Clinical Reviews in Allergy & Immunology

, Volume 45, Issue 2, pp 170–179

Genetics of Rheumatoid Arthritis — A Comprehensive Review

  • Júlia Kurkó
  • Timea Besenyei
  • Judit Laki
  • Tibor T. Glant
  • Katalin Mikecz
  • Zoltán Szekanecz
Article

Abstract

The “Bermuda triangle” of genetics, environment and autoimmunity is involved in the pathogenesis of rheumatoid arthritis (RA). Various aspects of genetic contribution to the etiology, pathogenesis and outcome of RA are discussed in this review. The heritability of RA has been estimated to be about 60 %, while the contribution of HLA to heritability has been estimated to be 11–37 %. Apart from known shared epitope (SE) alleles, such as HLA-DRB1*01 and DRB1*04, other HLA alleles, such as HLA-DRB1*13 and DRB1*15 have been linked to RA susceptibility. A novel SE classification divides SE alleles into S1, S2, S3P and S3D groups, where primarily S2 and S3P groups have been associated with predisposition to seropositive RA. The most relevant non-HLA gene single nucleotide polymorphisms (SNPs) associated with RA include PTPN22, IL23R, TRAF1, CTLA4, IRF5, STAT4, CCR6, PADI4. Large genome-wide association studies (GWAS) have identified more than 30 loci involved in RA pathogenesis. HLA and some non-HLA genes may differentiate between anti-citrullinated protein antibody (ACPA) seropositive and seronegative RA. Genetic susceptibility has also been associated with environmental factors, primarily smoking. Some GWAS studies carried out in rodent models of arthritis have confirmed the role of human genes. For example, in the collagen-induced (CIA) and proteoglycan-induced arthritis (PgIA) models, two important loci — Pgia26/Cia5 and Pgia2/Cia2/Cia3, corresponding the human PTPN22/CD2 and TRAF1/C5 loci, respectively — have been identified. Finally, pharmacogenomics identified SNPs or multiple genetic signatures that may be associated with responses to traditional disease-modifying drugs and biologics.

Keywords

Rheumatoid arthritis Murine arthritis Animal models Genetics Single nucleotide polymorphisms HLA-DR GWAS 

References

  1. 1.
    Alamanos Y, Drosos AA (2005) Epidemiology of adult rheumatoid arthritis. Autoimmun Rev 4(3):130–136PubMedCrossRefGoogle Scholar
  2. 2.
    Klareskog L, Padyukov L, Alfredsson L (2007) Smoking as a trigger for inflammatory rheumatic diseases. Curr Opin Rheumatol 19(1):49–54PubMedCrossRefGoogle Scholar
  3. 3.
    van der Helm-van Mil AH, Wesoly JZ, Huizinga TW (2005) Understanding the genetic contribution to rheumatoid arthritis. Curr Opin Rheumatol 17(3):299–304PubMedCrossRefGoogle Scholar
  4. 4.
    van der Woude D, Alemayehu WG, Verduijn W, de Vries RR, Houwing-Duistermaat JJ, Huizinga TW et al (2010) Gene–environment interaction influences the reactivity of autoantibodies to citrullinated antigens in rheumatoid arthritis. Nat Genet 42(10):814–816, author reply 816PubMedCrossRefGoogle Scholar
  5. 5.
    Szodoray P, Szabo Z, Kapitany A, Gyetvai A, Lakos G, Szanto S et al (2010) Anti-citrullinated protein/peptide autoantibodies in association with genetic and environmental factors as indicators of disease outcome in rheumatoid arthritis. Autoimmun Rev 9(3):140–143PubMedCrossRefGoogle Scholar
  6. 6.
    de Vries R (2011) Genetics of rheumatoid arthritis: time for a change! Curr Opin Rheumatol 23(3):227–232PubMedCrossRefGoogle Scholar
  7. 7.
    Cooles FA, Isaacs JD. Pathophysiology of rheumatoid arthritis. Curr Opin Rheumatol;23(3):233–40Google Scholar
  8. 8.
