Clinical Reviews in Allergy & Immunology

, Volume 44, Issue 2, pp 194–204 | Cite as

Inflammation, Atherosclerosis, and Psoriasis

  • David Siegel
  • Sridevi Devaraj
  • Anupam Mitra
  • Siba P. Raychaudhuri
  • Smriti K. Raychaudhuri
  • Ishwarlal Jialal


Increasing evidence supports an important role for inflammation in all phases of atherosclerosis, from initiation of the fatty streak to final culmination in acute coronary syndromes. Numerous inflammatory biomarkers including cell adhesion molecules, cytokines, chemokines, and acute-phase reactants such as fibrinogen, serum amyloid A, and C-reactive protein (CRP) have been shown to predict cardiovascular (CVD) events. Several prospective studies have shown a consistent and robust relationship between levels of high-sensitivity CRP and the risk of future CVD events. Toll-like receptors are pattern recognition receptors and members of the innate immune system that contribute to inflammation and appear to play key roles in atherosclerosis. Lipoprotein-associated phospholipase A2 may also be an independent CVD risk factor. Psoriasis has been associated with an increasing risk for atherosclerosis, including coronary artery disease and stroke. Patients with psoriasis have a 5-year shorter life expectancy, most frequently due to CVD. Psoriasis is associated with a chronic inflammatory state and with elevated levels of CRP and other inflammatory cytokines and these may play a causative role in the increased risk of psoriatic patients for CVD. Patients with psoriasis may represent an emerging risk population and patients with moderate to severe psoriasis should be screened and aggressively treated for CVD risk factors.


Psoriasis Coronary artery disease Inflammatory biomarkers C-reactive protein Toll-like receptors Lipoprotein-associated phospholipase A2 



The authors gratefully acknowledge the assistance of Richard Cacciato MLIS, Medical Librarian, VA Northern California Health Care System, for his support in retrieving articles and of Ms. Susan Edwards who provided expert secretarial assistance.


  1. 1.
    Ross R (1999) Atherosclerosis an inflammatory disease. N Engl J Med 340:115–26PubMedCrossRefGoogle Scholar
  2. 2.
    Hansson GK, Libby P (2006) The immune response in atherosclerosis: a double-edged sword. Nat Rev Immunol 6:508–19PubMedCrossRefGoogle Scholar
  3. 3.
    Jialal I, Devaraj S (2001) Inflammation and atherosclerosis: the value of the high-sensitivity C-reactive protein assay as a risk marker. Am J Clin Pathol 116:S108–15PubMedGoogle Scholar
  4. 4.
    Libby P, Okamoto Y, Rocha VZ, Folco E (2010) Inflammation in atherosclerosis: transition from theory to practice. Circ J 74:213–20PubMedCrossRefGoogle Scholar
  5. 5.
    Packard RR, Lichtman AH, Libby P (2009) Innate and adaptive immunity in atherosclerosis. Semin Immuno Pathol 31:5–22CrossRefGoogle Scholar
  6. 6.
    Verma S, Szmitko PE, Ridker PM (2005) C-reactive protein comes of age. Nat Clin Pract Cardiovasc Med 2:29–36PubMedCrossRefGoogle Scholar
  7. 7.
    Verma S, Devaraj S, Jialal I (2006) Is C-reactive protein an innocent bystander or proatherogenic culprit? C-reactive protein promotes atherothrombosis. Circulation 113:2135–50PubMedGoogle Scholar
  8. 8.
    Devaraj S, Singh U, Jialal I (2009) The evolving role of C-reactive protein in atherothrombosis. Clin Chem 55:229–38PubMedCrossRefGoogle Scholar
  9. 9.
    Takeda K, Kaisho T, Akira S (2003) Toll-like receptors. Annu Rev Immunol 21:335–76PubMedCrossRefGoogle Scholar
  10. 10.
    Uematsu S, Akira S (2006) Toll-like receptors and innate immunity. J Mol Med 84:712–25PubMedCrossRefGoogle Scholar
  11. 11.
    Kawai T, Akira S (2006) TLR signaling. Cell Death Difference 13:816–25CrossRefGoogle Scholar
  12. 12.
    Hill HR, Hogan NA, Rallison ML, Santos JI, Charette RP, Kitahar M (1982) Functional and metabolic abnormalities of diabetic monocytes. Adv Expt Med Biol 69:621–8CrossRefGoogle Scholar
  13. 13.
