Clinical Reviews in Allergy & Immunology

, Volume 43, Issue 3, pp 211–219 | Cite as

Antineutrophil Cytoplasmic Autoantibodies: How Are They Detected and What Is Their Use for Diagnosis, Classification and Follow-up?



Antineutrophil cytoplasmic antibodies (ANCA) are traditionally detected by an indirect immunofluorescence technique. According to the international consensus on ANCA testing, ANCA should also be tested by antigen-specific tests for myeloperoxidase-ANCA and proteinase 3-ANCA. The direct noncompetitive enzyme-linked immunosorbent assay (ELISA) used to be the method of choice. Nowadays, these assays are called “first-generation” assays. Second-generation tests (capture ELISA) or third-generation tests (anchor ELISA) are more sensitive and specific for ANCA testing. We postulate that ANCA as detected by these newer ANCA tests may replace the need to perform indirect immunofluorescence-based assays. For classification of patients, ANCA serotype seems more important than classifying patients according to their clinical subtype, since genetics, clinical manifestations and response to therapy are more related to ANCA serotype than to clinical subtype. Detection of ANCA to monitor disease activity is still a controversial issue. Treatment based on ANCA levels is at present only experimentally performed in those patients who are treated with B-cell depletion therapy with rituximab. Future studies are needed to establish whether this way of monitoring patients is warranted.


ANCA PR3-ANCA MPO-ANCA Vasculitis Glomerulonephritis Classification 


  1. 1.
    Jennette JC, Falk RJ, Andrassy K et al (1994) Nomenclature of systemic vasculitides. Proposal of an international consensus conference. Arthritis Rheum 37:187–192PubMedCrossRefGoogle Scholar
  2. 2.
    Hilhorst M, van Paassen P, van Breda VP, Cohen Tervaert JW (2011) Immune complexes in acute adult-onset Henoch–Schonlein nephritis. Nephrol Dial Transplant 26:3960–3967PubMedCrossRefGoogle Scholar
  3. 3.
    Haas M, Eustace JA (2004) Immune complex deposits in ANCA-associated crescentic glomerulonephritis: a study of 126 cases. Kidney Int 65:2145–2152PubMedCrossRefGoogle Scholar
  4. 4.
    Brons RH, de Jong MC, de Boer NK, Stegeman CA, Kallenberg CG, Tervaert JW (2001) Detection of immune deposits in skin lesions of patients with Wegener’s granulomatosis. Ann Rheum Dis 60:1097–1102PubMedCrossRefGoogle Scholar
  5. 5.
    Tervaert JW, Heeringa P (2003) Pathophysiology of ANCA-associated vasculitides: are ANCA really pathogenic? Neth J Med 61:404–407PubMedGoogle Scholar
  6. 6.
    Tervaert JW, Elema JD, Kallenberg CG (1990) Clinical and histopathological association of 29kD-ANCA and MPO-ANCA. APMIS Suppl 19:35PubMedCrossRefGoogle Scholar
  7. 7.
    Tervaert JW, Limburg PC, Elema JD et al (1991) Detection of autoantibodies against myeloid lysosomal enzymes: a useful adjunct to classification of patients with biopsy-proven necrotizing arteritis. Am J Med 91:59–66PubMedCrossRefGoogle Scholar
  8. 8.
    Lyons PA, Rayner TF, Trivedi S, et al. (2012) Genetically distinct subsets within ANCA-associated vasculitis. New Engl J Med (in press)Google Scholar
  9. 9.
    Franssen CF, Stegeman CA, Kallenberg CG et al (2000) Antiproteinase 3- and antimyeloperoxidase-associated vasculitis. Kidney Int 57:2195–2206PubMedCrossRefGoogle Scholar
  10. 10.
    Tervaert JW (2003) ANCA testing in monitoring the activity of the disease. Kidney Blood Press Res 26:226–230PubMedCrossRefGoogle Scholar
  11. 11.