    Szekanecz Z, Soos L, Szabo Z, Fekete A, Kapitany A, Vegvari A et al (2008) Anti-citrullinated protein antibodies in rheumatoid arthritis: as good as it gets? Clin Rev Allergy Immunol 34(1):26–31PubMedCrossRefGoogle Scholar
  9. 9.
    Klareskog L, Padyukov L, Lorentzen J, Alfredsson L (2006) Mechanisms of disease: genetic susceptibility and environmental triggers in the development of rheumatoid arthritis. Nat Clin Pract Rheumatol 2(8):425–433PubMedCrossRefGoogle Scholar
  10. 10.
    Padyukov L, Silva C, Stolt P, Alfredsson L, Klareskog L (2004) A gene–environment interaction between smoking and shared epitope genes in HLA-DR provides a high risk of seropositive rheumatoid arthritis. Arthritis Rheum 50(10):3085–3092PubMedCrossRefGoogle Scholar
  11. 11.
    Smolen JS, Landewe R, Breedveld FC, Dougados M, Emery P, Gaujoux-Viala C et al (2010) EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs. Ann Rheum Dis 69(6):964–975PubMedCrossRefGoogle Scholar
  12. 12.
    MacGregor AJ, Snieder H, Rigby AS, Koskenvuo M, Kaprio J, Aho K et al (2000) Characterizing the quantitative genetic contribution to rheumatoid arthritis using data from twins. Arthritis Rheum 43(1):30–37PubMedCrossRefGoogle Scholar
  13. 13.
    Mesko B, Poliska S, Szegedi A, Szekanecz Z, Palatka K, Papp M et al (2010) Peripheral blood gene expression patterns discriminate among chronic inflammatory diseases and healthy controls and identify novel targets. BMC Med Genomics 3:15PubMedCrossRefGoogle Scholar
  14. 14.
    Lee HS, Irigoyen P, Kern M, Lee A, Batliwalla F, Khalili H et al (2007) Interaction between smoking, the shared epitope, and anti-cyclic citrullinated peptide: a mixed picture in three large North American rheumatoid arthritis cohorts. Arthritis Rheum 56(6):1745–1753PubMedCrossRefGoogle Scholar
  15. 15.
    Kapitany A, Szabo Z, Lakos G, Aleksza M, Vegvari A, Soos L et al (2008) Associations between serum anti-CCP antibody, rheumatoid factor levels and HLA-DR4 expression in Hungarian patients with rheumatoid arthritis. Isr Med Assoc J 10(1):32–36PubMedGoogle Scholar
  16. 16.
    Besenyei T, Gyetvai A, Szabo Z, Fekete A, Kapitany A, Szodoray P et al (2011) Associations of HLA-shared epitope, anti-citrullinated peptide antibodies and lifestyle-related factors in Hungarian patients with rheumatoid arthritis: data from the first Central-Eastern European cohort. Joint Bone Spine 78(6):652–653PubMedCrossRefGoogle Scholar
  17. 17.
    Scott IC, Steer S, Lewis CM, Cope AP (2011) Precipitating and perpetuating factors of rheumatoid arthritis immunopathology: linking the triad of genetic predisposition, environmental risk factors and autoimmunity to disease pathogenesis. Best Pract Res Clin Rheumatol 25(4):447–468PubMedCrossRefGoogle Scholar
  18. 18.
    Vittecoq O, Lequerre T, Goeb V, Le Loet X, Abdesselam TA, Klemmer N (2008) Smoking and inflammatory diseases. Best Pract Res Clin Rheumatol 22(5):923–935PubMedCrossRefGoogle Scholar
  19. 19.
    Davila L, Ranganathan P (2011) Pharmacogenetics: implications for therapy in rheumatic diseases. Nat Rev Rheumatol 7(9):537–550PubMedCrossRefGoogle Scholar
  20. 20.
    Cronstein BN (2006) Pharmacogenetics in the rheumatic diseases, from pret-a-porter to haute couture. Nat Clin Pract Rheumatol 2(1):2–3PubMedCrossRefGoogle Scholar
  21. 21.