    Devaraj S, Dasu MR, Rockwood J, Winter W, Griffen SC, Jialal I (2008) Increased toll-like receptor (TLR) 2 and TLR4 expression in monocytes from patients with type 1 diabetes: further evidence of a proinflammatory state. J Clin Endocrinol Metab 93:578–3PubMedCrossRefGoogle Scholar
  14. 14.
    Dasu MR, Devaraj S, Park S, Jialal I (2010) Increased toll-like receptor activation and TLR ligands in recently diagnosed type 2 diabetes subjects. Diabetes Care 33:861–8PubMedCrossRefGoogle Scholar
  15. 15.
    Tsan MF, Gao B (2004) Endogenous ligands of toll-like receptors. J Leukocyte Biol 76:514–9PubMedCrossRefGoogle Scholar
  16. 16.
    Wagner H (2006) Endogenous TLR ligands and autoimmunity. Adv Immunol 91:159–73PubMedCrossRefGoogle Scholar
  17. 17.
    Ohashi K, Burkart V, Flohe S, Kolb H (2000) Cutting edge: heat shock protein 60 is a putative endogenous ligand of the toll-like receptor-4 complex. J Immunol 164:558–61PubMedGoogle Scholar
  18. 18.
    Laurent TC, Fraser JR (1992) Hyaluronan. FASEB J 6:2397–404PubMedGoogle Scholar
  19. 19.
    Noble PW, McKee CM, Cowman M, Shin HS (1996) Hyaluronan fragment activate an NF-κB/I-κBα autoregulatory loop in murine macrophages. J Exp Med 183:2373–8PubMedCrossRefGoogle Scholar
  20. 20.
    Akashi S, Shimazu R, Ogata H, Nagai Y, Takeda K, Kimoto M, Miyake K (2000) Cutting edge: cell surface expression and lipopolysaccharide signaling via the toll-like receptor 4-MD-2 complex on mouse peritoneal macrophages. J Immunol 164:3471–5PubMedGoogle Scholar
  21. 21.
    Mohammad MK, Morran M, Slotterbeck B, Leaman DW, Sun Y, Grafenstein H, Hong SC, McInerney MF (2006) Dysregulated toll-like receptor expression and signaling in bone marrow-derived macrophages at the onset of diabetes in the non-obese diabetic mouse. Int Immunol 18:1101–13PubMedCrossRefGoogle Scholar
  22. 22.
    Song MJ, Kim KH, Yoon JM, Kim JB (2006) Activation of toll-like receptor 4 is associated with insulin resistance in adipocytes. Biochem Biophys Res Commun 346:739–45PubMedCrossRefGoogle Scholar
  23. 23.
    Liu X, Ukai T, Yumoto H, Davey M, Goswami S, Gibson FC 3rd, Genco CA (2007) Toll-like receptor 2 plays a critical role in the progression of atherosclerosis that is independent of dietary lipids. Atherosclerosis 196:146–54PubMedCrossRefGoogle Scholar
  24. 24.
    Michelsen KS, Wong MH, Shah PK, Zhang W, Yano J, Doherty TM, Akira S, Rajavashisth TB, Arditi M (2004) Lack of toll-like receptor 4 or myeloid differentiation factor 88 reduces atherosclerosis and alters plaque phenotype in mice deficient in apolipoprotein E. Proc Natl Acad Sci USA 101:10679–84PubMedCrossRefGoogle Scholar
  25. 25.
    Bjorkbacka H, Kunjathoor VV, Moore KJ, Koehn S, Ordija CM, Lee MA, Means T, Halmen K, Luster AD, Golenbock DT, Freeman MW (2004) Reduced atherosclerosis in MyD88-null mice links elevated serum cholesterol levels to activation of innate immunity signaling pathways. Nat Med 10:416–21PubMedCrossRefGoogle Scholar
  26. 26.
    Edfeldt K, Swedenborg J, Hansson GK, Yan ZQ (2002) Expression of toll-like receptors in human atherosclerotic lesions: a possible pathway for plaque activation. Circulation 105:1158–61PubMedGoogle Scholar
  27. 27.