    Sinico RA, Di Toma L, Maggiore U et al (2005) Prevalence and clinical significance of antineutrophil cytoplasmic antibodies in Churg–Strauss syndrome. Arthritis Rheum 52:2926–2935PubMedCrossRefGoogle Scholar
  12. 12.
    Dennert RM, van Paassen P, Schalla S et al (2010) Cardiac involvement in Churg–Strauss syndrome. Arthritis Rheum 62:627–634PubMedGoogle Scholar
  13. 13.
    Nölle B, Specks U, Lüdemann J, Rohrbach MS, DeRemee RA, Gross WL (1989) Anticytoplasmic autoantibodies: their immunodiagnostic value in Wegener granulomatosis. Ann Intern Med 111:28–40PubMedGoogle Scholar
  14. 14.
    Holle JU, Gross WL, Holl-Ulrich K et al (2010) Prospective long-term follow-up of patients with localised Wegener’s granulomatosis: does it occur as persistent disease stage? Ann Rheum Dis 69:1934–1939PubMedCrossRefGoogle Scholar
  15. 15.
    Wilde B, van Paassen P, Witzke O, Tervaert JW (2011) New pathophysiological insights and treatment of ANCA-associated vasculitis. Kidney Int 79:599–612PubMedCrossRefGoogle Scholar
  16. 16.
    Cohen Tervaert JW (2011) Rituximab in ANCA-associated vasculitis: a revolution? Nephrol Dial Transplant 26:3077–3079PubMedCrossRefGoogle Scholar
  17. 17.
    Damoiseaux J, Cohen Tervaert JW (2005) Tests for autoantibodies. In: Vohr H (ed) Encyclopedic reference of immunotoxicology. Springer-Verlag, Heidelberg, pp 68–72CrossRefGoogle Scholar
  18. 18.
    Boomsma MM, Damoiseaux JGMC, Stegeman CA, Kallenberg CGM, Patnaik M, Peter JB, Cohen Tervaert JW (2003) Image analysis: a novel approach for the quantification of antineutrophil cytoplasmic antibody levels in patients with Wegener’s granulomatosis. J Immunol Methods 274:27–35PubMedCrossRefGoogle Scholar
  19. 19.
    Savige J, Gillis D, Benson E et al (1999) International consensus statement on testing and reporting of antineutrophil cytoplasmic antibodies (ANCA). Am J Clin Pathol 111:507–513PubMedGoogle Scholar
  20. 20.
    Rutgers A, Damoiseaux JG, Roozendaal C, Limburg PC, Stegeman CA, Cohen Tervaert JW (2004) ANCA-GBM dot-blot: evaluation of an assay in the differential diagnosis of patients presenting with rapidly progressive glomerulonephritis. J Clin Immunol 24:435–404PubMedCrossRefGoogle Scholar
  21. 21.
    Damoiseaux J, Vaessen M, Knapen Y, Csernok E, Stegeman CA, Van Paassen P, Cohen Tervaert JW (2007) Evaluation of the FIDIS vasculitis multiplex immunoassay for diagnosis and follow-up of ANCA-associated vasculitis and Goodpasture’s disease. Ann N Y Acad Sci 1109:454–463PubMedCrossRefGoogle Scholar
  22. 22.
    Damoiseaux JG, Slot MC, Vaessen M, Stegeman CA, Van Paassen P, Cohen Tervaert JW (2005) Evaluation of a new fluorescent-enzyme immuno-assay for diagnosis and follow-up of ANCA-associated vasculitis. J Clin Immunol 25:202–208PubMedCrossRefGoogle Scholar
  23. 23.
    Mahler M, Radice A, Yang W et al (2012) Development and performance evaluation of novel chemiluminescence assays for detection of anti-PR3 and anti-MPO antibodies. Clin Chim Acta 413:719–726PubMedCrossRefGoogle Scholar
  24. 24.
