologous end-joining. J Clin Invest 119:91–98PubMedCentralPubMedGoogle Scholar
  21. 21.
    van der Burg M, van Dongen JJ, van Gent DC (2009) DNA-PKcs deficiency in human: long predicted, finally found. Curr Opin Allergy Clin Immunol 9:503–509PubMedCrossRefGoogle Scholar
  22. 22.
    Dvorak CC, Cowan MJ (2010) Radiosensitive severe combined immunodeficiency disease. Immunol Allergy Clin N Am 30:125–141CrossRefGoogle Scholar
  23. 23.
    Van der Burg M, van Veelen LR, Verkalk NS et al (2006) A new type of radiosensitive T−B−NK+ severe combined immunodeficiency caused by a LIG4 mutation. J Clin Invest 116:137–145PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Enders A, Fisch P, Schwarz K et al (2006) A severe form of human combined immunodeficiency due to mutations in DNA ligase IV. J Immunol 176:5060–5068PubMedGoogle Scholar
  25. 25.
    Buck D, Malivert E, de Chasseval R, et al. (2006) Cernunnos, a novel nonhomologous end-joining factor, is mutated in human immunodeficiency with microcephaly. Cell 124:287–299.Google Scholar
  26. 26.
    Turul T, Tezcan I, Sanal O (2011) Cernunnos deficiency: a case report. J Investig Allergol Clin Immunol 21:313–316PubMedGoogle Scholar
  27. 27.
    Pannicke U, Honig M, Hess I et al (2009) Reticular dysgenesis (aleukocytosis) is caused by mutations in the gene encoding mitochondrial adenylate kinase 2. Nat Genet 41:101–105PubMedCrossRefGoogle Scholar
  28. 28.
    Turul T, Tezcan I, Artac H et al (2009) Clinical heterogeneity can hamper the diagnosis of patients with ZAP70 deficiency. Eur J Pediatr 168:87–93PubMedCrossRefGoogle Scholar
  29. 29.
    Ouederni M, Vincent QB, Frange P et al (2011) Major histocompatability complex class II expression deficiency caused by a RFXANK founder mutation: a survey of 35 patients. Blood 118:5108–5118PubMedCrossRefGoogle Scholar
  30. 30.
    Feske S, Picard C, Fischer A (2010) Immunodeficiency due to mutations in ORAI1 and STIM1. Clin Immunol 135:169–182PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Schuetz C, Huck K, Gudowius S et al (2008) An immunodeficiency disease with RAG mutations and granulomas. N Engl J Med 358:2030–2038PubMedCrossRefGoogle Scholar
  32. 32.
    Heimall J, Keller M, Saltman R et al (2012) Diagnosis of 22q11.2 deletion syndrome and artemis deficiency in two children with T−B−NK+ immunodeficiency. J Clin Immunol 32:1141–1144PubMedCrossRefGoogle Scholar
  33. 33.
    Stepensky P, Weintraub M, Yanir A et al (2011) IL2-inducible T-cell kinase deficiency: clinical presentation and therapeutic approach. Haematologica 96:472–476PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Huck K, Feyen O, Niehues T et al (2009) Girls homozygous for an IL-2 inducible T cell kinase mutation that leads to protein deficiency develop fatal EBV-associated lymphoproliferation. J Clin Invest 119:1350–1358PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Li FY, Chaigne-Delalande B, Kanellopoulou C et al (2012) Signaling role for Mg2+ revealed by immunodeficiency due to loss of Mag T1. Nature 475:471–476CrossRefGoogle Scholar
  36. 36.
    Hale JE, Bonilla FA, Pai SY et al (2010) Identification of an infant with severe combined immunodeficiency by newborn screening. J Allergy Clin Immunol 126:1073–1074PubMedCrossRefGoogle Scholar
  37. 37.
    Verbsky J, Thakar M, Routes J (2012) The Wisconsin approach to newborn screening for severe combined immunodeficiency. J Allergy Clin Immunol 129:622–627PubMedCrossRefGoogle Scholar
  38. 38.
    Puck JM (2011) The case for newborn screening for severe combined immunodeficiency and related disorders. Ann NY Acad Sci 124:108–117CrossRefGoogle Scholar
  39. 39.
    Roifman CM, Somech R, Kavadas F et al (2012) Defining combined immunodeficiency. J Allergy Clin Immunol 130:177–183PubMedCrossRefGoogle Scholar
  40. 40.
    Cole TS, Cant AJ (2010) Clinical experience in T cell deficient patients. Allergy Asthma Clin Immunol 6:9–19PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Jyonouchi S, McDonald-McGinn DM, Bale S et al (2009) CHARGE (Coloboma, heart defect, atresia choanae, retarded growth and development, genital hypoplasia, ear anomalies/deafness) syndrome and chromosome 22q11.2 deletion syndrome. A comparison of immunologic and nonimmunologic phenotypic features. Pediatrics 123:e871–e877PubMedCrossRefGoogle Scholar
  42. 42.
    Grimbacher B, Holland SM, Gallin JI et al (1999) Hyper-IgE syndrome with recurrent infections—an autosomal dominant multisystem disorder. N Engl J Med 340:692–702PubMedCrossRefGoogle Scholar
  43. 43.