    Leemans JC, Stokman G, Claessen N, Rouschop KM, Teske GJ, Kirschning CJ, Akira S, van der Poll T, Weening JJ, Florquin S (2005) Renal associated TLR2 mediates ischemia/reperfusion injury in the kidney. J Clin Invest 115:2894–903PubMedCrossRefGoogle Scholar
  28. 28.
    Favre J, Musette P, Douin-Echinard V, Laude K, Henry JP, Arnal JF, Thuillez C, Richard V (2007) Toll-like receptors 2-deficient mice are protected against postischemic coronary endothelial dysfunction. Arterioscler Thromb Vasc Biol 27:1064–71PubMedCrossRefGoogle Scholar
  29. 29.
    Kuwahata S, Fujita S, Orihara K, Hamasaki S, Oba R, Hirai H, Nagata K, Ishida S, Kataoka T, Oketani N, Ichiki H, Iriki Y, Saihara K, Okui H, Ninomiya Y, Tei C (2010) High expression level of Toll-like receptor 2 on monocytes is an important risk factor for arteriosclerotic disease. Atherosclerosis 209:248–54PubMedCrossRefGoogle Scholar
  30. 30.
    Mizoguchi E, Orihara K, Hamasaki S, Ishida S, Kataoka T, Ogawa M, Saihara K, Okui H, Fukudome T, Shinsato T, Shirasawa T, Ichiki H, Kubozono T, Ninomiya Y, Otsuji Y, Tei C (2007) Association between toll-like receptors and the extent and severity of coronary artery disease in patients with stable angina. Coron Artery Dis 18:31–8PubMedCrossRefGoogle Scholar
  31. 31.
    Monaco C, Gregan SM, Navin TJ, Foxwell BM, Davies AH, Feldmann M (2009) Toll-like receptor-2 mediates inflammation and matrix degradation in human atherosclerosis. Circulation 120:2462–9PubMedCrossRefGoogle Scholar
  32. 32.
    Caso JR, Pradillo JM, Hurtado O, Lorenzo P, Moro MA, Lizasoain I (2007) Toll-like receptor 4 is involved in brain damage and inflammation after experimental stroke. Circulation 115:1599–608PubMedCrossRefGoogle Scholar
  33. 33.
    Ameziane N, Beillat T, Verpillat P, Chollet-Martin S, Aumont MC, Seknadji P, Lamotte M, Lebret D, Ollivier V, de Prost D (2003) Association of the toll-like receptor 4 gene Asp299Gly polymorphism with acute coronary events. Arterioscler Thromb Vasc Biol 23:e61–4PubMedCrossRefGoogle Scholar
  34. 34.
    Fukushima R, Soejima H, Fukunaga T, Nakayama M, Oe Y, Oshima S, Sugiyama S, Ogawa H (2009) Expression levels of toll-like receptor genes in coronary atherosclerotic lesions of patients with acute coronary syndrome or stable angina pectoris. Circ J 73:1479–84PubMedCrossRefGoogle Scholar
  35. 35.
    Bajaj M, Suraamornkul S, Piper P, Hardies LJ, Glass L, Cersosimo E, Pratipanawatr T, Miyazaki Y, DeFronzo RA (2004) Decreased plasma adiponectin concentrations are closely related to hepatic fat content and hepatic insulin resistance in pioglitazone-treated type 2 diabetic patients. J Clin Endocrinol Metab 89:200–6PubMedCrossRefGoogle Scholar
  36. 36.
    Thompson D, Pepys MB, Wood SP (1999) The physiological structure of human C-reactive protein and its complex with phosphocholine. Structure 7:169–77PubMedCrossRefGoogle Scholar
  37. 37.
    Khreiss T, József L, Potempa LA, Filep JG (2005) Loss of pentameric symmetry in C-reactive protein induces interleukin-8 secretion through peroxynitrite signaling in human neutrophils. Circ Res 97:690–7PubMedCrossRefGoogle Scholar
  38. 38.
    Calabro P, Willerson JT, Yeh ET (2003) Inflammatory cytokines stimulated C-reactive protein production by human coronary artery smooth muscle cells. Circulation 108:1930–2PubMedCrossRefGoogle Scholar
  39. 39.
    Yasojima K, Schwab C, McGeer EG, McGeer PL (2001) Generation of C-reactive protein and complement components in atherosclerotic plaques. Am J Pathol 158:1039–51PubMedCrossRefGoogle Scholar
  40. 40.