    Goldschmeding R, Vanderschoot CE, Tervaert JWC, Mason DY, Von dem Borne AEGK, Kallenberg CGM (1988) Autoantibodies against myeloid lysosomal-enzymes—a novel class of autoantibodies associated with vasculitic syndromes. Kidney Int 34:558–559Google Scholar
  25. 25.
    Cohen Tervaert JW, Goldschmeding R, Elema JD, Van der Giessen M, Huitema MG, Van der Hem GK, The TH, Von dem Borne AE, Kallenberg CG (1990) Autoantibodies against myeloid lysosomal enzymes in crescentic glomerulonephritis. Kidney Int 37:799–806CrossRefGoogle Scholar
  26. 26.
    Tervaert JW, Goldschmeding R, Elema JD et al (1990) Association of autoantibodies to myeloperoxidase with different forms of vasculitis. Arthritis Rheum 33:1264–1272PubMedCrossRefGoogle Scholar
  27. 27.
    Cohen Tervaert JW, Mulder L, Stegeman CA, Elema J, Huitema M, The H, Kallenberg CG (1993) Occurrence of autoantibodies to human leucocyte elastase in Wegener’s granulomatosis and other inflammatory disorders. Ann Rheum Dis 52:115–120CrossRefGoogle Scholar
  28. 28.
    Csernok E, Holle J, Hellmich B et al (2004) Evaluation of capture ELISA for detection of antineutrophil cytoplasmic antibodies directed against proteinase 3 in Wegener’s granulomatosis: first results from a multicentre study. Rheumatology (Oxford) 43:174–180CrossRefGoogle Scholar
  29. 29.
    Boomsma MM, Stegeman CA, Oost-Kort WW et al (2001) Native and recombinant proteins to analyze auto-antibodies to myeloperoxidase in pauci-immune crescentic glomerulonephritis. J Immunol Methods 254:47–58PubMedCrossRefGoogle Scholar
  30. 30.
    Westman KW, Selga D, Isberg PE, Bladström A, Olsson H (2003) High proteinase 3-anti-neutrophil cytoplasmic antibody (ANCA), level measured by the capture enzyme-linked immunosorbent assay method is associated with decreased patient survival in ANCA-associated vasculitis with renal involvement. J Am Soc Nephrol 14:2926–2933PubMedCrossRefGoogle Scholar
  31. 31.
    Westman KW, Selga D, Bygren P et al (1998) Clinical evaluation of a capture ELISA for detection of proteinase-3 antineutrophil cytoplasmic antibody. Kidney Int 53:1230–1236PubMedCrossRefGoogle Scholar
  32. 32.
    Arranz O, Ara J, Rodriguez R et al (2001) Comparison of anti-PR3 capture and anti-PR3 direct ELISA for detection of antineutrophil cytoplasmic antibodies (ANCA) in long-term clinical follow-up of PR3-ANCA-associated vasculitis patients. Clin Nephrol 56:295–301PubMedGoogle Scholar
  33. 33.
    Gisslén K, Wieslander J, Westberg G, Herlitz H (2002) Relationship between anti-neutrophil cytoplasmic antibody determined with conventional binding and the capture assay, and long-term clinical course in vasculitis. J Intern Med 251:129–135PubMedCrossRefGoogle Scholar
  34. 34.
    Segelmark M, Westman K, Wieslander J (2000) How and why should we detect ANCA? Clin Exp Rheumatol 18:629–635PubMedGoogle Scholar
  35. 35.
    Van Der Geld YM, Limburg PC, Kallenberg CG (1999) Characterization of monoclonal antibodies to proteinase 3 (PR3) as candidate tools for epitope mapping of human anti-PR3 autoantibodies. Clin Exp Immunol 118:487–496CrossRefGoogle Scholar
  36. 36.
    Homma T, Suzuki K, Kudo Y et al (1989) Preparation and characterization of monoclonal antibodies against human myeloperoxidase. Arch Biochem Biophys 273:189–196PubMedCrossRefGoogle Scholar
  37. 37.
