Clinical Reviews in Allergy & Immunology

, Volume 45, Issue 1, pp 117–130

IL-1β Biological Treatment of Familial Mediterranean Fever

  • Alessandra Soriano
  • Elena Verecchia
  • Antonella Afeltra
  • Raffaele Landolfi
  • Raffaele Manna


Familial Mediterranean fever (FMF) is a recessive, autosomal, auto-inflammatory disorder characterised by brief, recurring, self-limited episodes of fever and serositis resulting in abdominal, chest, joint and muscular pain; it is the most common of the periodic hereditary fevers and mostly affects Mediterranean populations. Daily administration of colchicine, a tricyclic alkaloid with anti-microtubule and anti-inflammatory properties, prevents the recurrence of FMF attacks and the development of secondary (AA) amyloidosis, the major long-tem complication of FMF. Colchicine is generally safe and well-tolerated; nevertheless, 5–10 % of FMF patients do not respond to conventional treatment, while another 2–5 % of patients are colchicine-intolerant because of toxicity issues, leading physicians to search for alternative therapeutic strategies. Recent new insights into the mechanisms of auto-inflammation add further proof to the efficacy of IL-1 targeting drugs in colchicine non-responder/intolerant FMF patients. A systematic study of relevant literature through PubMed/Medline was performed in order to identify publications reporting IL-1β biological treatment of FMF. Treatment methods, comorbidities, clinical response and side effects in literature case reports were analysed, as well as recent advances in the pathogenesis of auto-inflammation mechanisms in FMF and the causes of colchicine resistance or toxicity in common clinical practice. The paradigmatic experience of an FMF patient with severe FMF mutations (M694V/M694V) suffering from colchicine toxicity and successfully treated with anakinra is also reported. The present data show that anti-IL-1β biological treatment is actually a therapeutic option for FMF patients unresponsive or intolerant to colchicine or in FMF patients with concomitant vasculitis.


Familial Mediterranean fever (FMF) Auto-inflammatory syndromes Biological agents Interleukin (IL)-1β Anakinra Canakinumab Rilonacept 


  1. 1.
    Ben-Chetrit E, Levy M (1998) Familial Mediterranean fever. Lancet 351:659–664PubMedCrossRefGoogle Scholar
  2. 2.
    Soriano A, Manna R (2012) Familial Mediterranean fever. New phenotypes. Autoimmun Rev 12:31–37PubMedCrossRefGoogle Scholar
  3. 3.
    The French FMF Consortium (1997) A candidate gene for familial Mediterranean fever. Nat Genet 17:25–31CrossRefGoogle Scholar
  4. 4.
    The International FMF Consortium (1997) Ancient missense mutations in a new member of the RoRet gene family are likely to cause familial Mediterranean fever. Cell 90:797–807CrossRefGoogle Scholar
  5. 5.
    Centola M, Wood G, Frucht DM, Galon J, Aringer M, Farrell C et al (2000) The gene for familial Mediterranean fever, MEFV, is expressed in early leukocyte development and is regulated in response to inflammatory mediators. Blood 95:3223–3231PubMedGoogle Scholar
  6. 6.
    Diaz A, Hu C, Kastner DL, Schaner P, Reginato AM, Richards N et al (2004) Lipopolysaccharide-induced expression of multiple alternatively spliced MEFV transcripts in human synovial fibroblasts: a prominent splice isoform lacks the C-terminal domain that is highly mutated in familial Mediterranean fever. Arthritis Rheum 50:3679–3689PubMedCrossRefGoogle Scholar
  7. 7.
    Chae JJ, Aksentijevich I, Kastner DL (2009) Advances in the understanding of familial Mediterranean fever and possibilities for targeted therapy. Br J Haematol 146:467–478PubMedCrossRefGoogle Scholar
  8. 8.
    Dinarello CA (2010) IL-1: discoveries, controversies and future directions. Eur J Immunol 40:599–606PubMedCrossRefGoogle Scholar
  9. 9.
    Meinzer U, Quartier P, Alexandra JF, Hentgen V, Retornaz F, Konè-Paut I (2011) Interleukin-1 targeting drugs in familial Mediterranean fever: a case-series and a review of the literature. Semin Arthritis Rheum 41:265–271PubMedCrossRefGoogle Scholar
  10. 10.
