Clinical Reviews in Allergy & Immunology

, Volume 44, Issue 3, pp 262–273 | Cite as

The Immunomodulatory and Anticancer Properties of Propolis

  • Godfrey Chi-Fung ChanEmail author
  • Ka-Wai Cheung
  • Daniel Man-Yuen Sze


Propolis, a waxy substance produced by the honeybee, has been adopted as a form of folk medicine since ancient times. It has a wide spectrum of alleged applications including potential anti-infection and anticancer effects. Many of the therapeutic effects can be attributed to its immunomodulatory functions. The composition of propolis can vary according to the geographic locations from where the bees obtained the ingredients. Two main immunopotent chemicals have been identified as caffeic acid phenethyl ester (CAPE) and artepillin C. Propolis, CAPE, and artepillin C have been shown to exert summative immunosuppressive function on T lymphocyte subsets but paradoxically activate macrophage function. On the other hand, they also have potential antitumor properties by different postulated mechanisms such as suppressing cancer cells proliferation via its anti-inflammatory effects; decreasing the cancer stem cell populations; blocking specific oncogene signaling pathways; exerting antiangiogenic effects; and modulating the tumor microenvironment. The good bioavailability by the oral route and good historical safety profile makes propolis an ideal adjuvant agent for future immunomodulatory or anticancer regimens. However, standardized quality controls and good design clinical trials are essential before either propolis or its active ingredients can be adopted routinely in our future therapeutic armamentarium.


Immune Anticancer Propolis 


  1. 1.
    Burdock GA (1998) Review of the biological properties and toxicity of bee propolis (propolis). Food Chem Toxicol 36:347–363PubMedCrossRefGoogle Scholar
  2. 2.
    Marcucci MC, Ferreres F, Garcia-Viguera C, Bankova VS, De Castro SL, Dantas AP et al (2001) Phenolic compounds from Brazilian propolis with pharmacological activities. J Ethnopharmacol 74:105–112PubMedCrossRefGoogle Scholar
  3. 3.
    Salatino A, Teixeira EW, Negri G, Message D (2005) Origin and chemical variation of Brazilian propolis. Evid Based Complement Alternat Med 2:33–38PubMedCrossRefGoogle Scholar
  4. 4.
    Castaldo S, Capasso F (2002) Propolis, an old remedy used in modern medicine. Fitoterapia 73(Suppl 1):S1–S6PubMedCrossRefGoogle Scholar
  5. 5.
    Banskota AH, Tezuka Y, Adnyana IK, Midorikawa K, Matsushige K, Message D et al (2000) Cytotoxic, hepatoprotective and free radical scavenging effects of propolis from Brazil, Peru, the Netherlands and China. J Ethnopharmacol 72:239–246PubMedCrossRefGoogle Scholar
  6. 6.
    Borrelli F, Maffia P, Pinto L, Ianaro A, Russo A, Capasso F et al (2002) Phytochemical compounds involved in the anti-inflammatory effect of propolis extract. Fitoterapia 73(Suppl 1):S53–S63PubMedCrossRefGoogle Scholar
  7. 7.
    Pereira AS, Norsell M, Cardoso JN, Aquino Neto FR, Ramos MF (2000) Rapid screening of polar compounds in Brazilian propolis by high-temperature high-resolution gas chromatography–mass spectrometry. J Agric Food Chem 48:5226–5230PubMedCrossRefGoogle Scholar
  8. 8.
    Pileggi R, Antony K, Johnson K, Zuo J, Shannon Holliday L (2009) Propolis inhibits osteoclast maturation. Dent Traumatol 25:584–588PubMedCrossRefGoogle Scholar
  9. 9.
    van Ketel WG, Bruynzeel DP (1992) Occupational dermatitis in an accordion repairer. Contact Dermatitis 27:186PubMedCrossRefGoogle Scholar
  10. 10.
    Han SK, Yamauchi K, Park HK (2001) Effect of nitrite and propolis preservative on volatile basic nitrogen changes in meat products. Microbios 105:71–75PubMedGoogle Scholar
  11. 11.