    Kobayashi S, Inoue N, Ohashi Y, Terashima M, Matsui K, Mori T, Fujita H, Awano K, Kobayashi K, Azumi H, Ejiri J, Hirata K, Kawashima S, Hayashi Y, Yokozaki H, Itoh H, Yokoyama M (2003) Interaction of oxidative stress and inflammatory response in coronary plaque instability: important role of C-reactive protein. Arterioscler Thromb Vasc Biol 23:1398–404PubMedCrossRefGoogle Scholar
  41. 41.
    Dong Q, Wright JR (1996) Expression of C-reactive protein by alveolar macrophages. J Immunol 156:4815–20PubMedGoogle Scholar
  42. 42.
    Venugopal SK, Devaraj S, Jialal I (2005) Macrophage conditioned medium induces the expression of C-reactive protein in human aortic endothelial cells: potential for paracrine/autocrine effects. Am J Pathol 166:1265–71PubMedCrossRefGoogle Scholar
  43. 43.
    Ouchi N, Kihara S, Funahashi T, Nakamura T, Nishida M, Kumada M, Okamoto Y, Ohashi K, Nagaretani H, Kishida K, Nishizawa H, Maeda N, Kobayashi H, Hiraoka H, Matsuzawa Y (2003) Reciprocal association of C-reactive protein with adiponectin in blood stream and adipose tissue. Circulation 107:671–4PubMedCrossRefGoogle Scholar
  44. 44.
    Devaraj S, Torok N, Dasu MR, Samols D, Jialal I (2008) Adiponectin decreases C-reactive protein synthesis and secretion from endothelial cells: evidence for an adipose tissue vascular loop. Arterioscler Thromb Vasc Biol 28:1368–74PubMedCrossRefGoogle Scholar
  45. 45.
    Singh P, Hoffmann M, Wolk R, Shamsuzzaman AS, Somers VK (2007) Leptin induces C reactive protein expression in vascular endothelial cells. Arterioscler Thromb Vasc Biol 27:e302–7PubMedCrossRefGoogle Scholar
  46. 46.
    Bassuk SS, Rifai N, Ridker PM (2004) High-sensitivity C-reactive protein: clinical importance. Curr Probl Cardiol 29(8):439–93PubMedGoogle Scholar
  47. 47.
    Pearson TA, Mensah GA, Alexander RW, Anderson JL, Cannon RO, Criqui M, Fadl Y, Fortmann SP, Hong Y, Myers GL, Rifai N, Smith SC, Taubert K, Tracy RP, Vinicor F (2003) Markers of inflammation and cardiovascular disease. Application to clinical and public health practice. Circulation 107:499–511PubMedCrossRefGoogle Scholar
  48. 48.
    Devaraj S, Du Clos TW, Jialal I (2005) Binding and internalization of C-reactive protein by Fcgamma receptors on human aortic endothelial cells mediates biological effects. Arterioscler Thromb Vasc Biol 25:1359–63PubMedCrossRefGoogle Scholar
  49. 49.
    Ridker PM, Danielson E, Fonseca FA, Genest J, Gotto AM Jr, Kastelein JJ, Koenig W, Libby P, Lorenzatti AJ, Macfadyen JG, Nordestgaard BG, Shepherd J, Willerson JT, Glynn RJ (2009) Reduction in CRP and LDL-C and cardiovascular event rates after initiation of rosuvastatin: a prospective study of the JUPITER trial. Lancet 373:1175–82PubMedCrossRefGoogle Scholar
  50. 50.
    Jialal I, Devaraj S (2009) Jupiter to Earth: CRP promotes atherothrombosis. Metab Syndr Relat Disord 7:1–3PubMedCrossRefGoogle Scholar
  51. 51.
    Dada N, Kim NW, Wolfert RL (2002) Lp-PLA2: an emerging biomarker of coronary heart disease. Expert Rev Mol Diagn 2:17–22PubMedCrossRefGoogle Scholar
  52. 52.
    Hakkinen T, Luoma JS, Hiltunen MO, Macphee CH, Milliner KJ, Patel L, Rica SQ, Tew DG, Karkola K, Yia-Herttuala S (1999) Lipoprotein-associated phospholipase A(2), platelet-activating factor acetylhydrolase, is expressed by macrophages in human and rabbit atherosclerotic lesions. Arterioscler Thromb Vasc Biol 19:2909–17PubMedCrossRefGoogle Scholar
  53. 53.