    Cronstein BN, Terkeltaub R (2006) The inflammatory process of gout and its treatment. Arthritis Res Ther 8(Suppl 1):S3PubMedCrossRefGoogle Scholar
  11. 11.
    Nuki G (2008) Colchicine: a critical appraisal of its mechanism of action and efficacy in crystal-induced inflammation. Curr Rheumatol Rep 10:218–227PubMedCrossRefGoogle Scholar
  12. 12.
    Cerquaglia C, Diaco M, Nucera G, La Regina M, Montalto M, Manna R (2005) Pharmacological and clinical basis of treatment of familial Mediterranean fever (FMF) with colchicine or analogues: an update. Curr Drug Targets Inflamm Allergy 4:117–124PubMedCrossRefGoogle Scholar
  13. 13.
    Seyahi E, Odogan H, Celik S, Ugurlu S, Yazici H (2006) Treatment options in colchicine resistant familial Mediterranean fever patients: thalidomide and etanercept as adjunctive agents. Clin Exp Rheumatol 24(Suppl 42):S99–S103PubMedGoogle Scholar
  14. 14.
    Chae JJ, Cho YH, Lee GS, Liu PP, Feigenbaum L, Katz SI, Kastner DL (2011) Gain-of-function pyrin mutations induce NLRP3 protein-independent interleukin-1β activation and severe autoinflammation in mice. Immunity 34:755–768PubMedCrossRefGoogle Scholar
  15. 15.
    Economides AN, Carpenter LR, Rudge JS, Wong V, Koehler-Stec EM, Hartnett C et al (2003) Cytokine traps: multi-component, high affinity blockers of cytokine action. Nat Med 9:47–52PubMedCrossRefGoogle Scholar
  16. 16.
    McDermott MF, Aksentijevic I, Galon J, McDermott EM, Ogunkolade BW, Centola M et al (1999) Germline mutations in the extracellular domains of the 55 kDa TNF receptor, TNFR1, define a family of dominantly inherited autoinflammatory disorders. Cell 97:133–144PubMedCrossRefGoogle Scholar
  17. 17.
    Martinon F, Hofmann K, Tschopp J (2001) The pyrin domain: a possible member of the death domain-fold family implicated in apoptosis and inflammation. Curr Biol 11:R118–R120PubMedCrossRefGoogle Scholar
  18. 18.
    Pawlowski K, Pio F, Chu Z, Reed JC, Godzik A (2001) PAAD—a new protein domain associated with apoptosis, cancer and auto-immune diseases. Trends Biochem Sci 26:85–87PubMedCrossRefGoogle Scholar
  19. 19.
    Staub E, Dahl E, Rosenthal A (2001) The DAPIN family: a novel domain links apoptotic and interferon response proteins. Trends Biochem Sci 26:83–85PubMedCrossRefGoogle Scholar
  20. 20.
    Martinon F, Burns K, Tschopp J (2002) The Inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of pro-IL-beta. Mol Cell 10:417–426PubMedCrossRefGoogle Scholar
  21. 21.
    Agostini L, Martinon F, Burns K, McDermott MF, Hawkins PN, Tschopp J (2004) NALP3 Forms an IL-1beta-processing inflammasome with increased activity in Muckle–Wells autoinflammatory disorder. Immunity 20:319–325PubMedCrossRefGoogle Scholar
  22. 22.
    Martinon F, Mayor A, Tschopp J (2009) The inflammasomes: guardians of the body. Annu Rev Immunol 27:229–265PubMedCrossRefGoogle Scholar
  23. 23.
    Mitroulis I, Skendros P, Ritis K (2010) Targeting IL-1β in disease; the expanding role of NLRP3 inflammasome. Eur J Intern Med 21:157–163PubMedCrossRefGoogle Scholar
  24. 24.
    Chae JJ, Komarow HD, Cheng J, Wood G, Raben N, Liu PP, Kastner DL (2003) Targeted disruption of pyrin, the FMF protein, causes heightened sensitivity to endotoxin and a defect in macrophage apoptosis. Mol Cell 11:591–604PubMedCrossRefGoogle Scholar
  25. 25.