    Bankova V, Boudourova-Krasteva G, Sforcin JM, Frete X, Kujumgiev A, Maimoni-Rodella R et al (1999) Phytochemical evidence for the plant origin of Brazilian propolis from Sao Paulo state. Z Naturforsch C 54:401–405PubMedGoogle Scholar
  12. 12.
    Dobrowolski JW, Vohora SB, Sharma K, Shah SA, Naqvi SA, Dandiya PC (1991) Antibacterial, antifungal, antiamoebic, antiinflammatory and antipyretic studies on propolis bee products. J Ethnopharmacol 35:77–82PubMedCrossRefGoogle Scholar
  13. 13.
    Cheung KW, Sze DM, Chan WK, Deng RX, Tu W, Chan GC (2011) Brazilian green propolis and its constituent, artepillin C inhibits allogeneic activated human CD4 T cells expansion and activation. J Ethnopharmacol 138:463–471PubMedCrossRefGoogle Scholar
  14. 14.
    Park YK, Alencar SM, Aguiar CL (2002) Botanical origin and chemical composition of Brazilian propolis. J Agric Food Chem 50:2502–2506PubMedCrossRefGoogle Scholar
  15. 15.
    Ugur A, Arslan T (2004) An in vitro study on antimicrobial activity of propolis from Mugla province of Turkey. J Med Food 7:90–94PubMedCrossRefGoogle Scholar
  16. 16.
    Khalil ML (2006) Biological activity of bee propolis in health and disease. Asian Pac J Cancer Prev 7:22–31PubMedGoogle Scholar
  17. 17.
    Orsolic N, Basic I (2003) Immunomodulation by water-soluble derivative of propolis: a factor of antitumor reactivity. J Ethnopharmacol 84:265–273PubMedCrossRefGoogle Scholar
  18. 18.
    Tani H, Hasumi K, Tatefuji T, Hashimoto K, Koshino H, Takahashi S (2010) Inhibitory activity of Brazilian green propolis components and their derivatives on the release of cys-leukotrienes. Bioorg Med Chem 18:151–157PubMedCrossRefGoogle Scholar
  19. 19.
    Moura SA, Negri G, Salatino A, Lima LD, Dourado LP, Mendes JB et al. Aqueous extract of Brazilian green propolis: primary components, evaluation of inflammation and wound healing by using subcutaneous implanted sponges. Evid Based Complement Alternat Med, 2009;in press.Google Scholar
  20. 20.
    Marcucci MC, Ferreres F, Custodio AR, Ferreira MM, Bankova VS, Garcia-Viguera C et al (2000) Evaluation of phenolic compounds in Brazilian propolis from different geographic regions. Z Naturforsch C 55:76–81PubMedGoogle Scholar
  21. 21.
    de Castro SL, Higashi KO (1995) Effect of different formulations of propolis on mice infected with Trypanosoma cruzi. J Ethnopharmacol 46:55–58PubMedCrossRefGoogle Scholar
  22. 22.
    Bankova V (2005) Recent trends and important developments in propolis research. Evid Based Complement Alternat Med 2:29–32PubMedCrossRefGoogle Scholar
  23. 23.
    Sawaya AC, Tomazela DM, Cunha IB, Bankova VS, Marcucci MC, Custodio AR et al (2004) Electrospray ionization mass spectrometry fingerprinting of propolis. Analyst 129:739–744PubMedCrossRefGoogle Scholar
  24. 24.
    Hashimoto T, Tori M, Asakawa Y, Wollenweber E (1988) Synthesis of two allergenic constituents of propolis and poplar bud excretion. Z Naturforsch C 43:470–472PubMedGoogle Scholar
  25. 25.
    Lin WL, Liang WH, Lee YJ, Chuang SK, Tseng TH (2010) Antitumor progression potential of caffeic acid phenethyl ester involving p75(NTR) in C6 glioma cells. Chem Biol Interact 188:607–615PubMedCrossRefGoogle Scholar
  26. 26.