    Holland SM, DeLeo FR, Elloumi HZ et al (2007) STAT3 mutations in the hyper-IgE syndrome. N Engl J Med 357:1608–1619PubMedCrossRefGoogle Scholar
  44. 44.
    Milner JD, Brenchley JM, Laurence A et al (2008) Impaired TH 17 cell differentiation in subjects with autosomal dominant hyper-IgE syndrome. Nature 452:773–776PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Ma CS, Chew GYJ, Simpson N et al (2008) Deficiency of TH 17 cells in hyper IgE syndrome due to mutations in STAT3. J Exp Med 205:1551–1557PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Engelhardt KR, McGhee S, Winkler S et al (2009) Large deletions and point mutations involving DOCK8 in the autosomal recessive form of the hyper-IgE Syndrome. J Allergy Clin Immunol 124:1289–1300PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Su HC (2012) DOCK8 (dedicator of cytokinesis 8) deficiency. Curr Opin Allergy Clin Immunol 10:515–520CrossRefGoogle Scholar
  48. 48.
    Zhang Q, Su HC (2011) Hyperimmunoglobulin E syndromes in pediatrics. Curr Opin Pediatr 23:653–658PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Minegishi Y, Karasuyama H (2009 Feb) Defects in Jak-STAT-mediated cytokine signals cause hyper-IgE syndrome: lessons from a primary immunodeficiency. Int Immunol 21(2):105–112Google Scholar
  50. 50.
    Woellner C, Schaffer A, Puck JM et al (2007) The hyper IgE syndrome with mutations in TYK2. Immunity 26:535PubMedCrossRefGoogle Scholar
  51. 51.
    Casey JP, Nobbs M, McGettigan P et al (2012) Recessive mutations in MCM4/PRKDC cause a novel syndrome involving a primary immunodeficiency and disorder of DNA repair. J Med Genet 49:242–245PubMedCrossRefGoogle Scholar
  52. 52.
    Van Montfrans JM, Hoepelman AI, Otto S et al (2012) CD27 deficiency is associated with combined immunodeficiency and persistent symptomatic EBV viremia. J Allergy Clin Immunol 129:787–793PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Tassone L, Notorangelo LD, Bonomi V et al (2009) Clinical and genetic diagnosis of warts, hypogammaglobulinemia, infections andmyelokathesis syndrome in 10 patients. J Allergy Clin Immunol 123:1170–1173PubMedCrossRefGoogle Scholar
  54. 54.
    Bigley V, Collin M (2011 Aug) Dendritic cell, monocyte, B and NK lymphoid deficiency defines the lost lineages of a new GATA-2 dependent myelodysplastic syndrome. Haematologica 96:1081–1083Google Scholar
  55. 55.
    Hambleton S, Salem S, Bustamante J et al (2011) Mutations in IRF8 and human dendritic cell immunodeficiency. N Engl J Med 365:127–138PubMedCentralPubMedCrossRefGoogle Scholar
  56. 56.
    Van de Veerdonk FL, Plantinga TS, Hoischen A et al (2011) STAT1 mutations in autosomal dominant chronic mucocutaneous candidiasis. N Engl J Med 365:54–61PubMedCrossRefGoogle Scholar
  57. 57.
    Liu L, Okada S, Kong XF et al (2011) Gain-of-functon human STAT1 mutations impair IL-17 immunity and underlie chronic mucocutaneous candidiasis. J Exp Med 208:1635–1648PubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.
    Puel A, Cypowyj S, Buatamante J et al (2011) Chronic mucocutaneous candidiasis in humans with inborn errors of interleukin-17 immunity. Science 332:65–68PubMedCentralPubMedCrossRefGoogle Scholar
  59. 59.
    Puel A, Doffinger R, Natividad A et al (2010) Autoantibodies against IL-17A, IL-17F, and IL-22 in patients with chronic mucocutaneous candidiasis and autoimmune polyendocrine syndrome type I. J Exp Med 207:291–297PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Hanna S, Etzioni A (2011) New host defense mechanisms against Candida species clarify the basis of clinical phenotypes. J Allergy Clin Immunol 127:1433–1437PubMedCrossRefGoogle Scholar
  61. 61.
    Nahsen A, Dadi H, Bates A (2011) The L412F variant of Toll-like receptor 3 (TLR3) is associated with cutaneous candidiasis, increased susceptibility to cytomegalovirus, and autoimmunity. J Allergy Clin Immunol 127:528–531CrossRefGoogle Scholar
  62. 62.
    Casrouge A, Zhang SY, Eidenschenk C et al (2006 Oct) Herpes simplex virus encephalitis in human UNC-93B deficiency. Science 314:308–312Google Scholar
  63. 63.
    Pérez de Diego R, Sancho-Shimizu V et al (2010) Human TRAF3 adaptor molecule deficiency leads to impaired Toll-like receptor 3 response and susceptibility to herpes simplex encephalitis. Immunity 33:400–411PubMedCrossRefGoogle Scholar
  64. 64.
    Picard C, Casanova JL, Puel A (2011) Infectious diseases in patients with IRAK-4, MyD88, NEMO or Iκβα deficiency. Clin Microbiol Rev 24:490–497PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Division of Allergy and ImmunologyMiami Children’s HospitalMiamiUSA

Personalised recommendations