    Danila MI, Hughes LB, Bridges SL (2008) Pharmacogenetics of etanercept in rheumatoid arthritis. Pharmacogenomics 9(8):1011–1015PubMedCrossRefGoogle Scholar
  22. 22.
    Mesko B, Poliska S, Szamosi S, Szekanecz Z, Podani J, Varadi C et al (2012) Peripheral blood gene expression and IgG glycosylation profiles as markers of tocilizumab treatment in rheumatoid arthritis. J Rheumatol 39(5):916–928PubMedCrossRefGoogle Scholar
  23. 23.
    Plant D, Bowes J, Potter C, Hyrich KL, Morgan AW, Wilson AG et al (2011) Genome-wide association study of genetic predictors of anti-tumor necrosis factor treatment efficacy in rheumatoid arthritis identifies associations with polymorphisms at seven loci. Arthritis Rheum 63(3):645–653PubMedCrossRefGoogle Scholar
  24. 24.
    Centola M, Szekanecz Z, Kiss E, Zeher M, Szegedi G, Nakken B et al (2007) Gene expression profiles of systemic lupus erythematosus and rheumatoid arthritis. Expert Rev Clin Immunol 3(5):797–806PubMedCrossRefGoogle Scholar
  25. 25.
    Feng T, Zhu X (2010) Genome-wide searching of rare genetic variants in WTCCC data. Hum Genet 128(3):269–280PubMedCrossRefGoogle Scholar
  26. 26.
    Craddock N, Hurles ME, Cardin N, Pearson RD, Plagnol V, Robson S et al (2010) Genome-wide association study of CNVs in 16,000 cases of eight common diseases and 3,000 shared controls. Nature 464(7289):713–720PubMedCrossRefGoogle Scholar
  27. 27.
    Adarichev VA, Vermes C, Hanyecz A, Mikecz K, Bremer EG, Glant TT (2005) Gene expression profiling in murine autoimmune arthritis during the initiation and progression of joint inflammation. Arthritis Res Ther 7(2):R196–R207PubMedCrossRefGoogle Scholar
  28. 28.
    Ahlqvist E, Hultqvist M, Holmdahl R (2009) The value of animal models in predicting genetic susceptibility to complex diseases such as rheumatoid arthritis. Arthritis Res Ther 11(3):226PubMedCrossRefGoogle Scholar
  29. 29.
    Glant TT, Finnegan A, Mikecz K (2003) Proteoglycan-induced arthritis: immune regulation, cellular mechanisms, and genetics. Crit Rev Immunol 23(3):199–250PubMedCrossRefGoogle Scholar
  30. 30.
    Glant TT, Mikecz K, Arzoumanian A, Poole AR (1987) Proteoglycan-induced arthritis in BALB/c mice. Clinical features and histopathology. Arthritis Rheum 30(2):201–212PubMedCrossRefGoogle Scholar
  31. 31.
    Glant TT, Adarichev VA, Nesterovitch AB, Szanto S, Oswald JP, Jacobs JJ et al (2004) Disease-associated qualitative and quantitative trait loci in proteoglycan-induced arthritis and collagen-induced arthritis. Am J Med Sci 327(4):188–195PubMedCrossRefGoogle Scholar
  32. 32.
    Deighton CM, Walker DJ, Griffiths ID, Roberts DF (1989) The contribution of HLA to rheumatoid arthritis. Clin Genet 36(3):178–182PubMedCrossRefGoogle Scholar
  33. 33.
    Gregersen PK, Silver J, Winchester RJ (1987) The shared epitope hypothesis. An approach to understanding the molecular genetics of susceptibility to rheumatoid arthritis. Arthritis Rheum 30(11):1205–1213PubMedCrossRefGoogle Scholar
  34. 34.
    van der Woude D, Houwing-Duistermaat JJ, Toes RE, Huizinga TW, Thomson W, Worthington J et al (2009) Quantitative heritability of anti-citrullinated protein antibody-positive and anti-citrullinated protein antibody-negative rheumatoid arthritis. Arthritis Rheum 60(4):916–923PubMedCrossRefGoogle Scholar
  35. 35.