    Chae JJ, Wood G, Masters SL, Richard K, Park G, Smith BJ, Kastner DL (2006) The B30.2 domain of pyrin, the familial Mediterranean fever protein, interacts directly with caspase-1 to modulate IL-1β production. Prot Natl Acad Sci 103:9982–9987CrossRefGoogle Scholar
  26. 26.
    Papin S, Cuenin S, Agostini L, Martinon F, Werner S, Beer HD, Grutter C, Tschopp J (2007) The SPRY domain of pyrin, mutated in familial Mediterranean fever patients, interacts with inflammasome components and inhibits pro-IL-1β processing. Cell Death Differ 14:1457–1466PubMedCrossRefGoogle Scholar
  27. 27.
    Terkeltaub R (2009) Colchicine update: 2008. Semin Arthritis Rheum 38:411–419PubMedCrossRefGoogle Scholar
  28. 28.
    Bhattacharyya B, Panda D, Gupta S, Banerjee M (2008) Anti-mitotic activity of colchicine and the structural basis for its interaction with tubulin. Med Res Rev 28:155–183PubMedCrossRefGoogle Scholar
  29. 29.
    Wilson L, Panda D, Jordan MA (1999) Modulation of microtubule dynamics by drugs: a paradigm for the actions of cellular regulators. Cell Struct Funct 24:329–335PubMedCrossRefGoogle Scholar
  30. 30.
    Ravelli RB, Gigant B, Curmi PA, Jourdain I, Lachkar S, Sobel A, Knossow M (2004) Insight into tubulin regulation from a complex with colchicine and a stathmin-like domain. Nature 428:198–202PubMedCrossRefGoogle Scholar
  31. 31.
    Niel E, Scherrmann JM (2006) Colchicine today. Joint Bone Spine 73:672–678PubMedCrossRefGoogle Scholar
  32. 32.
    Goldfinger SE (1972) Colchicine for familial Mediterranean fever. N Engl J Med 287:1302PubMedGoogle Scholar
  33. 33.
    Dinarello CA, Wolff SM, Goldfinger SE, Dale DC, Alling DW (1974) Colchicine therapy for familial Mediterranean fever. A double-blind trial. N Engl J Med 291:934–937PubMedCrossRefGoogle Scholar
  34. 34.
    Zemer D, Revach M, Pras M, Modan B, Schor S, Sohar E, Gafni J (1974) A controlled trial of colchicine in preventing attacks in familial Mediterranean fever. N Engl J Med 291:932–934PubMedCrossRefGoogle Scholar
  35. 35.
    Zemer D, Pras M, Sohar E, Modan M, Chabili S, Gafni J (1986) Colchicine in the prevention and treatment of the amyloidosis of familial Mediterranean fever. N Engl J Med 314:1001–1005PubMedCrossRefGoogle Scholar
  36. 36.
    Marques-da-Silva C, Chaves MM, Castro NG, Coutinho-Silva R, Guimaraes MZ (2011) Colchicine inhibits cationic dye uptake induced by ATP in P2X2 and P2X7 receptor-expressing cells: implications for its therapeutic action. Br J Pharmacol 163:912–926PubMedCrossRefGoogle Scholar
  37. 37.
    Ben-Chetrit E, Ozdogan H (2008) Non-response to colchicine in FMF—definition, causes and suggested solutions. Clin Exp Rheumatol 26:S49–S51PubMedGoogle Scholar
  38. 38.
    Tang K, Wong LP, Lee EJ, Chong SS, Lee CG (2004) Genomic evidence for recent positive selection at the human MDR1 gene locus. Hum Mol Genet 13:783–797PubMedCrossRefGoogle Scholar
  39. 39.
    Sipeky C, Csongei V, Jaromi L, Safrany E, Maasz A, Takacs I et al (2011) Genetic variability and haplotype profile of MDR1 (ABCB1) gene in Roma and Hungarian population samples with a review of the literature. Drug Metab Pharmacokinet 26:206–215PubMedCrossRefGoogle Scholar
  40. 40.