    Winkler K, Winkelmann BR, Scharnagl H, Hoffmann MM, Grawitz AB, Nauck M, Bohm BO, Marz W (2005) Platelet-activating factor acetylhydrolase activity indicates angiographic coronary artery disease independently of systemic inflammation and other risk factors: the Ludwigshafen Risk and Cardiovascular Health Study. Circulation 111:980–7PubMedCrossRefGoogle Scholar
  54. 54.
    Packard CJ, O’Reilly DS, Caslake MJ, McMahon AD, Ford I, Cooney J, Macphee CH, Suckling KE, Krishna M, Wilkinson FE, Rumley A, Lowe GD (2000) Lipoprotein-associated phospholipase A2 as an independent predictor of coronary heart disease. West of Scotland Coronary Prevention Study Group. N Engl J Med 343:1148–55PubMedCrossRefGoogle Scholar
  55. 55.
    Ballantyne CM, Hoogeveen RC, Bang H, Coresh J, Folsom AR, Heiss G, Sharrett AR (2004) Lipoprotein-associated phospholipase A2, high-sensitivity C-reactive protein, and risk for incident coronary heart disease in middle-aged men and women in the Atherosclerosis Risk in Communities (ARIC) study. Circulation 109:837–42PubMedCrossRefGoogle Scholar
  56. 56.
    Zalewski A, Nelson JJ, Hegg L, Macphee C (2006) Lp-PLA2: a new kid on the block. Clin Chem 52:1645–50PubMedCrossRefGoogle Scholar
  57. 57.
    Oei HH, Van Der Meer IM, Hofman A, Koudstaal PJ, Stijnen T, Breteler MM, Witteman JC (2005) Lipoprotein-associated phospholipase A2 activity is associated with risk of coronary heart disease and ischemic stroke: the Rotterdam Study. Circulation 111:570–5PubMedCrossRefGoogle Scholar
  58. 58.
    Izaki S, Yamamoto T, Goto Y, Ishimaru S, Yudate F, Kitamura K, Matsuzaki M (1996) Platelet-activating factor and arachidonic acid metabolites in psoriatic inflammation. Br J Dermatol 134:1060–4PubMedCrossRefGoogle Scholar
  59. 59.
    Gladman DD (2004) Psoriatic arthritis. Dermatol Ther 17:350–63PubMedCrossRefGoogle Scholar
  60. 60.
    Gladman DD, Shuckett R, Russell ML, Thorne JC, Schachter RK (1987) Psoriatic arthritis (PSA)—an analysis of 220 patients. Q J Med 62:127–41PubMedGoogle Scholar
  61. 61.
    Prodanovich S, Kirsner RS, Kravetz JD, Ma F, Martinez L, Federman DG (2009) Association of psoriasis with coronary artery, cerebrovascular, and peripheral vascular diseases and mortality. Arch Dermatol 145:700–3PubMedCrossRefGoogle Scholar
  62. 62.
    Kimball AB, Guerin A, Latremouille-Viau D, Yu AP, Gupta S, Bao Y, Mulani P (2010) Coronary heart disease and stroke risk in patients with psoriasis: retrospective analysis. Am J Med 123:350–7PubMedCrossRefGoogle Scholar
  63. 63.
    Tobin AM, Veale DJ, Fitzgerald O, Rogers S, Collins P, O’Shea D, Kirby B (2010) Cardiovascular disease and risk factors in patients with psoriasis and psoriatic arthritis. J Rheumatol 37:1386–94PubMedCrossRefGoogle Scholar
  64. 64.
    Abuabara K, Azfar RS, Shin DB, Neimann AL, Troxel AB, Gelfand JM (2010) Cause-specific mortality in patients with severe psoriasis: a population-based cohort study in the U.K. Br J Dermatol 163:586–92PubMedCrossRefGoogle Scholar
  65. 65.
    Gelfand JM, Neimann AL, Shin DB, Wang X, Margolis DJ, Troxel AB (2006) Risk of myocardial infarction in patients with psoriasis. JAMA 296:1735–41PubMedCrossRefGoogle Scholar
  66. 66.
    Neimann AL, Shin DB, Wang X, Margolis DJ, Troxel AB, Gelfand JM (2006) Prevalence of cardiovascular risk factors in patients with psoriasis. J Am Acad Dermatol 55:829–35PubMedCrossRefGoogle Scholar
  67. 67.