    Lee AS, Finkielman JD, Peikert T, Hummel AM, Viss MA, Specks U (2005) A novel capture-ELISA for detection of anti-neutrophil cytoplasmic antibodies (ANCA) based on c-myc peptide recognition in carboxy-terminally tagged recombinant neutrophil serine proteases. J Immunol Methods 307:62–72PubMedCrossRefGoogle Scholar
  38. 38.
    Roggenbuck D, Buettner T, Hoffmann L, Schmechta H, Reinhold D, Conrad K (2009) High-sensitivity detection of autoantibodies against proteinase-3 by a novel third-generation enzyme-linked immunosorbent assay. Ann N Y Acad Sci 1173:41–46PubMedCrossRefGoogle Scholar
  39. 39.
    Hellmich B, Csernok E, Fredenhagen G, Gross WL (2007) A novel high sensitivity ELISA for detection of anti-neutrophil cytoplasm antibodies against proteinase-3. Clin Exp Rheumatol 25(S44):S1–S5PubMedGoogle Scholar
  40. 40.
    Damoiseaux J, Dähnrich C, Rosemann A et al (2009) A novel enzyme-linked immunosorbent assay using a mixture of human native and recombinant proteinase-3 significantly improves the diagnostic potential for antineutrophil cytoplasmic antibody-associated vasculitis. Ann Rheum Dis 68:228–233PubMedCrossRefGoogle Scholar
  41. 41.
    Holle JU, Csernok E, Fredenhagen G, Backes M, Bremer JP, Gross WL (2010) Clinical evaluation of hsPR3-ANCA ELISA for detection of antineutrophil cytoplasmatic antibodies directed against proteinase 3. Ann Rheum Dis 69:468–469PubMedCrossRefGoogle Scholar
  42. 42.
    Westman KW, Bygren PG, Eilert I, Wiik A, Wieslander J (1997) Rapid screening assay for anti-GBM antibody and ANCAs: an important tool for the differential diagnosis of pulmonary renal syndromes. Nephrol Dial Transplant 12:1863–1868PubMedCrossRefGoogle Scholar
  43. 43.
    Milovanceva-Popovska M, Grcevska L, Dzikova S et al (2006) ANCA-GBM dot-blot test in diagnosis of patients with glomerulonephritis. Prilozi 27:45–55PubMedGoogle Scholar
  44. 44.
    Damoiseaux J, Steller U, Buschtez M et al (2009) EUROPLUS™ ANCA BIOCHIP mosaic: PR3 and MPO antigen microdots improve the laboratory diagnostics of ANCA-associated vasculitis. J Immunol Methods 348:67–73PubMedCrossRefGoogle Scholar
  45. 45.
    Ntatsaki E, Watts RA, Scott DG (2010) Epidemiology of ANCA-associated vasculitis. Rheum Dis Clin North Am 36:447–461PubMedCrossRefGoogle Scholar
  46. 46.
    Fujimoto S, Watts RA, Kobayashi S et al (2011) Comparison of the epidemiology of anti-neutrophil cytoplasmic antibody-associated vasculitis between Japan and the UK. Rheumatology (Oxford) 50:1916–1920CrossRefGoogle Scholar
  47. 47.
    Chen M, Cui Z, Zhao MH (2010) ANCA-associated vasculitis and anti-GBM disease: the experience in China. Nephrol Dial Transplant 25:2062–2065PubMedCrossRefGoogle Scholar
  48. 48.
    Tervaert JW, Stegeman CA, Kallenberg CG (1998) Silicon exposure and vasculitis. Curr Opin Rheumatol 10:12–17PubMedCrossRefGoogle Scholar
  49. 49.
    Gatenby PA, Lucas RM, Engelsen O, Ponsonby AL, Clements M (2009) Antineutrophil cytoplasmic antibody-associated vasculitides: could geographic patterns be explained by ambient ultraviolet radiation? Arthritis Rheum 61:1417–1424PubMedCrossRefGoogle Scholar
  50. 50.