    Ben-Chetrit E, Levy M (1998) Does the lack of the p-glycoprotein efflux pump in neutrophils explain the efficacy of colchicine in familial Mediterranean fever and other inflammatory diseases? Med Hypotheses 51:377–380PubMedCrossRefGoogle Scholar
  41. 41.
    Lidar M, Scherrmann JM, Shinar Y, Chetrit A, Niel E, Gershoni-Baruch R et al (2004) Colchicine non-responsiveness in familial Mediterranean fever: clinical, genetic, pharmacokinetic, and socioeconomic characterization. Semin Arthritis Rheum 33:273–282PubMedCrossRefGoogle Scholar
  42. 42.
    Soylemezoglu O, Arga M, Fidan K, Gonen S, Emeksiz HC, Hasanoglu E, Buyan N (2010) Unresponsiveness to colchicine therapy in patients with familial Mediterranean fever homozygous for the M694V mutation. J Rheumatol 37:182–189PubMedCrossRefGoogle Scholar
  43. 43.
    Verrecchia E, Curigliano V, Montalto M, Covino M, Cerquaglia C, Fonnesu C et al (2008) Role of small intestinal bacterial overgrowth in colchicine non-responders. Fifth International Congress on Familial Mediterranean Fever and other Auto-Inflammatory Diseases. Clin Exp Rheumatol 26:171–226Google Scholar
  44. 44.
    Ben-Chetrit E, Aamar S (2009) About colchicine compliance, resistance and virulence. Clin Exp Rheumatol 27(Suppl 53):S1–S3PubMedGoogle Scholar
  45. 45.
    Kuijk LM, Govers AM, Hofhuis WJ, Frenkel J (2007) Effective treatment of a colchicine-resistant familial Mediterranean fever patient with anakinra. Ann Rheum Dis 66:1545–1546PubMedCrossRefGoogle Scholar
  46. 46.
    Hoffman HM, Rosengren S, Boyle DL, Cho JY, Nayar J, Mueller JL et al (2004) Prevention of cold-associated acute inflammation in familial cold auto-inflammatory syndrome by interleukin-1 receptor antagonist. Lancet 364:1779–1785PubMedCrossRefGoogle Scholar
  47. 47.
    Mitroulis I, Papadopoulos VP, Kostantinidis T, Ritis K (2008) Anakinra suppresses familial Mediterranean fever crises in a colchicine-resistant patient. Neth J Med 66:489–491PubMedGoogle Scholar
  48. 48.
    Moser C, Pohl G, Haslinger I, Knapp S, Rowczenio D, Russel T et al (2009) Successful treatment of familial Mediterranean fever with anakinra and outcome after renal transplantation. Nephrol Dial Transplant 24:676–678PubMedCrossRefGoogle Scholar
  49. 49.
    Bilginer Y, Ayaz NA, Ozen S (2010) Anti-IL-1 treatment for secondary amyloidosis in an adolescent with FMF and Behçet disease. Clin Rheumatol 29:209–210PubMedCrossRefGoogle Scholar
  50. 50.
    Hennig S, Bayegan K, Uffmann M, Thalhammer F, Winkler S (2012) Pneumonia in a patient with familial Mediterranean fever successfully treated with anakinra—case report and review. Rheumatol Int 32:1801–1804PubMedCrossRefGoogle Scholar
  51. 51.
    Petropoulou AD, Robin M, Socié G, Galicier L (2010) Transmission of familial Mediterranean fever mutation after bone marrow transplantation and successful treatment with anakinra. Transplantation 90:102–103PubMedCrossRefGoogle Scholar
  52. 52.
    Ozen S, Bilginer Y, Ayaz NA, Calguneri M (2011) Anti-interleukin treatment for patients with familial Mediterranean fever resistant to colchicine. J Rheumatol 38:516–518PubMedCrossRefGoogle Scholar
  53. 53.
    Stankovic Stojanovic K, Delmas Y, Torres PU, Peltier J, Pelle G, Jéru I et al (2012) Dramatic beneficial effect of interleukin-1 inhibitor treatment in patients with familial Mediterranean fever complicated with amyloidosis and renal failure. Nephrol Dial Transplant 27:1898–1901PubMedCrossRefGoogle Scholar
  54. 54.