    Ang ES, Pavlos NJ, Chai LY, Qi M, Cheng TS, Steer JH et al (2009) Caffeic acid phenethyl ester, an active component of honeybee propolis attenuates osteoclastogenesis and bone resorption via the suppression of RANKL-induced NF-kappaB and NFAT activity. J Cell Physiol 221:642–649PubMedCrossRefGoogle Scholar
  27. 27.
    Park JH, Lee JK, Kim HS, Chung ST, Eom JH, Kim KA et al (2004) Immunomodulatory effect of caffeic acid phenethyl ester in Balb/c mice. Int Immunopharmacol 4:429–436PubMedCrossRefGoogle Scholar
  28. 28.
    Huang MT, Ma W, Yen P, Xie JG, Han J, Frenkel K et al (1996) Inhibitory effects of caffeic acid phenethyl ester (CAPE) on 12-O-tetradecanoylphorbol-13-acetate-induced tumor promotion in mouse skin and the synthesis of DNA, RNA and protein in HeLa cells. Carcinogenesis 17:761–765PubMedCrossRefGoogle Scholar
  29. 29.
    Natarajan K, Singh S, Burke TR Jr, Grunberger D, Aggarwal BB (1996) Caffeic acid phenethyl ester is a potent and specific inhibitor of activation of nuclear transcription factor NF-kappa B. Proc Natl Acad Sci U S A 93:9090–9095PubMedCrossRefGoogle Scholar
  30. 30.
    Chen MJ, Chang WH, Lin CC, Liu CY, Wang TE, Chu CH et al (2008) Caffeic acid phenethyl ester induces apoptosis of human pancreatic cancer cells involving caspase and mitochondrial dysfunction. Pancreatology 8:566–576PubMedCrossRefGoogle Scholar
  31. 31.
    Roos TU, Heiss EH, Schwaiberger AV, Schachner D, Sroka IM, Oberan T et al (2011) Caffeic acid phenethyl ester inhibits PDGF-induced proliferation of vascular smooth muscle cells via activation of p38 MAPK, HIF-1alpha, and heme oxygenase-1. J Nat Prod 74:352–356PubMedCrossRefGoogle Scholar
  32. 32.
    Basini G, Baioni L, Bussolati S, Grasselli F, Daquino C, Spatafora C et al (2010) Antiangiogenic properties of an unusual benzo[k, l]xanthene lignan derived from CAPE (caffeic acid phenethyl ester). Invest New Drugs 30:186–190PubMedCrossRefGoogle Scholar
  33. 33.
    Marquez N, Sancho R, Macho A, Calzado MA, Fiebich BL, Munoz E (2004) Caffeic acid phenethyl ester inhibits T-cell activation by targeting both nuclear factor of activated T-cells and NF-kappaB transcription factors. J Pharmacol Exp Ther 308:993–1001PubMedCrossRefGoogle Scholar
  34. 34.
    Wang LC, Lin YL, Liang YC, Yang YH, Lee JH, Yu HH et al (2009) The effect of caffeic acid phenethyl ester on the functions of human monocyte-derived dendritic cells. BMC Immunol 10:39PubMedCrossRefGoogle Scholar
  35. 35.
    Wang LC, Chu KH, Liang YC, Lin YL, Chiang BL (2010) Caffeic acid phenethyl ester inhibits nuclear factor-kappaB and protein kinase B signalling pathways and induces caspase-3 expression in primary human CD4+ T cells. Clin Exp Immunol 160:223–232PubMedCrossRefGoogle Scholar
  36. 36.
    Kimoto T, Arai S, Aga M, Hanaya T, Kohguchi M, Nomura Y et al (1996) Cell cycle and apoptosis in cancer induced by the artepillin C extracted from Brazilian propolis. Gan To Kagaku Ryoho 23:1855–1859PubMedGoogle Scholar
  37. 37.