    van der Helm-van Mil AH, Verpoort KN, le Cessie S, Huizinga TW, de Vries RR, Toes RE (2007) The HLA-DRB1 shared epitope alleles differ in the interaction with smoking and predisposition to antibodies to cyclic citrullinated peptide. Arthritis Rheum 56(2):425–432PubMedCrossRefGoogle Scholar
  36. 36.
    du Montcel ST, Michou L, Petit-Teixeira E, Osorio J, Lemaire I, Lasbleiz S et al (2005) New classification of HLA-DRB1 alleles supports the shared epitope hypothesis of rheumatoid arthritis susceptibility. Arthritis Rheum 52(4):1063–1068PubMedCrossRefGoogle Scholar
  37. 37.
    van der Woude D, Lie BA, Lundstrom E, Balsa A, Feitsma AL, Houwing-Duistermaat JJ et al (2010) Protection against anti-citrullinated protein antibody-positive rheumatoid arthritis is predominantly associated with HLA-DRB1*1301: a meta-analysis of HLA-DRB1 associations with anti-citrullinated protein antibody-positive and anti-citrullinated protein antibody-negative rheumatoid arthritis in four European populations. Arthritis Rheum 62(5):1236–1245PubMedCrossRefGoogle Scholar
  38. 38.
    Laki J, Lundstrom E, Snir O, Ronnelid J, Ganji I, Catrina AI et al (2012) Very high levels of anti-citrullinated protein antibodies are associated with HLA-DRB1*15 non-shared epitope allele in patients with rheumatoid arthritis. Arthritis Rheum 64(7):2078–2084PubMedCrossRefGoogle Scholar
  39. 39.
    Zsilak S, Gal J, Hodinka L, Rajczy K, Balog A, Sipka S et al (2005) HLA-DR genotypes in familial rheumatoid arthritis: increased frequency of protective and neutral alleles in a multicase family. J Rheumatol 32(12):2299–2302PubMedGoogle Scholar
  40. 40.
    Jawaheer D, Thomson W, MacGregor AJ, Carthy D, Davidson J, Dyer PA et al (1994) "Homozygosity" for the HLA-DR shared epitope contributes the highest risk for rheumatoid arthritis concordance in identical twins. Arthritis Rheum 37(5):681–686PubMedCrossRefGoogle Scholar
  41. 41.
    Gyetvai A, Szekanecz Z, Soos L, Szabo Z, Fekete A, Kapitany A, et al. New classification of the shared epitope in rheumatoid arthritis: impact on the production of various anti-citrullinated protein antibodies. Rheumatology (Oxford) 2009Google Scholar
  42. 42.
    Huizinga TW, Amos CI, van der Helm-van Mil AH, Chen W, van Gaalen FA, Jawaheer D et al (2005) Refining the complex rheumatoid arthritis phenotype based on specificity of the HLA-DRB1 shared epitope for antibodies to citrullinated proteins. Arthritis Rheum 52(11):3433–3438PubMedCrossRefGoogle Scholar
  43. 43.
    Bax M, van Heemst J, Huizinga TW, Toes RE (2011) Genetics of rheumatoid arthritis: what have we learned? Immunogenetics 63(8):459–466PubMedCrossRefGoogle Scholar
  44. 44.
    Farago B, Magyari L, Safrany E, Csongei V, Jaromi L, Horvatovich K et al (2008) Functional variants of interleukin-23 receptor gene confer risk for rheumatoid arthritis but not for systemic sclerosis. Ann Rheum Dis 67(2):248–250PubMedCrossRefGoogle Scholar
  45. 45.
    Farago B, Talian GC, Komlosi K, Nagy G, Berki T, Gyetvai A et al (2009) Protein tyrosine phosphatase gene C1858T allele confers risk for rheumatoid arthritis in Hungarian subjects. Rheumatol Int 29(7):793–796PubMedCrossRefGoogle Scholar
  46. 46.