    Chen M, Yu F, Zhang Y, Zou WZ, Zhao MH, Wang HY (2005) Characteristics of Chinese patients with Wegener’s granulomatosis with anti-myeloperoxidase autoantibodies. Kidney Int 68:2225–2229PubMedCrossRefGoogle Scholar
  51. 51.
    Tervaert JWC, Goldschmeding R, Hene RJ, Kallenberg CGM (1989) Neutrophil cytoplasmic autoantibodies and Wegener’s granulomatosis. Lancet 333:270Google Scholar
  52. 52.
    Finkielman JD, Lee AS, Hummel AM et al (2007) ANCA are detectable in nearly all patients with active severe Wegener’s granulomatosis. Am J Med 120(643.e9):643.e14Google Scholar
  53. 53.
    Tervaert JW, Goldschmeding R, Elema JD, von dem Borne AE, Kallenberg CG (1991) Anti-myeloperoxidase antibodies in Churg–Strauss syndrome. Thorax 46:70–71PubMedCrossRefGoogle Scholar
  54. 54.
    Guillevin L, Durand-Gasselin B, Cevallos R et al (1999) Microscopic polyangiitis: clinical and laboratory findings in eighty-five patients. Arthritis Rheum 42:421–430PubMedCrossRefGoogle Scholar
  55. 55.
    Dolman KM, Gans RO, Vervaat TJ et al (1993) Vasculitis and antineutrophil cytoplasmic autoantibodies associated with propylthiouracil therapy. Lancet 342:651–652PubMedCrossRefGoogle Scholar
  56. 56.
    Slot MC, Links TP, Stegeman CA, Tervaert JW (2005) Occurrence of antineutrophil cytoplasmic antibodies and associated vasculitis in patients with hyperthyroidism treated with antithyroid drugs: a long-term follow-up study. Arthritis Rheum 53:108–113PubMedCrossRefGoogle Scholar
  57. 57.
    Gao Y, Chen M, Ye H, Guo XH, Zhao MH, Wang HY (2007) The target antigens of antineutrophil cytoplasmic antibodies (ANCA) induced by propylthiouracil. Int Immunopharmacol 7:55–60PubMedCrossRefGoogle Scholar
  58. 58.
    Wiesner O, Russell KA, Lee AS et al (2004) Antineutrophil cytoplasmic antibodies reacting with human neutrophil elastase as a diagnostic marker for cocaine-induced midline destructive lesions but not autoimmune vasculitis. Arthritis Rheum 50:2954–2965PubMedCrossRefGoogle Scholar
  59. 59.
    Tervaert JW, Stegeman CA (2004) A difficult diagnosis. Lancet 364:1313–1314PubMedCrossRefGoogle Scholar
  60. 60.
    McGrath MM, Isakova T, Rennke HG, Mottola AM, Laliberte KA, Niles JL (2011) Contaminated cocaine and antineutrophil cytoplasmic antibody-associated disease. Clin J Am Soc Nephrol 6:2799–2805PubMedCrossRefGoogle Scholar
  61. 61.
    Kain R, Exner M, Brandes R et al (2008) Molecular mimicry in pauci-immune focal necrotizing glomerulonephritis. Nat Med 14:1088–1096PubMedCrossRefGoogle Scholar
  62. 62.
    Kawakami T, Takeuchi S, Arimura Y, Soma Y (2012) Elevated anti-lysosomal-associated membrane protein-2 antibody levels in patients with adult Henoch–Schönlein purpura. Br J Dermatol. doi:10.1111/j.1365-2133.2012.10884.x
  63. 63.
    Kallenberg CG, Mulder AH, Tervaert JW (1992) Antineutrophil cytoplasmic antibodies: a still-growing class of autoantibodies in inflammatory disorders. Am J Med 93:675–682PubMedCrossRefGoogle Scholar
  64. 64.