    Kimoto T, Arai S, Kohguchi M, Aga M, Nomura Y, Micallef MJ et al (1998) Apoptosis and suppression of tumor growth by artepillin C extracted from Brazilian propolis. Cancer Detect Prev 22:506–515PubMedCrossRefGoogle Scholar
  38. 38.
    Kimoto T, Aga M, Hino K, Koya-Miyata S, Yamamoto Y, Micallef MJ et al (2001) Apoptosis of human leukemia cells induced by Artepillin C, an active ingredient of Brazilian propolis. Anticancer Res 21:221–228PubMedGoogle Scholar
  39. 39.
    Shimizu K, Ashida H, Matsuura Y, Kanazawa K (2004) Antioxidative bioavailability of artepillin C in Brazilian propolis. Arch Biochem Biophys 424:181–188PubMedCrossRefGoogle Scholar
  40. 40.
    Paulino N, Abreu SR, Uto Y, Koyama D, Nagasawa H, Hori H et al (2008) Anti-inflammatory effects of a bioavailable compound, artepillin C, in Brazilian propolis. Eur J Pharmacol 587:296–301PubMedCrossRefGoogle Scholar
  41. 41.
    Shimizu K, Das SK, Hashimoto T, Sowa Y, Yoshida T, Sakai T et al (2005) Artepillin C in Brazilian propolis induces G(0)/G(1) arrest via stimulation of Cip1/p21 expression in human colon cancer cells. Mol Carcinog 44:293–299PubMedCrossRefGoogle Scholar
  42. 42.
    Messerli SM, Ahn MR, Kunimasa K, Yanagihara M, Tatefuji T, Hashimoto K et al (2009) Artepillin C (ARC) in Brazilian green propolis selectively blocks oncogenic PAK1 signaling and suppresses the growth of NF tumors in mice. Phytother Res 23:423–427PubMedCrossRefGoogle Scholar
  43. 43.
    Kimoto T, Koya-Miyata S, Hino K, Micallef MJ, Hanaya T, Arai S et al (2001) Pulmonary carcinogenesis induced by ferric nitrilotriacetate in mice and protection from it by Brazilian propolis and artepillin C. Virchows Arch 438:259–270PubMedCrossRefGoogle Scholar
  44. 44.
    Landmann R, Knopf HP, Link S, Sansano S, Schumann R, Zimmerli W (1996) Human monocyte CD14 is upregulated by lipopolysaccharide. Infect Immun 64:1762–1769PubMedGoogle Scholar
  45. 45.
    Blonska M, Bronikowska J, Pietsz G, Czuba ZP, Scheller S, Krol W (2004) Effects of ethanol extract of propolis (EEP) and its flavones on inducible gene expression in J774A.1 macrophages. J Ethnopharmacol 91:25–30PubMedCrossRefGoogle Scholar
  46. 46.
    Ansorge S, Reinhold D, Lendeckel U (2003) Propolis and some of its constituents down-regulate DNA synthesis and inflammatory cytokine production but induce TGF-beta1 production of human immune cells. Z Naturforsch C 58:580–589PubMedGoogle Scholar
  47. 47.
    Pagliarone AC, Orsatti CL, Bufalo MC, Missima F, Bachiega TF, Junior JP et al (2009) Propolis effects on pro-inflammatory cytokine production and Toll-like receptor 2 and 4 expression in stressed mice. Int Immunopharmacol 9:1352–1356PubMedCrossRefGoogle Scholar
  48. 48.
    De Castro SL. Propolis: biological and pharmacological activities. Therapeutic uses of bee product. Annual Review of Biomedical Science; 2001, p. 49-83.Google Scholar
  49. 49.
    Marcucci MC (1995) Propolis: chemical composition, biological properties and therapeutic activity. Apidologie 26:83–89CrossRefGoogle Scholar
  50. 50.
    Cole N, Sou PW, Ngo A, Tsang KH, Severino JA, Arun SJ et al (2010) Topical ‘Sydney’ propolis protects against UV-radiation-induced inflammation, lipid peroxidation and immune suppression in mouse skin. Int Arch Allergy Immunol 152:87–97PubMedCrossRefGoogle Scholar
  51. 51.