    Gottlieb AB, Dann F (2009) Comorbidities in patients with psoriasis. Am J Med 122:1150PubMedCrossRefGoogle Scholar
  68. 68.
    Raychaudhuri SK, Chatterjee S, Nguyen C, Kaur M, Jialal I, Raychaudhuri SP (2010) Increased prevalence of the metabolic syndrome in patients with psoriatic arthritis. Metab Syndr Relat Disord 8:331–4PubMedCrossRefGoogle Scholar
  69. 69.
    Love TJ, Qureshi AA, Karlson EW, Gelfand JM, Choi HK (2011) Prevalence of the metabolic syndrome in psoriasis: results from the National Health and Nutrition Examination Survey, 2003–2006. Arch Dermatol 147:419–24PubMedCrossRefGoogle Scholar
  70. 70.
    Mehta NN, Azfar RS, Shin DB, Neimann AL, Troxel AB, Gelfand JM (2010) Patients with severe psoriasis are at increased risk of cardiovascular mortality: cohort study using the General Practice Research Database. Eur Heart J 31:1000–6PubMedCrossRefGoogle Scholar
  71. 71.
    Han C, Robinson DW Jr, Hackett MV, Paramore LC, Fraeman KH, Bala MV (2006) Cardiovascular disease and risk factors in patients with rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis. J Rheumatol 33:2167–72PubMedGoogle Scholar
  72. 72.
    Nestle FO, Kaplan DH, Barker J (2009) Psoriasis. N Engl J Med 361:496–509PubMedCrossRefGoogle Scholar
  73. 73.
    Gladman DD, Ang M, Su L, Tom BD, Schentag CT, Farewell VT (2009) Cardiovascular morbidity in psoriatic arthritis. Ann Rheum Dis 68:1131–5PubMedCrossRefGoogle Scholar
  74. 74.
    Balci DD, Balci A, Karazincir S, Ucar E, Iyigun U, Yalcin F, Seyfeli E, Inandi T, Egilmez E (2009) Increased carotid artery intima-media thickness and impaired endothelial function in psoriasis. J Eur Acad Dermatol Venereol 23:1–6PubMedCrossRefGoogle Scholar
  75. 75.
    Tam LS, Shang Q, Li EK, Tomlinson B, Chu TT, Li M, Leung YY, Kwok LW, Wong KC, Li TK, Yu T, Zhu TY, Kun EW, Yip GW, Yu CM (2008) Subclinical carotid atherosclerosis in patients with psoriatic arthritis. Arthritis Rheum 59:1322–31PubMedCrossRefGoogle Scholar
  76. 76.
    Ludwig RJ, Herzog C, Rostock A, Ochsendorf FR, Zollner TM, Thaci D, Kaufmann R, Vogl TJ, Boehncke WH (2007) Psoriasis: a possible risk factor for development of coronary artery calcification. Br J Dermatol 156:271–6PubMedCrossRefGoogle Scholar
  77. 77.
    Späh F (2008) Inflammation in atherosclerosis and psoriasis: common pathogenic mechanisms and the potential for an integrated treatment approach. Br J Dermatol 159:10–7PubMedCrossRefGoogle Scholar
  78. 78.
    Tam LS, Tomlinson B, Chu TT, Li M, Leung YY, Kwok LW, Li TK, Yu T, Zhu YE, Wong KC, Kun EW, Li EK (2008) Cardiovascular risk profile of patients with psoriatic arthritis compared to controls—the role of inflammation. Rheumatology (Oxford) 47:718–23CrossRefGoogle Scholar
  79. 79.
    Kimball AB, Gladman D, Gelfand JM, Gordon K, Horn EJ, Korman NJ, Korver G, Krueger GG, Strober BE, Lebwohl MG (2008) National Psoriasis Foundation clinical consensus on psoriasis comorbidities and recommendations for screening. J Am Acad Dermatol 58:1031–42PubMedCrossRefGoogle Scholar
  80. 80.
    Friedewald VE, Cather JC, Gelfand JM, Gordon KB, Gibbons GH, Grundy SM, Jarratt MT, Krueger JG, Ridker PM, Stone N, Roberts WC (2008) AJC editor’s consensus: psoriasis and coronary artery disease. Am J Cardiol 102:1631–43PubMedCrossRefGoogle Scholar
  81. 81.