    Teegen B, Niemann S, Probst C, Schlumberger W, Stöcker W, Komorowski L (2009) DNA-bound lactoferrin is the major target for antineutrophil perinuclear cytoplasmic antibodies in ulcerative colitis. Ann N Y Acad Sci 1173:161–165PubMedCrossRefGoogle Scholar
  65. 65.
    Tervaert JW, Mulder AH, Horst G, Haagsma EB, Kleibeuker JH, Kallenberg CG (1992) Antineutrophil cytoplasmic antibodies in primary sclerosing cholangitis, ulcerative colitis, and autoimmune diseases. Gastroenterology 102:1090–1091PubMedGoogle Scholar
  66. 66.
    Peen E, Almer S, Bodemar G et al (1993) Anti-lactoferrin antibodies and other types of ANCA in ulcerative colitis, primary sclerosing cholangitis, and Crohn’s disease. Gut 34:56–62PubMedCrossRefGoogle Scholar
  67. 67.
    Carlsson M, Shukla S, Petersson AC, Segelmark M, Hellmark T (2011) Pseudomonas aeruginosa in cystic fibrosis: pyocyanin negative strains are associated with BPI-ANCA and progressive lung disease. J Cyst Fibros 10:265–271PubMedCrossRefGoogle Scholar
  68. 68.
    Choi HK, Lamprecht P, Niles JL, Gross WL, Merkel PA (2000) Subacute bacterial endocarditis with positive cytoplasmic antineutrophil cytoplasmic antibodies and anti-proteinase 3 antibodies. Arthritis Rheum 43:226–231PubMedCrossRefGoogle Scholar
  69. 69.
    Slot MC, Tervaert JW, Boomsma MM, Stegeman CA (2004) Positive classic antineutrophil cytoplasmic antibody (C-ANCA) titer at switch to azathioprine therapy associated with relapse in proteinase 3-related vasculitis. Arthritis Rheum 51:269–273PubMedCrossRefGoogle Scholar
  70. 70.
    Heeringa P, Huugen D, Tervaert JW (2005) Anti-neutrophil cytoplasmic autoantibodies and leukocyte-endothelial interactions: a sticky connection? Trends Immunol 26:561–564PubMedCrossRefGoogle Scholar
  71. 71.
    Little MA, Al-Ani B, Ren S et al (2012) Anti-proteinase 3 anti-neutrophil cytoplasm autoantibodies recapitulate systemic vasculitis in mice with a humanized immune system. PLoS One 7(1):e28626PubMedCrossRefGoogle Scholar
  72. 72.
    Huugen D, Xiao H, van Esch A et al (2005) Aggravation of anti-myeloperoxidase antibody-induced glomerulonephritis by bacterial lipopolysaccharide: role of tumor necrosis factor-alpha. Am J Pathol 167:47–58PubMedCrossRefGoogle Scholar
  73. 73.
    Stegeman CA, Tervaert JW, Sluiter WJ, Manson WL, de Jong PE, Kallenberg CG (1994) Association of chronic nasal carriage of Staphylococcus aureus and higher relapse rates in Wegener granulomatosis. Ann Intern Med 120:12–17PubMedGoogle Scholar
  74. 74.
    Tomasson G, Grayson PC, Mahr AD, Lavalley M, Merkel PA (2012) Value of ANCA measurements during remission to predict a relapse of ANCA-associated vasculitis—a meta-analysis. Rheumatology (Oxford) 51:100–109CrossRefGoogle Scholar
  75. 75.
    Franssen CF, Stegeman CA, Oost-Kort WW et al (1998) Determinants of renal outcome in anti-myeloperoxidase-associated necrotizing crescentic glomerulonephritis. J Am Soc Nephrol 9:1915–1923PubMedGoogle Scholar
  76. 76.