    Said RA, Grassi TF, Scolastici C, de Lima RO Alves, Darros BR, Barbisan LF et al (2010) Absence of chemopreventive influence of propolis on the rat liver altered foci development. Exp Toxicol Pathol 62:405–412PubMedCrossRefGoogle Scholar
  52. 52.
    Kawase A, Matsumoto Y, Hadano M, Ishii Y, Iwaki M (2009) Differential effects of chrysin on nitrofurantoin pharmacokinetics mediated by intestinal breast cancer resistance protein in rats and mice. J Pharm Pharm Sci 12:150–163PubMedGoogle Scholar
  53. 53.
    Khan MS, Halagowder D, Devaraj SN (2011) Methylated chrysin induces co-ordinated attenuation of the canonical Wnt and NF-kB signaling pathway and upregulates apoptotic gene expression in the early hepatocarcinogenesis rat model. Chem Biol Interact 193:12–21PubMedCrossRefGoogle Scholar
  54. 54.
    Badr MO, Edrees NM, Abdallah AA, El-Deen NA, Neamat-Allah AN, Ismail HT (2011) Anti-tumour effects of Egyptian propolis on Ehrlich ascites carcinoma. Vet Ital 47:341–350PubMedGoogle Scholar
  55. 55.
    Omene CO, Wu J, Frenkel K. Caffeic Acid Phenethyl Ester (CAPE) derived from propolis, a honeybee product, inhibits growth of breast cancer stem cells. Invest New Drugs, 2011;in press.Google Scholar
  56. 56.
    Demestre M, Messerli SM, Celli N, Shahhossini M, Kluwe L, Mautner V et al (2009) CAPE (caffeic acid phenethyl ester)-based propolis extract (Bio 30) suppresses the growth of human neurofibromatosis (NF) tumor xenografts in mice. Phytother Res 23:226–230PubMedCrossRefGoogle Scholar
  57. 57.
    Jung BI, Kim MS, Kim HA, Kim D, Yang J, Her S et al (2010) Caffeic acid phenethyl ester, a component of beehive propolis, is a novel selective estrogen receptor modulator. Phytother Res 24:295–300PubMedGoogle Scholar
  58. 58.
    Ahn MR, Kunimasa K, Ohta T, Kumazawa S, Kamihira M, Kaji K et al (2007) Suppression of tumor-induced angiogenesis by Brazilian propolis: major component artepillin C inhibits in vitro tube formation and endothelial cell proliferation. Cancer Lett 252:235–243PubMedCrossRefGoogle Scholar
  59. 59.
    Kunimasa K, Ahn MR, Kobayashi T, Eguchi R, Kumazawa S, Fujimori Y et al. Brazilian propolis suppresses angiogenesis by inducing apoptosis in tube-forming endothelial cells through inactivation of survival signal ERK1/2. Evid Based Complement Alternat Med, 2009;in press.Google Scholar
  60. 60.
    Izuta H, Shimazawa M, Tsuruma K, Araki Y, Mishima S, Hara H (2009) Bee products prevent VEGF-induced angiogenesis in human umbilical vein endothelial cells. BMC Complement Altern Med 9:45PubMedCrossRefGoogle Scholar
  61. 61.
    Chikaraishi Y, Izuta H, Shimazawa M, Mishima S, Hara H (2009) Angiostatic effects of Brazilian green propolis and its chemical constituents. Mol Nutr Food Res 54:566–575CrossRefGoogle Scholar
  62. 62.
    Sze DM, Brown R, Yang S, Ho PJ, Gibson J, Joshua D (2006) The use of thalidomide in myeloma therapy as an effective anticancer drug. Curr Cancer Drug Targets 6:325–331PubMedCrossRefGoogle Scholar
  63. 63.