    Stahl EA, Raychaudhuri S, Remmers EF, Xie G, Eyre S, Thomson BP et al (2010) Genome-wide association study meta-analysis identifies seven new rheumatoid arthritis risk loci. Nat Genet 42(6):508–514PubMedCrossRefGoogle Scholar
  47. 47.
    Goeb V, Dieude P, Daveau R, Thomas-L'otellier M, Jouen F, Hau F et al (2008) Contribution of PTPN22 1858T, TNFRII 196R and HLA-shared epitope alleles with rheumatoid factor and anti-citrullinated protein antibodies to very early rheumatoid arthritis diagnosis. Rheumatology (Oxford) 47(8):1208–1212CrossRefGoogle Scholar
  48. 48.
    Cha S, Choi CB, Han TU, Kang CP, Kang C, Bae SC (2007) Association of anti-cyclic citrullinated peptide antibody levels with PADI4 haplotypes in early rheumatoid arthritis and with shared epitope alleles in very late rheumatoid arthritis. Arthritis Rheum 56(5):1454–1463PubMedCrossRefGoogle Scholar
  49. 49.
    Poor G, Nagy ZB, Schmidt Z, Brozik M, Meretey K, Gergely P Jr (2007) Genetic background of anticyclic citrullinated peptide autoantibody production in Hungarian patients with rheumatoid arthritis. Ann N Y Acad Sci 1110:23–32PubMedCrossRefGoogle Scholar
  50. 50.
    Suzuki A, Yamada R, Chang X, Tokuhiro S, Sawada T, Suzuki M et al (2003) Functional haplotypes of PADI4, encoding citrullinating enzyme peptidylarginine deiminase 4, are associated with rheumatoid arthritis. Nat Genet 34(4):395–402PubMedCrossRefGoogle Scholar
  51. 51.
    van der Linden MP, Feitsma AL, le Cessie S, Kern M, Olsson LM, Raychaudhuri S et al (2009) Association of a single-nucleotide polymorphism in CD40 with the rate of joint destruction in rheumatoid arthritis. Arthritis Rheum 60(8):2242–2247PubMedCrossRefGoogle Scholar
  52. 52.
    Liang YL, Wu H, Shen X, Li PQ, Yang XQ, Liang L, et al. Association of STAT4 rs7574865 polymorphism with autoimmune diseases: a meta-analysis. Mol Biol Rep 2012.Google Scholar
  53. 53.
    Plenge RM, Seielstad M, Padyukov L, Lee AT, Remmers EF, Ding B et al (2007) TRAF1-C5 as a risk locus for rheumatoid arthritis—a genomewide study. N Engl J Med 357(12):1199–1209PubMedCrossRefGoogle Scholar
  54. 54.
    Lee YH, Ji JD, Song GG (2008) Associations between FCGR3A polymorphisms and susceptibility to rheumatoid arthritis: a metaanalysis. J Rheumatol 35(11):2129–2135PubMedCrossRefGoogle Scholar
  55. 55.
    Kochi Y, Okada Y, Suzuki A, Ikari K, Terao C, Takahashi A et al (2010) A regulatory variant in CCR6 is associated with rheumatoid arthritis susceptibility. Nat Genet 42(6):515–519PubMedCrossRefGoogle Scholar
  56. 56.
    Szekanecz Z, Koch AE, Tak PP (2011) Chemokine and chemokine receptor blockade in arthritis, a prototype of immune-mediated inflammatory diseases. Neth J Med 69(9):356–366PubMedGoogle Scholar
  57. 57.
    Ding B, Padyukov L, Lundstrom E, Seielstad M, Plenge RM, Oksenberg JR et al (2009) Different patterns of associations with anti-citrullinated protein antibody-positive and anti-citrullinated protein antibody-negative rheumatoid arthritis in the extended major histocompatibility complex region. Arthritis Rheum 60(1):30–38PubMedCrossRefGoogle Scholar
  58. 58.
    Verpoort KN, Cheung K, Ioan-Facsinay A, van der Helm-van Mil AH, de Vries-Bouwstra JK, Allaart CF et al (2007) Fine specificity of the anti-citrullinated protein antibody response is influenced by the shared epitope alleles. Arthritis Rheum 56(12):3949–3952PubMedCrossRefGoogle Scholar
  59. 59.