    Jayne D, Rasmussen N, Andrassy K et al (2003) A randomized trial of maintenance therapy for vasculitis associated with antineutrophil cytoplasmic autoantibodies. N Engl J Med 349:36–44PubMedCrossRefGoogle Scholar
  77. 77.
    Sanders JS, Huitma MG, Kallenberg CG, Stegeman CA (2006) Prediction of relapses in PR3-ANCA-associated vasculitis by assessing responses of ANCA titres to treatment. Rheumatology (Oxford) 45:724–729CrossRefGoogle Scholar
  78. 78.
    Tervaert JW, van der Woude FJ, Fauci AS et al (1989) Association between active Wegener’s granulomatosis and anticytoplasmic antibodies. Arch Intern Med 149:2461–2465PubMedCrossRefGoogle Scholar
  79. 79.
    Tervaert JW, Huitema MG, Hené RJ et al (1990) Prevention of relapses in Wegener’s granulomatosis by treatment based on antineutrophil cytoplasmic antibody titre. Lancet 336:709–711PubMedCrossRefGoogle Scholar
  80. 80.
    Boomsma MM, Stegeman CA, van der Leij MJ et al (2000) Prediction of relapses in Wegener’s granulomatosis by measurement of antineutrophil cytoplasmic antibody levels: a prospective study. Arthritis Rheum 43:2025–2033PubMedCrossRefGoogle Scholar
  81. 81.
    Finkielman JD, Merkel PA, Schroeder D et al (2007) Antiproteinase 3 antineutrophil cytoplasmic antibodies and disease activity in Wegener granulomatosis. Ann Intern Med 147:611–619PubMedGoogle Scholar
  82. 82.
    Cartin-Ceba R, Fervenza FC, Specks U (2012) Treatment of antineutrophil cytoplasmic antibody-associated vasculitis with rituximab. Curr Opin Rheumatol 24:15–23PubMedCrossRefGoogle Scholar
  83. 83.
    Terrier B, Saadoun D, Sène D et al (2009) Antimyeloperoxidase antibodies are a useful marker of disease activity in antineutrophil cytoplasmic antibody-associated vasculitides. Ann Rheum Dis 68:1564–1571PubMedCrossRefGoogle Scholar
  84. 84.
    Selga D, Segelmark M, Gunnarsson L, Hellmark T (2010) Epitope shift of proteinase-3 anti-neutrophil cytoplasmic antibodies in patients with small vessel vasculitis. Clin Exp Immunol 160:318–324PubMedCrossRefGoogle Scholar
  85. 85.
    Suzuki K, Kobayashi S, Yamazaki K et al (2007) Analysis of risk epitopes of anti-neutrophil antibody MPO-ANCA in vasculitis in Japanese population. Microbiol Immunol 51:1215–1220PubMedGoogle Scholar
  86. 86.
    Lin W, Chen M, Zhao MH (2009) Follow-up of avidity and titer of anti-myeloperoxidase antibodies in sera from patients with primary ANCA-associated vasculitis. Autoimmunity 42:198–202PubMedCrossRefGoogle Scholar
  87. 87.
    Yoshida M, Sasaki M, Nakabayashi I et al (2009) Two types of myeloperoxidase-antineutrophil cytoplasmic autoantibodies with a high affinity and a low affinity in small vessel vasculitis. Clin Exp Rheumatol 27(Suppl 52):S28–S32PubMedGoogle Scholar
  88. 88.
    Espy C, Morelle W, Kavian N et al (2011) Sialylation levels of anti-proteinase 3 antibodies are associated with the activity of granulomatosis with polyangiitis (Wegener’s). Arthritis Rheum 63:2105–2115PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Internal Medicine, Division of Clinical and Experimental Immunology and Laboratory of Clinical ImmunologyMaastricht University Medical CenterMaastrichtThe Netherlands
  2. 2.Laboratory of Clinical Immunology, Maastricht UMCMaastrichtThe Netherlands

Personalised recommendations