    Ouchi N, Parker JL, Lugus JJ, Walsh K (2011) Adipokines in inflammation and metabolic disease. Nat Rev Immunol 11:85–97PubMedCrossRefGoogle Scholar
  82. 82.
    Olefsky JM, Glass CK (2010) Macrophages, inflammation, and insulin resistance. Annu Rev Physiol 72:219–46PubMedCrossRefGoogle Scholar
  83. 83.
    Florez H, Castillo-Florez S, Mendez A, Casanova-Romero P, Larreal-Urdaneta C, Lee D, Goldberg R (2006) C-reactive protein is elevated in obese patients with the metabolic syndrome. Diabetes Res Clin Pract 71:92–100PubMedCrossRefGoogle Scholar
  84. 84.
    Raychaudhuri SP, Jiang WY, Raychaudhuri SK (2008) Revisiting the Koebner phenomenon: role of NGF and its receptor system in the pathogenesis of psoriasis. Am J Pathol 172:961–71PubMedCrossRefGoogle Scholar
  85. 85.
    Matarese G, Di Giacomo A, Sanna V, Lord GM, Howard JK, Di Tuoro A, Bloom SR, Lechler RI, Zappacosta S, Fontana S (2001) Requirement for leptin in the induction and progression of autoimmune encephalomyelitis. J Immunol 166:5909–16PubMedGoogle Scholar
  86. 86.
    Otero M, Lago R, Lago F, Casanueva FF, Dieguez C, Gómez-Reino JJ, Gualillo O (2005) Leptin, from fat to inflammation: old questions and new insights. FEBS Lett 579:295–301PubMedCrossRefGoogle Scholar
  87. 87.
    Romanowska M, al Yacoub N, Seidel H, Donandt S, Gerken H, Phillip S, Haritonova N, Artuc M, Schweiger S, Sterry W, Foerster J (2008) PPAR delta enhances keratinocyte proliferation in psoriasis and induces heparin-binding EGF-like growth factor. J Invest Dermatol 128:110–24PubMedCrossRefGoogle Scholar
  88. 88.
    Tekin NS, Tekin IO, Barut F, Sipahi EY (2007) Accumulation of oxidized low-density lipoprotein in psoriatic skin and changes of plasma lipid levels in psoriatic patients. Mediators Inflamm 2007:78454PubMedGoogle Scholar
  89. 89.
    Cerman AA, Bozkurt S, Sav A, Tulunay A, Elbaşi MO, Ergun T (2008) Serum leptin levels, skin leptin and leptin receptor expression in psoriasis. Br J Dermatol 159:820–6PubMedCrossRefGoogle Scholar
  90. 90.
    Johnston A, Arnadottir S, Gudjonsson JE, Aphale A, Sigmarsdottir AA, Gunnarsson SI, Steinsson JT, Elder JT, Valdimarsson H (2008) Obesity in psoriasis: leptin and resistin as mediators of cutaneous inflammation. Br J Dermatol 159:342–50PubMedCrossRefGoogle Scholar
  91. 91.
    Matarese G, Mantzoros C, La Cava A (2007) Leptin and adipocytokines: bridging the gap between immunity and atherosclerosis. Curr Pharm Des 13:3676–80PubMedCrossRefGoogle Scholar
  92. 92.
    Rizzo M, Rizvi AA, Rini GB, Berneis K (2009) The therapeutic modulation of atherogenic dyslipidemis and inflammatory markers in the metabolic syndrome: what is the clinical relevance? Acta Diabetol 46:1–11PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC (outside the USA) 2012

Authors and Affiliations

  • David Siegel
    • 1
    • 2
    • 3
  • Sridevi Devaraj
    • 2
  • Anupam Mitra
    • 1
  • Siba P. Raychaudhuri
    • 1
    • 2
  • Smriti K. Raychaudhuri
    • 1
  • Ishwarlal Jialal
    • 1
    • 2
  1. 1.Medical Service, Department of Veterans AffairsNorthern California Health Care SystemMatherUSA
  2. 2.Department of Medicine, School of Medicine, University of California, Davis and The Laboratory for Atherosclerosis and Metabolic Research, UC Davis Medical CenterSacramentoUSA
  3. 3.Department of Veterans Affairs NCHCSMedical Service (111)MatherUSA

Personalised recommendations