    Daha NA, Toes RE (2011) Rheumatoid arthritis: Are ACPA-positive and ACPA-negative RA the same disease? Nat Rev Rheumatol 7(4):202–203PubMedCrossRefGoogle Scholar
  60. 60.
    Pedersen M, Jacobsen S, Klarlund M, Pedersen BV, Wiik A, Wohlfahrt J et al (2006) Environmental risk factors differ between rheumatoid arthritis with and without auto-antibodies against cyclic citrullinated peptides. Arthritis Res Ther 8(4):R133PubMedCrossRefGoogle Scholar
  61. 61.
    Perricone C, Ceccarelli F, Valesini G. An overview on the genetic of rheumatoid arthritis: a never-ending story. Autoimmun Rev, 10(10):599–608Google Scholar
  62. 62.
    Ruyssen-Witrand A, Rouanet S, Combe B, Dougados M, Le Loet X, Sibilia J et al (2012) Fcgamma receptor type IIIA polymorphism influences treatment outcomes in patients with rheumatoid arthritis treated with rituximab. Ann Rheum Dis 71(6):875–877PubMedCrossRefGoogle Scholar
  63. 63.
    van Ede AE, Laan RF, Blom HJ, Huizinga TW, Haagsma CJ, Giesendorf BA et al (2001) The C677T mutation in the methylenetetrahydrofolate reductase gene: a genetic risk factor for methotrexate-related elevation of liver enzymes in rheumatoid arthritis patients. Arthritis Rheum 44(11):2525–2530PubMedCrossRefGoogle Scholar
  64. 64.
    Berkun Y, Levartovsky D, Rubinow A, Orbach H, Aamar S, Grenader T et al (2004) Methotrexate related adverse effects in patients with rheumatoid arthritis are associated with the A1298C polymorphism of the MTHFR gene. Ann Rheum Dis 63(10):1227–1231PubMedCrossRefGoogle Scholar
  65. 65.
    Dervieux T, Kremer J, Lein DO, Capps R, Barham R, Meyer G et al (2004) Contribution of common polymorphisms in reduced folate carrier and gamma-glutamylhydrolase to methotrexate polyglutamate levels in patients with rheumatoid arthritis. Pharmacogenetics 14(11):733–739PubMedCrossRefGoogle Scholar
  66. 66.
    Pawlik A, Wrzesniewska J, Fiedorowicz-Fabrycy I, Gawronska-Szklarz B (2004) The MDR1 3435 polymorphism in patients with rheumatoid arthritis. Int J Clin Pharmacol Ther 42(9):496–503PubMedCrossRefGoogle Scholar
  67. 67.
    Tolusso B, Pietrapertosa D, Morelli A, De Santis M, Gremese E, Farina G et al (2006) IL-1B and IL-1RN gene polymorphisms in rheumatoid arthritis: relationship with protein plasma levels and response to therapy. Pharmacogenomics 7(5):683–695PubMedCrossRefGoogle Scholar
  68. 68.
    van Vollenhoven RF (2007) Switching between anti-tumour necrosis factors: trying to get a handle on a complex issue. Ann Rheum Dis 66(7):849–851PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Júlia Kurkó
    • 1
  • Timea Besenyei
    • 1
    • 2
  • Judit Laki
    • 3
  • Tibor T. Glant
    • 4
  • Katalin Mikecz
    • 4
  • Zoltán Szekanecz
    • 1
  1. 1.Department of Rheumatology, Institute of MedicineUniversity of Debrecen Medical and Health Science CenterDebrecenHungary
  2. 2.1st Department of Medicine, Institute of MedicineUniversity of Debrecen Medical and Health Science CenterDebrecenHungary
  3. 3.Department of Medical Expertise, Clinical Auditing and AnalysisNational Health Insurance Fund AdministrationBudapestHungary
  4. 4.Section of Molecular Medicine, Departments of Orthopedic Surgery, Biochemistry, and RheumatologyRush University Medical CenterChicagoUSA

Personalised recommendations