    Fung KL, Liang RH, Chan GC (2009) Vincristine but not imatinib could suppress mesenchymal niche's support to lymphoid leukemic cells. Leuk Lymphoma 51:515–522CrossRefGoogle Scholar
  64. 64.
    Lee KW, Kang NJ, Kim JH, Lee KM, Lee DE, Hur HJ et al (2008) Caffeic acid phenethyl ester inhibits invasion and expression of matrix metalloproteinase in SK-Hep1 human hepatocellular carcinoma cells by targeting nuclear factor kappa B. Genes Nutr 2:319–322PubMedCrossRefGoogle Scholar
  65. 65.
    Hattori H, Okuda K, Murase T, Shigetsura Y, Narise K, Semenza GL et al (2011) Isolation, identification, and biological evaluation of HIF-1-modulating compounds from Brazilian green propolis. Bioorg Med Chem 19:5392–5401PubMedCrossRefGoogle Scholar
  66. 66.
    Padmavathi R, Senthilnathan P, Chodon D, Sakthisekaran D (2006) Therapeutic effect of paclitaxel and propolis on lipid peroxidation and antioxidant system in 7,12 dimethyl benz(a)anthracene-induced breast cancer in female Sprague Dawley rats. Life Sci 78:2820–2825PubMedCrossRefGoogle Scholar
  67. 67.
    Orsolic N, Benkovic V, Lisicic D, Dikic D, Erhardt J, Knezevic AH (2009) Protective effects of propolis and related polyphenolic/flavonoid compounds against toxicity induced by irinotecan. Med Oncol 27:1346–1358PubMedCrossRefGoogle Scholar
  68. 68.
    Albukhari AA, Gashlan HM, El-Beshbishy HA, Nagy AA, Abdel-Naim AB (2009) Caffeic acid phenethyl ester protects against tamoxifen-induced hepatotoxicity in rats. Food Chem Toxicol 47:1689–1695PubMedCrossRefGoogle Scholar
  69. 69.
    Orsolic N, Basic I (2005) Antitumor, hematostimulative and radioprotective action of water-soluble derivative of propolis (WSDP). Biomed Pharmacother 59:561–570PubMedCrossRefGoogle Scholar
  70. 70.
    Zedan H, Hofny ER, Ismail SA (2009) Propolis as an alternative treatment for cutaneous warts. Int J Dermatol 48:1246–1249PubMedCrossRefGoogle Scholar
  71. 71.
    Iljazovic E, Ljuca D, Sahimpasic A, Avdic S (2006) Efficacy in treatment of cervical HRHPV infection by combination of beta interferon, and herbal therapy in woman with different cervical lesions. Bosn J Basic Med Sci 6:79–84PubMedGoogle Scholar
  72. 72.
    Coelho LG, Bastos EM, Resende CC, Silva CM Paula e, Sanches BS, de Castro FJ et al (2007) Brazilian green propolis on Helicobacter pylori infection. a pilot clinical study. Helicobacter 12:572–574PubMedCrossRefGoogle Scholar
  73. 73.
    Chirumbolo S (2011) Propolis as anti-inflammatory and anti-allergic compounds: which role for flavonoids? Int Immunopharmacol 11:1386–1387PubMedCrossRefGoogle Scholar
  74. 74.
    de Castro PA, Savoldi M, Bonatto D, Barros MH, Goldman MH, Berretta AA et al (2011) Molecular characterization of propolis-induced cell death in Saccharomyces cerevisiae. Eukaryot Cell 10:398–411PubMedCrossRefGoogle Scholar
  75. 75.
    Freitas JA, Vanat N, Pinheiro JW, Balarin MR, Sforcin JM, Venancio EJ (2011) The effects of propolis on antibody production by laying hens. Poult Sci 90:1227–1233PubMedCrossRefGoogle Scholar
  76. 76.
    Zhu W, Chen M, Shou Q, Li Y, Hu F (2011) Biological activities of Chinese propolis and Brazilian propolis on streptozotocin-induced type 1 diabetes mellitus in rats. Evid Based Complement Alternat Med 2011:468529PubMedGoogle Scholar
  77. 77.