    Verrecchia E, Marinaro A, Sicignano LL, Giovinale M, Soriano A, Landolfi R, Manna R. IL-1β biological treatment of familial Mediterranean fever. In: 8th International Congress on Autoimmunity. Granada, Spain, 9–13 May 2012Google Scholar
  55. 55.
    Belkhir R, Moulonguet-Doleris L, Hachulla E, Prinseau J, Baglin A, Hanslik T (2007) Treatment of familial Mediterranean fever with anakinra. Ann Intern Med 146:825–826PubMedCrossRefGoogle Scholar
  56. 56.
    Gattringer R, Lagler H, Gattringer KB, Knapp S, Burgmann H, Winkler S et al (2007) Anakinra in two adolescent female patients suffering from colchicine-resistant familial Mediterranean fever: effective but risky. Eur J Clin Invest 37:912–914PubMedCrossRefGoogle Scholar
  57. 57.
    Bresnihan B (2001) The safety and efficacy of interleukin-1 receptor antagonist in the treatment of rheumatoid arthritis. Semin Arthritis Rheum 30:S17–S20CrossRefGoogle Scholar
  58. 58.
    Rubbert-Roth A, Perniok A (2003) Interleukin-1 receptor antagonist anakinra (Kineret) for the treatment of rheumatoid arthritis. Z Rheumatol 62:367–377PubMedCrossRefGoogle Scholar
  59. 59.
    Salliott C, Dougados M, Gossec L (2009) Risk of serious infections during rituximab, abatacept and anakinra treatments for rheumatoid arthritis: meta-analysis of randomised placebo-controlled trials. Ann Rheum Dis 68:25–32CrossRefGoogle Scholar
  60. 60.
    Lachmann HJ, Kone-Paut I, Kuemmerle-Deschner JB, Leslie KS, Hachulla E, Quartier P et al (2009) Canakinumab in CAPS Study Group. Use of canakinumab in the cryopyrin-associated periodic syndrome. N Engl J Med 360:2416–2425PubMedCrossRefGoogle Scholar
  61. 61.
    Mitroulis I, Skendron P, Oikonomou A, Tzioufas AG, Ritis K (2011) The efficacy of canakinumab in the treatment of a patient with familial Mediterranean fever and longstanding destructive arthritis. Ann Rheum Dis 70:1347–1348PubMedCrossRefGoogle Scholar
  62. 62.
    Hacihamdioglu DO, Ozen S (2012) Canakinumab induces remission in a patient with resistant familial Mediterranean fever. Rheumatology (Oxford) 51:1041CrossRefGoogle Scholar
  63. 63.
    Roldan R, Ruiz AM, Miranda MD, Collantes E (2008) Anakinra: new therapeutic approach in children with familial Mediterranean fever resistant to colchicine. Joint Bone Spine 75:504–505PubMedCrossRefGoogle Scholar
  64. 64.
    Calligaris L, Marchetti F, Tommasini A, Ventura A (2008) The efficacy of anakinra in an adolescent with colchicine-resistant familial Mediterranean fever. Eur J Pediatr 167:695–696PubMedCrossRefGoogle Scholar
  65. 65.
    Alpay N, Sumnu A, Calışkan Y, Yazıcı H, Türkmen A, Gül A (2012) Efficacy of anakinra treatment in a patient with colchicine-resistant familial Mediterranean fever. Rheumatol Int 32:3277–3279PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Alessandra Soriano
    • 1
    • 2
  • Elena Verecchia
    • 1
  • Antonella Afeltra
    • 2
  • Raffaele Landolfi
    • 3
  • Raffaele Manna
    • 1
    • 4
  1. 1.Periodic Fever Research Centre-National Reference Centre for FMFCatholic University of the Sacred HeartRomeItaly
  2. 2.Department of Clinical Medicine and RheumatologyCampus Bio-Medico UniversityRomeItaly
  3. 3.Department of Internal MedicineCatholic University of Sacred HeartRomeItaly
  4. 4.Department of Internal Medicine, Clinical Auto-Immunity Unit and Periodic Fever Research Centre-National Reference Centre for FMFCatholic University of Sacred HeartRomeItaly

Personalised recommendations