    Venkatesha SH, Berman BM, Moudgil KD (2011) Herbal medicinal products target defined biochemical and molecular mediators of inflammatory autoimmune arthritis. Bioorg Med Chem 19:21–29PubMedCrossRefGoogle Scholar
  78. 78.
    Hsieh CC, Lin BF (2011) Dietary factors regulate cytokines in murine models of systemic lupus erythematosus. Autoimmun Rev 11:22–27PubMedCrossRefGoogle Scholar
  79. 79.
    Pagliarone AC, Missima F, Orsatti CL, Bachiega TF, Sforcin JM (2009) Propolis effect on Th1/Th2 cytokines production by acutely stressed mice. J Ethnopharmacol 125:230–233PubMedCrossRefGoogle Scholar
  80. 80.
    Sa-Nunes A, Faccioli LH, Sforcin JM (2003) Propolis: lymphocyte proliferation and IFN-gamma production. J Ethnopharmacol 87:93–97PubMedCrossRefGoogle Scholar
  81. 81.
    Hu F, Hepburn HR, Li Y, Chen M, Radloff SE, Daya S (2005) Effects of ethanol and water extracts of propolis (bee glue) on acute inflammatory animal models. J Ethnopharmacol 100:276–283PubMedCrossRefGoogle Scholar
  82. 82.
    Girgin G, Baydar T, Ledochowski M, Schennach H, Bolukbasi DN, Sorkun K et al (2009) Immunomodulatory effects of Turkish propolis: changes in neopterin release and tryptophan degradation. Immunobiology 214:129–134PubMedCrossRefGoogle Scholar
  83. 83.
    Orsi RO, Sforcin JM, Funari SR, Bankova V (2005) Effects of Brazilian and Bulgarian propolis on bactericidal activity of macrophages against Salmonella typhimurium. Int Immunopharmacol 5:359–368PubMedCrossRefGoogle Scholar
  84. 84.
    Song YS, Park EH, Hur GM, Ryu YS, Kim YM, Jin C (2002) Ethanol extract of propolis inhibits nitric oxide synthase gene expression and enzyme activity. J Ethnopharmacol 80:155–161PubMedCrossRefGoogle Scholar
  85. 85.
    Sforcin JM, Orsi RO, Bankova V (2005) Effect of propolis, some isolated compounds and its source plant on antibody production. J Ethnopharmacol 98:301–305PubMedCrossRefGoogle Scholar
  86. 86.
    Orsatti CL, Missima F, Pagliarone AC, Bachiega TF, Bufalo MC, Araujo JP Jr et al (2010) Propolis immunomodulatory action in vivo on Toll-like receptors 2 and 4 expression and on pro-inflammatory cytokines production in mice. Phytother Res 24:1141–1146PubMedGoogle Scholar
  87. 87.
    Claus R, Kinscherf R, Gehrke C, Bonaterra G, Basnet P, Metz J et al (2000) Antiapoptotic effects of propolis extract and propol on human macrophages exposed to minimally modified low density lipoprotein. Arzneimittelforschung 50:373–379PubMedGoogle Scholar
  88. 88.
    Murad JM, Calvi SA, Soares AM, Bankova V, Sforcin JM (2002) Effects of propolis from Brazil and Bulgaria on fungicidal activity of macrophages against Paracoccidioides brasiliensis. J Ethnopharmacol 79:331–334PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Godfrey Chi-Fung Chan
    • 1
    Email author
  • Ka-Wai Cheung
    • 2
  • Daniel Man-Yuen Sze
    • 3
  1. 1.Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, Queen Mary HospitalThe University of Hong KongHong Kong SARPeople’ Republic of China
  2. 2.AIDS Institute, LKS Faculty of MedicineThe University of Hong KongHong KongPeople’ Republic of China
  3. 3.Department of Health Technology and InformaticsThe Hong Kong Polytechnic UniversityKowloonPeople’ Republic of China

Personalised recommendations